-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdm9000a.c
executable file
·798 lines (666 loc) · 23.1 KB
/
dm9000a.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
/*
* File : dm9000a.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2009, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2009-07-01 Bernard the first version
*/
#include <rtthread.h>
#include "dm9000a.h"
#include <netif/ethernetif.h>
#include "lwipopts.h"
#include "stm32f10x.h"
#include "stm32f10x_fsmc.h"
// #define DM9000_DEBUG 1
#if DM9000_DEBUG
#define DM9000_TRACE rt_kprintf
#else
#define DM9000_TRACE(...)
#endif
/*
* DM9000 interrupt line is connected to PE4
*/
//--------------------------------------------------------
#define DM9000_PHY 0x40 /* PHY address 0x01 */
#define RST_1() GPIO_SetBits(GPIOE,GPIO_Pin_5)
#define RST_0() GPIO_ResetBits(GPIOE,GPIO_Pin_5)
#define MAX_ADDR_LEN 6
enum DM9000_PHY_mode
{
DM9000_10MHD = 0, DM9000_100MHD = 1,
DM9000_10MFD = 4, DM9000_100MFD = 5,
DM9000_AUTO = 8, DM9000_1M_HPNA = 0x10
};
enum DM9000_TYPE
{
TYPE_DM9000E,
TYPE_DM9000A,
TYPE_DM9000B
};
struct rt_dm9000_eth
{
/* inherit from ethernet device */
struct eth_device parent;
enum DM9000_TYPE type;
enum DM9000_PHY_mode mode;
rt_uint8_t imr_all;
rt_uint8_t packet_cnt; /* packet I or II */
rt_uint16_t queue_packet_len; /* queued packet (packet II) */
/* interface address info. */
rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
};
static struct rt_dm9000_eth dm9000_device;
static struct rt_semaphore sem_ack, sem_lock;
void rt_dm9000_isr(void);
static void delay_ms(rt_uint32_t ms)
{
rt_uint32_t len;
for (;ms > 0; ms --)
for (len = 0; len < 100; len++ );
}
/* Read a byte from I/O port */
rt_inline rt_uint8_t dm9000_io_read(rt_uint16_t reg)
{
DM9000_IO = reg;
return (rt_uint8_t) DM9000_DATA;
}
/* Write a byte to I/O port */
rt_inline void dm9000_io_write(rt_uint16_t reg, rt_uint16_t value)
{
DM9000_IO = reg;
DM9000_DATA = value;
}
/* Read a word from phyxcer */
rt_inline rt_uint16_t phy_read(rt_uint16_t reg)
{
rt_uint16_t val;
/* Fill the phyxcer register into REG_0C */
dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg);
dm9000_io_write(DM9000_EPCR, 0xc); /* Issue phyxcer read command */
delay_ms(100); /* Wait read complete */
dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer read command */
val = (dm9000_io_read(DM9000_EPDRH) << 8) | dm9000_io_read(DM9000_EPDRL);
return val;
}
/* Write a word to phyxcer */
rt_inline void phy_write(rt_uint16_t reg, rt_uint16_t value)
{
/* Fill the phyxcer register into REG_0C */
dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg);
/* Fill the written data into REG_0D & REG_0E */
dm9000_io_write(DM9000_EPDRL, (value & 0xff));
dm9000_io_write(DM9000_EPDRH, ((value >> 8) & 0xff));
dm9000_io_write(DM9000_EPCR, 0xa); /* Issue phyxcer write command */
delay_ms(500); /* Wait write complete */
dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer write command */
}
/* Set PHY operationg mode */
rt_inline void phy_mode_set(rt_uint32_t media_mode)
{
rt_uint16_t phy_reg4 = 0x01e1, phy_reg0 = 0x1000;
if (!(media_mode & DM9000_AUTO))
{
switch (media_mode)
{
case DM9000_10MHD:
phy_reg4 = 0x21;
phy_reg0 = 0x0000;
break;
case DM9000_10MFD:
phy_reg4 = 0x41;
phy_reg0 = 0x1100;
break;
case DM9000_100MHD:
phy_reg4 = 0x81;
phy_reg0 = 0x2000;
break;
case DM9000_100MFD:
phy_reg4 = 0x101;
phy_reg0 = 0x3100;
break;
}
phy_write(4, phy_reg4); /* Set PHY media mode */
phy_write(0, phy_reg0); /* Tmp */
}
dm9000_io_write(DM9000_GPCR, 0x01); /* Let GPIO0 output */
dm9000_io_write(DM9000_GPR, 0x00); /* Enable PHY */
}
/* interrupt service routine */
void rt_dm9000_isr()
{
rt_uint16_t int_status;
rt_uint16_t last_io;
last_io = DM9000_IO;
/* Disable all interrupts */
dm9000_io_write(DM9000_IMR, IMR_PAR);
/* Got DM9000 interrupt status */
int_status = dm9000_io_read(DM9000_ISR); /* Got ISR */
dm9000_io_write(DM9000_ISR, int_status); /* Clear ISR status */
DM9000_TRACE("dm9000 isr: int status %04x\n", int_status);
/* receive overflow */
if (int_status & ISR_ROS)
{
rt_kprintf("overflow\n");
}
if (int_status & ISR_ROOS)
{
rt_kprintf("overflow counter overflow\n");
}
/* Received the coming packet */
if (int_status & ISR_PRS)
{
/* disable receive interrupt */
dm9000_device.imr_all = IMR_PAR | IMR_PTM;
/* a frame has been received */
eth_device_ready(&(dm9000_device.parent));
}
/* Transmit Interrupt check */
if (int_status & ISR_PTS)
{
/* transmit done */
int tx_status = dm9000_io_read(DM9000_NSR); /* Got TX status */
if (tx_status & (NSR_TX2END | NSR_TX1END))
{
dm9000_device.packet_cnt --;
if (dm9000_device.packet_cnt > 0)
{
DM9000_TRACE("dm9000 isr: tx second packet\n");
/* transmit packet II */
/* Set TX length to DM9000 */
dm9000_io_write(DM9000_TXPLL, dm9000_device.queue_packet_len & 0xff);
dm9000_io_write(DM9000_TXPLH, (dm9000_device.queue_packet_len >> 8) & 0xff);
/* Issue TX polling command */
dm9000_io_write(DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
}
/* One packet sent complete */
rt_sem_release(&sem_ack);
}
}
/* Re-enable interrupt mask */
dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
DM9000_IO = last_io;
}
/* RT-Thread Device Interface */
/* initialize the interface */
static rt_err_t rt_dm9000_init(rt_device_t dev)
{
int i, oft, lnk;
rt_uint32_t value;
/* RESET device */
dm9000_io_write(DM9000_NCR, NCR_RST);
delay_ms(1000); /* delay 1ms */
/* identfy DM9000 */
value = dm9000_io_read(DM9000_VIDL);
value |= dm9000_io_read(DM9000_VIDH) << 8;
value |= dm9000_io_read(DM9000_PIDL) << 16;
value |= dm9000_io_read(DM9000_PIDH) << 24;
if (value == DM9000_ID)
{
rt_kprintf("dm9000 id: 0x%x\n", value);
}
else
{
return -RT_ERROR;
}
/* GPIO0 on pre-activate PHY */
dm9000_io_write(DM9000_GPR, 0x00); /* REG_1F bit0 activate phyxcer */
dm9000_io_write(DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
dm9000_io_write(DM9000_GPR, 0x00); /* Enable PHY */
/* Set PHY */
phy_mode_set(dm9000_device.mode);
/* Program operating register */
dm9000_io_write(DM9000_NCR, 0x0); /* only intern phy supported by now */
dm9000_io_write(DM9000_TCR, 0); /* TX Polling clear */
dm9000_io_write(DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
dm9000_io_write(DM9000_FCTR, FCTR_HWOT(3) | FCTR_LWOT(8)); /* Flow Control : High/Low Water */
dm9000_io_write(DM9000_FCR, 0x0); /* SH FIXME: This looks strange! Flow Control */
dm9000_io_write(DM9000_SMCR, 0); /* Special Mode */
dm9000_io_write(DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END); /* clear TX status */
dm9000_io_write(DM9000_ISR, 0x0f); /* Clear interrupt status */
dm9000_io_write(DM9000_TCR2, 0x80); /* Switch LED to mode 1 */
/* set mac address */
for (i = 0, oft = 0x10; i < 6; i++, oft++)
dm9000_io_write(oft, dm9000_device.dev_addr[i]);
/* set multicast address */
for (i = 0, oft = 0x16; i < 8; i++, oft++)
dm9000_io_write(oft, 0xff);
/* Activate DM9000 */
dm9000_io_write(DM9000_RCR, RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN); /* RX enable */
dm9000_io_write(DM9000_IMR, IMR_PAR);
if (dm9000_device.mode == DM9000_AUTO)
{
while (!(phy_read(1) & 0x20))
{
/* autonegation complete bit */
rt_thread_delay(10);
i++;
if (i == 10000)
{
rt_kprintf("could not establish link\n");
return 0;
}
}
}
/* see what we've got */
lnk = phy_read(17) >> 12;
rt_kprintf("operating at ");
switch (lnk)
{
case 1:
rt_kprintf("10M half duplex ");
break;
case 2:
rt_kprintf("10M full duplex ");
break;
case 4:
rt_kprintf("100M half duplex ");
break;
case 8:
rt_kprintf("100M full duplex ");
break;
default:
rt_kprintf("unknown: %d ", lnk);
break;
}
rt_kprintf("mode\n");
dm9000_io_write(DM9000_IMR, dm9000_device.imr_all); /* Enable TX/RX interrupt mask */
return RT_EOK;
}
static rt_err_t rt_dm9000_open(rt_device_t dev, rt_uint16_t oflag)
{
return RT_EOK;
}
static rt_err_t rt_dm9000_close(rt_device_t dev)
{
/* RESET devie */
phy_write(0, 0x8000); /* PHY RESET */
dm9000_io_write(DM9000_GPR, 0x01); /* Power-Down PHY */
dm9000_io_write(DM9000_IMR, 0x80); /* Disable all interrupt */
dm9000_io_write(DM9000_RCR, 0x00); /* Disable RX */
return RT_EOK;
}
static rt_size_t rt_dm9000_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_size_t rt_dm9000_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_err_t rt_dm9000_control(rt_device_t dev, rt_uint8_t cmd, void *args)
{
switch (cmd)
{
case NIOCTL_GADDR:
/* get mac address */
if (args) rt_memcpy(args, dm9000_device.dev_addr, 6);
else return -RT_ERROR;
break;
default :
break;
}
return RT_EOK;
}
/* ethernet device interface */
/* transmit packet. */
rt_err_t rt_dm9000_tx( rt_device_t dev, struct pbuf* p)
{
DM9000_TRACE("dm9000 tx: %d\n", p->tot_len);
/* lock DM9000 device */
rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
/* disable dm9000a interrupt */
dm9000_io_write(DM9000_IMR, IMR_PAR);
/* Move data to DM9000 TX RAM */
DM9000_outb(DM9000_IO_BASE, DM9000_MWCMD);
{
/* q traverses through linked list of pbuf's
* This list MUST consist of a single packet ONLY */
struct pbuf *q;
rt_uint16_t pbuf_index = 0;
rt_uint8_t word[2], word_index = 0;
q = p;
/* Write data into dm9000a, two bytes at a time
* Handling pbuf's with odd number of bytes correctly
* No attempt to optimize for speed has been made */
while (q)
{
if (pbuf_index < q->len)
{
word[word_index++] = ((u8_t*)q->payload)[pbuf_index++];
if (word_index == 2)
{
DM9000_outw(DM9000_DATA_BASE, (word[1] << 8) | word[0]);
word_index = 0;
}
}
else
{
q = q->next;
pbuf_index = 0;
}
}
/* One byte could still be unsent */
if (word_index == 1)
{
DM9000_outw(DM9000_DATA_BASE, word[0]);
}
}
if (dm9000_device.packet_cnt == 0)
{
DM9000_TRACE("dm9000 tx: first packet\n");
dm9000_device.packet_cnt ++;
/* Set TX length to DM9000 */
dm9000_io_write(DM9000_TXPLL, p->tot_len & 0xff);
dm9000_io_write(DM9000_TXPLH, (p->tot_len >> 8) & 0xff);
/* Issue TX polling command */
dm9000_io_write(DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
}
else
{
DM9000_TRACE("dm9000 tx: second packet\n");
dm9000_device.packet_cnt ++;
dm9000_device.queue_packet_len = p->tot_len;
}
/* enable dm9000a interrupt */
dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
/* unlock DM9000 device */
rt_sem_release(&sem_lock);
/* wait ack */
rt_sem_take(&sem_ack, RT_WAITING_FOREVER);
DM9000_TRACE("dm9000 tx done\n");
return RT_EOK;
}
/* reception packet. */
struct pbuf *rt_dm9000_rx(rt_device_t dev)
{
struct pbuf* p;
rt_uint32_t rxbyte;
/* init p pointer */
p = RT_NULL;
/* lock DM9000 device */
rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
/* Check packet ready or not */
dm9000_io_read(DM9000_MRCMDX); /* Dummy read */
rxbyte = DM9000_inb(DM9000_DATA_BASE); /* Got most updated data */
if (rxbyte)
{
rt_uint16_t rx_status, rx_len;
rt_uint16_t* data;
if (rxbyte > 1)
{
DM9000_TRACE("dm9000 rx: rx error, stop device\n");
dm9000_io_write(DM9000_RCR, 0x00); /* Stop Device */
dm9000_io_write(DM9000_ISR, 0x80); /* Stop INT request */
}
/* A packet ready now & Get status/length */
DM9000_outb(DM9000_IO_BASE, DM9000_MRCMD);
rx_status = DM9000_inw(DM9000_DATA_BASE);
rx_len = DM9000_inw(DM9000_DATA_BASE);
DM9000_TRACE("dm9000 rx: status %04x len %d\n", rx_status, rx_len);
/* allocate buffer */
p = pbuf_alloc(PBUF_LINK, rx_len, PBUF_RAM);
if (p != RT_NULL)
{
struct pbuf* q;
rt_int32_t len;
for (q = p; q != RT_NULL; q= q->next)
{
data = (rt_uint16_t*)q->payload;
len = q->len;
while (len > 0)
{
*data = DM9000_inw(DM9000_DATA_BASE);
data ++;
len -= 2;
}
}
DM9000_TRACE("\n");
}
else
{
rt_uint16_t dummy;
rt_int32_t len;
DM9000_TRACE("dm9000 rx: no pbuf\n");
/* no pbuf, discard data from DM9000 */
data = &dummy;
len = rx_len;
while (len > 0)
{
*data = DM9000_inw(DM9000_DATA_BASE);
len -= 2;
}
}
if ((rx_status & 0xbf00) || (rx_len < 0x40)
|| (rx_len > DM9000_PKT_MAX))
{
rt_kprintf("rx error: status %04x\n", rx_status);
if (rx_status & 0x100)
{
rt_kprintf("rx fifo error\n");
}
if (rx_status & 0x200)
{
rt_kprintf("rx crc error\n");
}
if (rx_status & 0x8000)
{
rt_kprintf("rx length error\n");
}
if (rx_len > DM9000_PKT_MAX)
{
rt_kprintf("rx length too big\n");
/* RESET device */
dm9000_io_write(DM9000_NCR, NCR_RST);
rt_thread_delay(1); /* delay 5ms */
}
/* it issues an error, release pbuf */
pbuf_free(p);
p = RT_NULL;
}
}
else
{
/* restore receive interrupt */
dm9000_device.imr_all = IMR_PAR | IMR_PTM | IMR_PRM;
dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
}
/* unlock DM9000 device */
rt_sem_release(&sem_lock);
return p;
}
static void RCC_Configuration(void)
{
/* enable gpiob port clock */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOF | RCC_APB2Periph_GPIOE | RCC_APB2Periph_AFIO, ENABLE);
/* enable FSMC clock */
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_FSMC, ENABLE);
}
static void NVIC_Configuration(void)
{
NVIC_InitTypeDef NVIC_InitStructure;
/* Enable the EXTI4 Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = EXTI4_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
}
static void GPIO_Configuration()
{
GPIO_InitTypeDef GPIO_InitStructure;
EXTI_InitTypeDef EXTI_InitStructure;
/* configure PE5 as eth RST */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOE,&GPIO_InitStructure);
GPIO_SetBits(GPIOE,GPIO_Pin_5);
//RST_1();
/* configure PE4 as external interrupt */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD;
GPIO_Init(GPIOE, &GPIO_InitStructure);
/* Connect DM9000 EXTI Line to GPIOE Pin 4 */
GPIO_EXTILineConfig(GPIO_PortSourceGPIOE, GPIO_PinSource4);
/* Configure DM9000 EXTI Line to generate an interrupt on falling edge */
EXTI_InitStructure.EXTI_Line = EXTI_Line4;
EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising;
EXTI_InitStructure.EXTI_LineCmd = ENABLE;
EXTI_Init(&EXTI_InitStructure);
/* Clear DM9000A EXTI line pending bit */
EXTI_ClearITPendingBit(EXTI_Line4);
}
static void FSMC_Configuration()
{
FSMC_NORSRAMInitTypeDef FSMC_NORSRAMInitStructure;
FSMC_NORSRAMTimingInitTypeDef p;
/* FSMC GPIO configure */
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOE | RCC_APB2Periph_GPIOF
| RCC_APB2Periph_GPIOG, ENABLE);
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_FSMC, ENABLE);
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
/*
FSMC_D0 ~ FSMC_D3
PD14 FSMC_D0 PD15 FSMC_D1 PD0 FSMC_D2 PD1 FSMC_D3
*/
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_14 | GPIO_Pin_15;
GPIO_Init(GPIOD,&GPIO_InitStructure);
/*
FSMC_D4 ~ FSMC_D12
PE7 ~ PE15 FSMC_D4 ~ FSMC_D12
*/
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10
| GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15;
GPIO_Init(GPIOE,&GPIO_InitStructure);
/* FSMC_D13 ~ FSMC_D15 PD8 ~ PD10 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10;
GPIO_Init(GPIOD,&GPIO_InitStructure);
/*
FSMC_A0 ~ FSMC_A5 FSMC_A6 ~ FSMC_A9
PF0 ~ PF5 PF12 ~ PF15
*/
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3
| GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15;
GPIO_Init(GPIOF,&GPIO_InitStructure);
/* FSMC_A10 ~ FSMC_A15 PG0 ~ PG5 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_5;
GPIO_Init(GPIOG,&GPIO_InitStructure);
/* FSMC_A16 ~ FSMC_A18 PD11 ~ PD13 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13;
GPIO_Init(GPIOD,&GPIO_InitStructure);
/* RD-PD4 WR-PD5 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5;
GPIO_Init(GPIOD,&GPIO_InitStructure);
/* NBL0-PE0 NBL1-PE1 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1;
GPIO_Init(GPIOE,&GPIO_InitStructure);
/* NE1/NCE2 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7;
GPIO_Init(GPIOD,&GPIO_InitStructure);
/* NE2 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
GPIO_Init(GPIOG,&GPIO_InitStructure);
/* NE3 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_Init(GPIOG,&GPIO_InitStructure);
/* NE4 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12;
GPIO_Init(GPIOG,&GPIO_InitStructure);
}
/* FSMC GPIO configure */
/*-- FSMC Configuration ------------------------------------------------------*/
p.FSMC_AddressSetupTime = 0;
p.FSMC_AddressHoldTime = 0;
p.FSMC_DataSetupTime = 2;
p.FSMC_BusTurnAroundDuration = 0;
p.FSMC_CLKDivision = 0;
p.FSMC_DataLatency = 0;
p.FSMC_AccessMode = FSMC_AccessMode_A;
FSMC_NORSRAMInitStructure.FSMC_Bank = FSMC_Bank1_NORSRAM4;
FSMC_NORSRAMInitStructure.FSMC_DataAddressMux = FSMC_DataAddressMux_Disable;
FSMC_NORSRAMInitStructure.FSMC_MemoryType = FSMC_MemoryType_SRAM;
FSMC_NORSRAMInitStructure.FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_16b;
FSMC_NORSRAMInitStructure.FSMC_BurstAccessMode = FSMC_BurstAccessMode_Disable;
FSMC_NORSRAMInitStructure.FSMC_AsynchronousWait = FSMC_AsynchronousWait_Disable;
FSMC_NORSRAMInitStructure.FSMC_WaitSignalPolarity = FSMC_WaitSignalPolarity_Low;
FSMC_NORSRAMInitStructure.FSMC_WrapMode = FSMC_WrapMode_Disable;
FSMC_NORSRAMInitStructure.FSMC_WaitSignalActive = FSMC_WaitSignalActive_BeforeWaitState;
FSMC_NORSRAMInitStructure.FSMC_WriteOperation = FSMC_WriteOperation_Enable;
FSMC_NORSRAMInitStructure.FSMC_WaitSignal = FSMC_WaitSignal_Disable;
FSMC_NORSRAMInitStructure.FSMC_ExtendedMode = FSMC_ExtendedMode_Disable;
FSMC_NORSRAMInitStructure.FSMC_WriteBurst = FSMC_WriteBurst_Disable;
FSMC_NORSRAMInitStructure.FSMC_ReadWriteTimingStruct = &p;
FSMC_NORSRAMInitStructure.FSMC_WriteTimingStruct = &p;
FSMC_NORSRAMInit(&FSMC_NORSRAMInitStructure);
/* Enable FSMC Bank1_SRAM Bank4 */
FSMC_NORSRAMCmd(FSMC_Bank1_NORSRAM4, ENABLE);
}
void rt_hw_dm9000_init()
{
RCC_Configuration();
NVIC_Configuration();
GPIO_Configuration();
FSMC_Configuration();
rt_sem_init(&sem_ack, "tx_ack", 1, RT_IPC_FLAG_FIFO);
rt_sem_init(&sem_lock, "eth_lock", 1, RT_IPC_FLAG_FIFO);
dm9000_device.type = TYPE_DM9000A;
dm9000_device.mode = DM9000_AUTO;
dm9000_device.packet_cnt = 0;
dm9000_device.queue_packet_len = 0;
/*
* SRAM Tx/Rx pointer automatically return to start address,
* Packet Transmitted, Packet Received
*/
dm9000_device.imr_all = IMR_PAR | IMR_PTM | IMR_PRM;
dm9000_device.dev_addr[0] = 0x00;
dm9000_device.dev_addr[1] = 0x60;
dm9000_device.dev_addr[2] = 0x6E;
dm9000_device.dev_addr[3] = 0x11;
dm9000_device.dev_addr[4] = 0x22;
dm9000_device.dev_addr[5] = 0x33;
dm9000_device.parent.parent.init = rt_dm9000_init;
dm9000_device.parent.parent.open = rt_dm9000_open;
dm9000_device.parent.parent.close = rt_dm9000_close;
dm9000_device.parent.parent.read = rt_dm9000_read;
dm9000_device.parent.parent.write = rt_dm9000_write;
dm9000_device.parent.parent.control = rt_dm9000_control;
dm9000_device.parent.parent.user_data = RT_NULL;
dm9000_device.parent.eth_rx = rt_dm9000_rx;
dm9000_device.parent.eth_tx = rt_dm9000_tx;
eth_device_init(&(dm9000_device.parent), "e0");
}
void dm9000(void)
{
rt_kprintf("\n");
rt_kprintf("NCR (0x00): %02x\n", dm9000_io_read(DM9000_NCR));
rt_kprintf("NSR (0x01): %02x\n", dm9000_io_read(DM9000_NSR));
rt_kprintf("TCR (0x02): %02x\n", dm9000_io_read(DM9000_TCR));
rt_kprintf("TSRI (0x03): %02x\n", dm9000_io_read(DM9000_TSR1));
rt_kprintf("TSRII (0x04): %02x\n", dm9000_io_read(DM9000_TSR2));
rt_kprintf("RCR (0x05): %02x\n", dm9000_io_read(DM9000_RCR));
rt_kprintf("RSR (0x06): %02x\n", dm9000_io_read(DM9000_RSR));
rt_kprintf("ORCR (0x07): %02x\n", dm9000_io_read(DM9000_ROCR));
rt_kprintf("CRR (0x2C): %02x\n", dm9000_io_read(DM9000_CHIPR));
rt_kprintf("CSCR (0x31): %02x\n", dm9000_io_read(DM9000_CSCR));
rt_kprintf("RCSSR (0x32): %02x\n", dm9000_io_read(DM9000_RCSSR));
rt_kprintf("ISR (0xFE): %02x\n", dm9000_io_read(DM9000_ISR));
rt_kprintf("IMR (0xFF): %02x\n", dm9000_io_read(DM9000_IMR));
rt_kprintf("\n");
}
#ifdef RT_USING_FINSH
#include <finsh.h>
FINSH_FUNCTION_EXPORT(dm9000, dm9000 register dump);
#endif