-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlogger.py
67 lines (56 loc) · 2.77 KB
/
logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import os
import mlflow
import argparse
import inspect
import json
from typing import Optional
class Logger:
def __init__(self, results_path: str, log_to_file: bool, log_to_mlflow: bool, mlflow_server_uri: Optional[str] = None):
self.results_path = results_path
self.log_to_file = log_to_file
self.log_to_mlflow = log_to_mlflow
self.mlflow_server_uri = mlflow_server_uri
self.file_log_path = os.path.join(self.results_path, "log.txt")
if self.log_to_file:
os.makedirs(self.results_path, exist_ok=True)
# Check if we should log to MLflow
parser = argparse.ArgumentParser(description='Experiment.')
parser.add_argument('--debug', help="debug flag to turn off server logging", action="store_true")
parser.add_argument('--run-name', type=str, help="give a descriptive run name so we can keep track of results", default="Default run")
parser.add_argument('--exp-name', type=str, help="MLflow Experiment name to group run into", default="Default experiment")
args = parser.parse_args()
if args.debug:
self.log_to_mlflow = False
if self.log_to_mlflow:
print(
f"MLFlow: Tracking run '{args.run_name}' in experiment '{args.exp_name}'")
mlflow.set_tracking_uri(self.mlflow_server_uri)
mlflow.set_experiment(args.exp_name)
mlflow.set_tag("mlflow.runName", args.run_name)
def log_hyperparams(self, config_object):
attributes = inspect.getmembers(config_object, lambda a: not (inspect.isroutine(a)))
attributes = [a for a in attributes if not (a[0].startswith('__') and a[0].endswith('__'))]
attribute_dict = {}
def add_to_attribute_dict(a):
for key, value in a:
if isinstance(value, dict):
add_to_attribute_dict([(f"{key}.{k}", v) for k, v in value.items()])
else:
if key not in ["devices_for_eval_workers"] and len(str(value)) <= 500:
attribute_dict[key] = value
add_to_attribute_dict(attributes)
if self.log_to_mlflow:
mlflow.log_params(attribute_dict)
if self.log_to_file:
with open(self.file_log_path, "a+") as f:
f.write(json.dumps({"hyperparameters": attribute_dict}))
f.write("\n")
def log_metrics(self, metrics: dict, step: Optional[int] = None, step_desc: Optional[str] = "epoch"):
if self.log_to_mlflow:
mlflow.log_metrics(metrics, step=step)
if self.log_to_file:
if step is not None:
metrics[step_desc] = step
with open(self.file_log_path, "a+") as f:
f.write(json.dumps(metrics))
f.write("\n")