-
Notifications
You must be signed in to change notification settings - Fork 0
/
commutator_rpnl.F
927 lines (845 loc) · 54.1 KB
/
commutator_rpnl.F
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
!--------------------------------------------------------------------------------------------------!
! CP2K: A general program to perform molecular dynamics simulations !
! Copyright 2000-2021 CP2K developers group <https://cp2k.org> !
! !
! SPDX-License-Identifier: GPL-2.0-or-later !
!--------------------------------------------------------------------------------------------------!
! **************************************************************************************************
!> \brief Calculation of the non-local pseudopotential contribution to the core Hamiltonian
!> <a|V(non-local)|b> = <a|p(l,i)>*h(i,j)*<p(l,j)|b>
!> \par History
!> - refactered from qs_core_hamiltian [Joost VandeVondele, 2008-11-01]
!> - full rewrite [jhu, 2009-01-23]
! **************************************************************************************************
MODULE commutator_rpnl
USE ai_moments, ONLY: moment
USE ai_overlap, ONLY: overlap
USE basis_set_types, ONLY: gto_basis_set_p_type,&
gto_basis_set_type
USE block_p_types, ONLY: block_p_type
USE cell_types, ONLY: cell_type
USE dbcsr_api, ONLY: dbcsr_get_block_p,&
dbcsr_p_type
USE external_potential_types, ONLY: gth_potential_p_type,&
gth_potential_type,&
sgp_potential_p_type,&
sgp_potential_type
USE kinds, ONLY: dp
USE orbital_pointers, ONLY: init_orbital_pointers,&
nco,&
ncoset
USE particle_types, ONLY: particle_type
USE qs_kind_types, ONLY: get_qs_kind,&
get_qs_kind_set,&
qs_kind_type
USE qs_neighbor_list_types, ONLY: get_iterator_info,&
neighbor_list_iterate,&
neighbor_list_iterator_create,&
neighbor_list_iterator_p_type,&
neighbor_list_iterator_release,&
neighbor_list_set_p_type
USE sap_kind_types, ONLY: alist_type,&
build_sap_ints,&
clist_type,&
get_alist,&
release_sap_int,&
sap_int_type,&
sap_sort
!$ USE OMP_LIB, ONLY: omp_get_max_threads, omp_get_thread_num, omp_get_num_threads
!$ USE OMP_LIB, ONLY: omp_lock_kind, &
!$ omp_init_lock, omp_set_lock, &
!$ omp_unset_lock, omp_destroy_lock
#include "./base/base_uses.f90"
IMPLICIT NONE
PRIVATE
CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'commutator_rpnl'
PUBLIC :: build_com_rpnl, build_com_mom_nl
CONTAINS
! **************************************************************************************************
!> \brief ...
!> \param matrix_rv ...
!> \param qs_kind_set ...
!> \param sab_orb ...
!> \param sap_ppnl ...
!> \param eps_ppnl ...
! **************************************************************************************************
SUBROUTINE build_com_rpnl(matrix_rv, qs_kind_set, sab_orb, sap_ppnl, eps_ppnl)
TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_rv
TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
TYPE(neighbor_list_set_p_type), DIMENSION(:), &
POINTER :: sab_orb, sap_ppnl
REAL(KIND=dp), INTENT(IN) :: eps_ppnl
CHARACTER(LEN=*), PARAMETER :: routineN = 'build_com_rpnl'
INTEGER :: handle, i, iab, iac, iatom, ibc, icol, ikind, ilist, inode, irow, iset, jatom, &
jkind, jneighbor, kac, katom, kbc, kkind, l, lc_max, lc_min, ldai, ldsab, lppnl, maxco, &
maxder, maxl, maxlgto, maxlppnl, maxppnl, maxsgf, mepos, na, nb, ncoa, ncoc, nkind, &
nlist, nneighbor, nnode, np, nppnl, nprjc, nseta, nsgfa, nthread, prjc, sgfa
INTEGER, DIMENSION(3) :: cell_b, cell_c
INTEGER, DIMENSION(:), POINTER :: la_max, la_min, npgfa, nprj_ppnl, &
nsgf_seta
INTEGER, DIMENSION(:, :), POINTER :: first_sgfa
LOGICAL :: found, gpot, ppnl_present, spot
REAL(KIND=dp) :: dac, ppnl_radius
REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :) :: ai_work, sab, work
REAL(KIND=dp), DIMENSION(1) :: rprjc, zetc
REAL(KIND=dp), DIMENSION(3) :: rab, rac
REAL(KIND=dp), DIMENSION(:), POINTER :: alpha_ppnl, set_radius_a
REAL(KIND=dp), DIMENSION(:, :), POINTER :: cprj, rpgfa, sphi_a, vprj_ppnl, x_block, &
y_block, z_block, zeta
REAL(KIND=dp), DIMENSION(:, :, :), POINTER :: achint, acint, bchint, bcint
TYPE(alist_type), POINTER :: alist_ac, alist_bc
TYPE(clist_type), POINTER :: clist
TYPE(gth_potential_p_type), DIMENSION(:), POINTER :: gpotential
TYPE(gth_potential_type), POINTER :: gth_potential
TYPE(gto_basis_set_p_type), DIMENSION(:), POINTER :: basis_set
TYPE(gto_basis_set_type), POINTER :: orb_basis_set
TYPE(neighbor_list_iterator_p_type), &
DIMENSION(:), POINTER :: nl_iterator
TYPE(sap_int_type), DIMENSION(:), POINTER :: sap_int
TYPE(sgp_potential_p_type), DIMENSION(:), POINTER :: spotential
TYPE(sgp_potential_type), POINTER :: sgp_potential
CALL timeset(routineN, handle)
ppnl_present = ASSOCIATED(sap_ppnl)
IF (ppnl_present) THEN
nkind = SIZE(qs_kind_set)
CALL get_qs_kind_set(qs_kind_set, &
maxco=maxco, &
maxlgto=maxlgto, &
maxsgf=maxsgf, &
maxlppnl=maxlppnl, &
maxppnl=maxppnl)
maxl = MAX(maxlgto, maxlppnl)
CALL init_orbital_pointers(maxl + 1)
ldsab = MAX(maxco, ncoset(maxlppnl), maxsgf, maxppnl)
ldai = ncoset(maxl + 1)
!sap_int needs to be shared as multiple threads need to access this
ALLOCATE (sap_int(nkind*nkind))
DO i = 1, nkind*nkind
NULLIFY (sap_int(i)%alist, sap_int(i)%asort, sap_int(i)%aindex)
sap_int(i)%nalist = 0
END DO
!set up direct access to basis and potential
ALLOCATE (basis_set(nkind), gpotential(nkind), spotential(nkind))
DO ikind = 1, nkind
CALL get_qs_kind(qs_kind_set(ikind), basis_set=orb_basis_set)
IF (ASSOCIATED(orb_basis_set)) THEN
basis_set(ikind)%gto_basis_set => orb_basis_set
ELSE
NULLIFY (basis_set(ikind)%gto_basis_set)
END IF
CALL get_qs_kind(qs_kind_set(ikind), gth_potential=gth_potential, &
sgp_potential=sgp_potential)
IF (ASSOCIATED(gth_potential)) THEN
gpotential(ikind)%gth_potential => gth_potential
NULLIFY (spotential(ikind)%sgp_potential)
ELSE IF (ASSOCIATED(sgp_potential)) THEN
spotential(ikind)%sgp_potential => sgp_potential
NULLIFY (gpotential(ikind)%gth_potential)
ELSE
NULLIFY (gpotential(ikind)%gth_potential)
NULLIFY (spotential(ikind)%sgp_potential)
END IF
END DO
maxder = 4
nthread = 1
!$ nthread = omp_get_max_threads()
!calculate the overlap integrals <a|p>
CALL neighbor_list_iterator_create(nl_iterator, sap_ppnl, nthread=nthread)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP SHARED (nl_iterator, basis_set, spotential, gpotential, maxder, ncoset, &
!$OMP sap_int, nkind, ldsab, ldai, nco ) &
!$OMP PRIVATE (mepos, ikind, kkind, iatom, katom, nlist, ilist, nneighbor, jneighbor, &
!$OMP cell_c, rac, iac, first_sgfa, la_max, la_min, npgfa, nseta, nsgfa, nsgf_seta, &
!$OMP sphi_a, zeta, cprj, lppnl, nppnl, nprj_ppnl, &
!$OMP clist, iset, ncoa, sgfa, prjc, work, sab, ai_work, nprjc, ppnl_radius, &
!$OMP ncoc, rpgfa, vprj_ppnl, i, l, gpot, spot, &
!$OMP set_radius_a, rprjc, dac, lc_max, lc_min, zetc, alpha_ppnl)
mepos = 0
!$ mepos = omp_get_thread_num()
ALLOCATE (sab(ldsab, ldsab, maxder), work(ldsab, ldsab, maxder))
sab = 0.0_dp
ALLOCATE (ai_work(ldai, ldai, 1))
ai_work = 0.0_dp
DO WHILE (neighbor_list_iterate(nl_iterator, mepos=mepos) == 0)
CALL get_iterator_info(nl_iterator, mepos=mepos, ikind=ikind, jkind=kkind, iatom=iatom, &
jatom=katom, nlist=nlist, ilist=ilist, nnode=nneighbor, inode=jneighbor, cell=cell_c, r=rac)
iac = ikind + nkind*(kkind - 1)
IF (.NOT. ASSOCIATED(basis_set(ikind)%gto_basis_set)) CYCLE
gpot = ASSOCIATED(gpotential(kkind)%gth_potential)
spot = ASSOCIATED(spotential(kkind)%sgp_potential)
IF ((.NOT. gpot) .AND. (.NOT. spot)) CYCLE
! get definition of basis set
first_sgfa => basis_set(ikind)%gto_basis_set%first_sgf
la_max => basis_set(ikind)%gto_basis_set%lmax
la_min => basis_set(ikind)%gto_basis_set%lmin
npgfa => basis_set(ikind)%gto_basis_set%npgf
nseta = basis_set(ikind)%gto_basis_set%nset
nsgfa = basis_set(ikind)%gto_basis_set%nsgf
nsgf_seta => basis_set(ikind)%gto_basis_set%nsgf_set
rpgfa => basis_set(ikind)%gto_basis_set%pgf_radius
set_radius_a => basis_set(ikind)%gto_basis_set%set_radius
sphi_a => basis_set(ikind)%gto_basis_set%sphi
zeta => basis_set(ikind)%gto_basis_set%zet
! get definition of PP projectors
IF (gpot) THEN
alpha_ppnl => gpotential(kkind)%gth_potential%alpha_ppnl
cprj => gpotential(kkind)%gth_potential%cprj
lppnl = gpotential(kkind)%gth_potential%lppnl
nppnl = gpotential(kkind)%gth_potential%nppnl
nprj_ppnl => gpotential(kkind)%gth_potential%nprj_ppnl
ppnl_radius = gpotential(kkind)%gth_potential%ppnl_radius
vprj_ppnl => gpotential(kkind)%gth_potential%vprj_ppnl
ELSEIF (spot) THEN
CPABORT('SGP not implemented')
ELSE
CPABORT('PPNL unknown')
END IF
!$OMP CRITICAL(sap_int_critical)
IF (.NOT. ASSOCIATED(sap_int(iac)%alist)) THEN
sap_int(iac)%a_kind = ikind
sap_int(iac)%p_kind = kkind
sap_int(iac)%nalist = nlist
ALLOCATE (sap_int(iac)%alist(nlist))
DO i = 1, nlist
NULLIFY (sap_int(iac)%alist(i)%clist)
sap_int(iac)%alist(i)%aatom = 0
sap_int(iac)%alist(i)%nclist = 0
END DO
END IF
IF (.NOT. ASSOCIATED(sap_int(iac)%alist(ilist)%clist)) THEN
sap_int(iac)%alist(ilist)%aatom = iatom
sap_int(iac)%alist(ilist)%nclist = nneighbor
ALLOCATE (sap_int(iac)%alist(ilist)%clist(nneighbor))
DO i = 1, nneighbor
sap_int(iac)%alist(ilist)%clist(i)%catom = 0
END DO
END IF
!$OMP END CRITICAL(sap_int_critical)
dac = SQRT(SUM(rac*rac))
clist => sap_int(iac)%alist(ilist)%clist(jneighbor)
clist%catom = katom
clist%cell = cell_c
clist%rac = rac
ALLOCATE (clist%acint(nsgfa, nppnl, maxder), &
clist%achint(nsgfa, nppnl, maxder))
clist%acint = 0._dp
clist%achint = 0._dp
clist%nsgf_cnt = 0
NULLIFY (clist%sgf_list)
DO iset = 1, nseta
ncoa = npgfa(iset)*ncoset(la_max(iset))
sgfa = first_sgfa(1, iset)
work = 0._dp
prjc = 1
DO l = 0, lppnl
nprjc = nprj_ppnl(l)*nco(l)
IF (nprjc == 0) CYCLE
rprjc(1) = ppnl_radius
IF (set_radius_a(iset) + rprjc(1) < dac) CYCLE
lc_max = l + 2*(nprj_ppnl(l) - 1)
lc_min = l
zetc(1) = alpha_ppnl(l)
ncoc = ncoset(lc_max)
! Calculate the primitive overlap and dipole moment integrals
CALL overlap(la_max(iset), la_min(iset), npgfa(iset), rpgfa(:, iset), zeta(:, iset), &
lc_max, lc_min, 1, rprjc, zetc, rac, dac, sab(:, :, 1), 0, .FALSE., ai_work, ldai)
CALL moment(la_max(iset), npgfa(iset), zeta(:, iset), rpgfa(:, iset), la_min(iset), &
lc_max, 1, zetc, rprjc, 1, rac, (/0._dp, 0._dp, 0._dp/), sab(:, :, 2:4))
! *** Transformation step projector functions (cartesian->spherical) ***
DO i = 1, maxder
CALL dgemm("N", "N", ncoa, nprjc, ncoc, 1.0_dp, sab(1, 1, i), ldsab, &
cprj(1, prjc), SIZE(cprj, 1), 0.0_dp, work(1, 1, i), ldsab)
END DO
prjc = prjc + nprjc
END DO
DO i = 1, maxder
! Contraction step (basis functions)
CALL dgemm("T", "N", nsgf_seta(iset), nppnl, ncoa, 1.0_dp, sphi_a(1, sgfa), SIZE(sphi_a, 1), &
work(1, 1, i), ldsab, 0.0_dp, clist%acint(sgfa, 1, i), nsgfa)
! Multiply with interaction matrix(h)
CALL dgemm("N", "N", nsgf_seta(iset), nppnl, nppnl, 1.0_dp, clist%acint(sgfa, 1, i), nsgfa, &
vprj_ppnl(1, 1), SIZE(vprj_ppnl, 1), 0.0_dp, clist%achint(sgfa, 1, i), nsgfa)
END DO
END DO
clist%maxac = MAXVAL(ABS(clist%acint(:, :, 1)))
clist%maxach = MAXVAL(ABS(clist%achint(:, :, 1)))
END DO
DEALLOCATE (sab, ai_work, work)
!$OMP END PARALLEL
CALL neighbor_list_iterator_release(nl_iterator)
! *** Set up a sorting index
CALL sap_sort(sap_int)
! *** All integrals needed have been calculated and stored in sap_int
! *** We now calculate the Hamiltonian matrix elements
CALL neighbor_list_iterator_create(nl_iterator, sab_orb, nthread=nthread)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP SHARED (nl_iterator, basis_set, matrix_rv, &
!$OMP sap_int, nkind, eps_ppnl ) &
!$OMP PRIVATE (mepos, ikind, jkind, iatom, jatom, nlist, ilist, nnode, inode, cell_b, rab, &
!$OMP iab, irow, icol, x_block, y_block, z_block, &
!$OMP found, iac, ibc, alist_ac, alist_bc, acint, bcint, &
!$OMP achint, bchint, na, np, nb, katom, rac, kkind, kac, kbc, i)
mepos = 0
!$ mepos = omp_get_thread_num()
DO WHILE (neighbor_list_iterate(nl_iterator, mepos=mepos) == 0)
CALL get_iterator_info(nl_iterator, mepos=mepos, ikind=ikind, jkind=jkind, iatom=iatom, &
jatom=jatom, nlist=nlist, ilist=ilist, nnode=nnode, inode=inode, cell=cell_b, r=rab)
IF (.NOT. ASSOCIATED(basis_set(ikind)%gto_basis_set)) CYCLE
IF (.NOT. ASSOCIATED(basis_set(jkind)%gto_basis_set)) CYCLE
iab = ikind + nkind*(jkind - 1)
! *** Create matrix blocks for a new matrix block column ***
IF (iatom <= jatom) THEN
irow = iatom
icol = jatom
ELSE
irow = jatom
icol = iatom
END IF
CALL dbcsr_get_block_p(matrix_rv(1)%matrix, irow, icol, x_block, found)
CALL dbcsr_get_block_p(matrix_rv(2)%matrix, irow, icol, y_block, found)
CALL dbcsr_get_block_p(matrix_rv(3)%matrix, irow, icol, z_block, found)
! loop over all kinds for projector atom
IF (ASSOCIATED(x_block) .AND. ASSOCIATED(y_block) .AND. ASSOCIATED(z_block)) THEN
DO kkind = 1, nkind
iac = ikind + nkind*(kkind - 1)
ibc = jkind + nkind*(kkind - 1)
IF (.NOT. ASSOCIATED(sap_int(iac)%alist)) CYCLE
IF (.NOT. ASSOCIATED(sap_int(ibc)%alist)) CYCLE
CALL get_alist(sap_int(iac), alist_ac, iatom)
CALL get_alist(sap_int(ibc), alist_bc, jatom)
IF (.NOT. ASSOCIATED(alist_ac)) CYCLE
IF (.NOT. ASSOCIATED(alist_bc)) CYCLE
DO kac = 1, alist_ac%nclist
DO kbc = 1, alist_bc%nclist
IF (alist_ac%clist(kac)%catom /= alist_bc%clist(kbc)%catom) CYCLE
IF (ALL(cell_b + alist_bc%clist(kbc)%cell - alist_ac%clist(kac)%cell == 0)) THEN
IF (alist_ac%clist(kac)%maxac*alist_bc%clist(kbc)%maxach < eps_ppnl) CYCLE
acint => alist_ac%clist(kac)%acint
bcint => alist_bc%clist(kbc)%acint
achint => alist_ac%clist(kac)%achint
bchint => alist_bc%clist(kbc)%achint
na = SIZE(acint, 1)
np = SIZE(acint, 2)
nb = SIZE(bcint, 1)
!$OMP CRITICAL(h_block_critical)
IF (iatom <= jatom) THEN
! Vnl*r
CALL dgemm("N", "T", na, nb, np, 1._dp, achint(1, 1, 1), na, &
bcint(1, 1, 2), nb, 1.0_dp, x_block, SIZE(x_block, 1))
CALL dgemm("N", "T", na, nb, np, 1._dp, achint(1, 1, 1), na, &
bcint(1, 1, 3), nb, 1.0_dp, y_block, SIZE(y_block, 1))
CALL dgemm("N", "T", na, nb, np, 1._dp, achint(1, 1, 1), na, &
bcint(1, 1, 4), nb, 1.0_dp, z_block, SIZE(z_block, 1))
! -r*Vnl
CALL dgemm("N", "T", na, nb, np, -1._dp, achint(1, 1, 2), na, &
bcint(1, 1, 1), nb, 1.0_dp, x_block, SIZE(x_block, 1))
CALL dgemm("N", "T", na, nb, np, -1._dp, achint(1, 1, 3), na, &
bcint(1, 1, 1), nb, 1.0_dp, y_block, SIZE(y_block, 1))
CALL dgemm("N", "T", na, nb, np, -1._dp, achint(1, 1, 4), na, &
bcint(1, 1, 1), nb, 1.0_dp, z_block, SIZE(z_block, 1))
ELSE
! Vnl*r
CALL dgemm("N", "T", nb, na, np, 1.0_dp, bchint(1, 1, 2), nb, &
acint(1, 1, 1), na, 1.0_dp, x_block, SIZE(x_block, 1))
CALL dgemm("N", "T", nb, na, np, 1.0_dp, bchint(1, 1, 3), nb, &
acint(1, 1, 1), na, 1.0_dp, y_block, SIZE(y_block, 1))
CALL dgemm("N", "T", nb, na, np, 1.0_dp, bchint(1, 1, 4), nb, &
acint(1, 1, 1), na, 1.0_dp, z_block, SIZE(z_block, 1))
! -r*Vnl
CALL dgemm("N", "T", nb, na, np, -1.0_dp, bchint(1, 1, 1), nb, &
acint(1, 1, 2), na, 1.0_dp, x_block, SIZE(x_block, 1))
CALL dgemm("N", "T", nb, na, np, -1.0_dp, bchint(1, 1, 1), nb, &
acint(1, 1, 3), na, 1.0_dp, y_block, SIZE(y_block, 1))
CALL dgemm("N", "T", nb, na, np, -1.0_dp, bchint(1, 1, 1), nb, &
acint(1, 1, 4), na, 1.0_dp, z_block, SIZE(z_block, 1))
END IF
!$OMP END CRITICAL(h_block_critical)
EXIT ! We have found a match and there can be only one single match
END IF
END DO
END DO
END DO
ENDIF
END DO
!$OMP END PARALLEL
CALL neighbor_list_iterator_release(nl_iterator)
CALL release_sap_int(sap_int)
DEALLOCATE (basis_set, gpotential, spotential)
END IF !ppnl_present
CALL timestop(handle)
END SUBROUTINE build_com_rpnl
! **************************************************************************************************
!> \brief Calculate [r,Vnl], r x [r,Vnl] or [rr,Vnl] in AO basis
!> reference point is required for the two latter options
!> \param qs_kind_set ...
!> \param sab_all ...
!> \param sap_ppnl ...
!> \param eps_ppnl ...
!> \param particle_set ...
!> \param matrix_rv ...
!> \param matrix_rxrv ...
!> \param matrix_rrv ...
!> \param ref_point ...
!> \param cell ...
! **************************************************************************************************
SUBROUTINE build_com_mom_nl(qs_kind_set, sab_all, sap_ppnl, eps_ppnl, particle_set, matrix_rv, matrix_rxrv, &
matrix_rrv, ref_point, cell)
TYPE(qs_kind_type), DIMENSION(:), INTENT(IN), &
POINTER :: qs_kind_set
TYPE(neighbor_list_set_p_type), DIMENSION(:), &
INTENT(IN), POINTER :: sab_all, sap_ppnl
REAL(KIND=dp), INTENT(IN) :: eps_ppnl
TYPE(particle_type), DIMENSION(:), INTENT(IN), &
POINTER :: particle_set
TYPE(dbcsr_p_type), DIMENSION(:), INTENT(INOUT), &
OPTIONAL, POINTER :: matrix_rv, matrix_rxrv, matrix_rrv
REAL(KIND=dp), DIMENSION(3), INTENT(IN), OPTIONAL :: ref_point
TYPE(cell_type), INTENT(IN), OPTIONAL, POINTER :: cell
CHARACTER(LEN=*), PARAMETER :: routineN = 'build_com_mom_nl'
INTEGER :: handle, i, iab, iac, iatom, ibc, icol, &
ikind, ind, irow, jatom, jkind, kac, &
kbc, kkind, na, natom, nb, nkind, np, &
order, slot
INTEGER, DIMENSION(3) :: cell_b
LOGICAL :: asso_rrv, asso_rv, asso_rxrv, found, go, &
my_ref, my_rrv, my_rv, my_rxrv, &
ppnl_present
REAL(KIND=dp), DIMENSION(3) :: rab, rf
REAL(KIND=dp), DIMENSION(:, :, :), POINTER :: achint, acint, bchint, bcint
TYPE(alist_type), POINTER :: alist_ac, alist_bc
TYPE(block_p_type), ALLOCATABLE, DIMENSION(:) :: blocks_rrv, blocks_rv, blocks_rxrv
TYPE(gto_basis_set_p_type), ALLOCATABLE, &
DIMENSION(:) :: basis_set
TYPE(gto_basis_set_type), POINTER :: orb_basis_set
TYPE(sap_int_type), DIMENSION(:), POINTER :: sap_int
!$ INTEGER(kind=omp_lock_kind), &
!$ ALLOCATABLE, DIMENSION(:) :: locks
!$ INTEGER :: lock_num, hash
!$ INTEGER, PARAMETER :: nlock = 501
ppnl_present = ASSOCIATED(sap_ppnl)
IF (.NOT. ppnl_present) RETURN
CALL timeset(routineN, handle)
my_rxrv = .FALSE.
my_rrv = .FALSE.
my_rv = .FALSE.
IF (PRESENT(matrix_rxrv)) my_rxrv = .TRUE.
IF (PRESENT(matrix_rrv)) my_rrv = .TRUE.
IF (PRESENT(matrix_rv)) my_rv = .TRUE.
IF (.NOT. (my_rv .OR. my_rxrv .OR. my_rrv)) THEN
CPABORT('No dbcsr matrix provided for commutator calculation!')
ENDIF
natom = SIZE(particle_set)
IF (my_rxrv .OR. my_rrv) THEN
order = 2
CPASSERT(PRESENT(ref_point)) ! need reference point for r x [r,Vnl] and [rr,Vnl]
ELSE
order = 1
ENDIF
my_ref = .FALSE.
IF (PRESENT(ref_point)) THEN
CPASSERT(PRESENT(cell)) ! need cell as well if refpoint is provided
rf = ref_point
my_ref = .TRUE.
ENDIF
nkind = SIZE(qs_kind_set)
!sap_int needs to be shared as multiple threads need to access this
NULLIFY (sap_int)
ALLOCATE (sap_int(nkind*nkind))
DO i = 1, nkind*nkind
NULLIFY (sap_int(i)%alist, sap_int(i)%asort, sap_int(i)%aindex)
sap_int(i)%nalist = 0
END DO
IF (my_ref) THEN
! calculate integrals <a|x^n|p>
CALL build_sap_ints(sap_int, sap_ppnl, qs_kind_set, order, moment_mode=.TRUE., refpoint=rf, &
particle_set=particle_set, cell=cell)
ELSE
CALL build_sap_ints(sap_int, sap_ppnl, qs_kind_set, order, moment_mode=.TRUE.)
ENDIF
! *** Set up a sorting index
CALL sap_sort(sap_int)
ALLOCATE (basis_set(nkind))
DO ikind = 1, nkind
CALL get_qs_kind(qs_kind_set(ikind), basis_set=orb_basis_set)
IF (ASSOCIATED(orb_basis_set)) THEN
basis_set(ikind)%gto_basis_set => orb_basis_set
ELSE
NULLIFY (basis_set(ikind)%gto_basis_set)
END IF
ENDDO
! *** All integrals needed have been calculated and stored in sap_int
! *** We now calculate the commutator matrix elements
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP SHARED (basis_set, matrix_rv, matrix_rxrv, matrix_rrv, &
!$OMP sap_int, natom, nkind, eps_ppnl, my_rv, my_rxrv, my_rrv, locks, sab_all) &
!$OMP PRIVATE (ikind, jkind, iatom, jatom, cell_b, rab, &
!$OMP iab, irow, icol, blocks_rv, blocks_rxrv, blocks_rrv, &
!$OMP found, iac, ibc, alist_ac, alist_bc, acint, bcint, &
!$OMP achint, bchint, na, np, nb, kkind, kac, kbc, i, &
!$OMP go, asso_rv, asso_rxrv, asso_rrv, hash)
!$OMP SINGLE
!$ ALLOCATE (locks(nlock))
!$OMP END SINGLE
!$OMP DO
!$ DO lock_num = 1, nlock
!$ call omp_init_lock(locks(lock_num))
!$ END DO
!$OMP END DO
!$OMP DO SCHEDULE(GUIDED)
DO slot = 1, sab_all(1)%nl_size
ikind = sab_all(1)%nlist_task(slot)%ikind
jkind = sab_all(1)%nlist_task(slot)%jkind
iatom = sab_all(1)%nlist_task(slot)%iatom
jatom = sab_all(1)%nlist_task(slot)%jatom
cell_b(:) = sab_all(1)%nlist_task(slot)%cell(:)
rab(1:3) = sab_all(1)%nlist_task(slot)%r(1:3)
IF (.NOT. ASSOCIATED(basis_set(ikind)%gto_basis_set)) CYCLE
IF (.NOT. ASSOCIATED(basis_set(jkind)%gto_basis_set)) CYCLE
iab = ikind + nkind*(jkind - 1)
IF (iatom <= jatom) THEN
irow = iatom
icol = jatom
ELSE
irow = jatom
icol = iatom
END IF
! allocate blocks
IF (my_rv) THEN
ALLOCATE (blocks_rv(3))
ENDIF
IF (my_rxrv) THEN
ALLOCATE (blocks_rxrv(3))
ENDIF
IF (my_rrv) THEN
ALLOCATE (blocks_rrv(6))
ENDIF
! get blocks
IF (my_rv) THEN
DO ind = 1, 3
CALL dbcsr_get_block_p(matrix_rv(ind)%matrix, irow, icol, blocks_rv(ind)%block, found)
ENDDO
ENDIF
IF (my_rxrv) THEN
DO ind = 1, 3
CALL dbcsr_get_block_p(matrix_rxrv(ind)%matrix, irow, icol, blocks_rxrv(ind)%block, found)
ENDDO
ENDIF
IF (my_rrv) THEN
DO ind = 1, 6
CALL dbcsr_get_block_p(matrix_rrv(ind)%matrix, irow, icol, blocks_rrv(ind)%block, found)
ENDDO
ENDIF
! check whether all blocks are associated
go = .TRUE.
IF (my_rv) THEN
asso_rv = (ASSOCIATED(blocks_rv(1)%block) .AND. ASSOCIATED(blocks_rv(2)%block) .AND. &
ASSOCIATED(blocks_rv(3)%block))
go = go .AND. asso_rv
ENDIF
IF (my_rxrv) THEN
asso_rxrv = (ASSOCIATED(blocks_rxrv(1)%block) .AND. ASSOCIATED(blocks_rxrv(2)%block) .AND. &
ASSOCIATED(blocks_rxrv(3)%block))
go = go .AND. asso_rxrv
ENDIF
IF (my_rrv) THEN
asso_rrv = (ASSOCIATED(blocks_rrv(1)%block) .AND. ASSOCIATED(blocks_rrv(2)%block) .AND. &
ASSOCIATED(blocks_rrv(3)%block) .AND. ASSOCIATED(blocks_rrv(4)%block) .AND. &
ASSOCIATED(blocks_rrv(5)%block) .AND. ASSOCIATED(blocks_rrv(6)%block))
go = go .AND. asso_rrv
ENDIF
! loop over all kinds for projector atom
IF (go) THEN
DO kkind = 1, nkind
iac = ikind + nkind*(kkind - 1)
ibc = jkind + nkind*(kkind - 1)
IF (.NOT. ASSOCIATED(sap_int(iac)%alist)) CYCLE
IF (.NOT. ASSOCIATED(sap_int(ibc)%alist)) CYCLE
CALL get_alist(sap_int(iac), alist_ac, iatom)
CALL get_alist(sap_int(ibc), alist_bc, jatom)
IF (.NOT. ASSOCIATED(alist_ac)) CYCLE
IF (.NOT. ASSOCIATED(alist_bc)) CYCLE
DO kac = 1, alist_ac%nclist
DO kbc = 1, alist_bc%nclist
IF (alist_ac%clist(kac)%catom /= alist_bc%clist(kbc)%catom) CYCLE
IF (ALL(cell_b + alist_bc%clist(kbc)%cell - alist_ac%clist(kac)%cell == 0)) THEN
IF (alist_ac%clist(kac)%maxac*alist_bc%clist(kbc)%maxach < eps_ppnl) CYCLE
acint => alist_ac%clist(kac)%acint
bcint => alist_bc%clist(kbc)%acint
achint => alist_ac%clist(kac)%achint
bchint => alist_bc%clist(kbc)%achint
na = SIZE(acint, 1)
np = SIZE(acint, 2)
nb = SIZE(bcint, 1)
!$ hash = MOD((iatom - 1)*natom + jatom, nlock) + 1
!$ CALL omp_set_lock(locks(hash))
IF (my_rv) THEN
! r*Vnl
! with LAPACK
! CALL dgemm("N", "T", na, nb, np, 1._dp, achint(1, 1, 2), na, &
! bcint(1, 1, 1), nb, 1.0_dp, blocks_rv(1)%block, SIZE(blocks_rv(1)%block, 1)) ! xV
! CALL dgemm("N", "T", na, nb, np, 1._dp, achint(1, 1, 3), na, &
! bcint(1, 1, 1), nb, 1.0_dp, blocks_rv(2)%block, SIZE(blocks_rv(2)%block, 1)) ! yV
! CALL dgemm("N", "T", na, nb, np, 1._dp, achint(1, 1, 4), na, &
! bcint(1, 1, 1), nb, 1.0_dp, blocks_rv(3)%block, SIZE(blocks_rv(3)%block, 1)) ! zV
IF (iatom <= jatom) THEN
! with MATMUL
blocks_rv(1)%block(1:na, 1:nb) = blocks_rv(1)%block(1:na, 1:nb) + &
MATMUL(achint(1:na, 1:np, 2), TRANSPOSE(bcint(1:nb, 1:np, 1))) ! xV
blocks_rv(2)%block(1:na, 1:nb) = blocks_rv(2)%block(1:na, 1:nb) + &
MATMUL(achint(1:na, 1:np, 3), TRANSPOSE(bcint(1:nb, 1:np, 1))) ! yV
blocks_rv(3)%block(1:na, 1:nb) = blocks_rv(3)%block(1:na, 1:nb) + &
MATMUL(achint(1:na, 1:np, 4), TRANSPOSE(bcint(1:nb, 1:np, 1))) ! zV
ELSE
blocks_rv(1)%block(1:nb, 1:na) = blocks_rv(1)%block(1:nb, 1:na) + &
MATMUL(bchint(1:nb, 1:np, 2), TRANSPOSE(acint(1:na, 1:np, 1)))
blocks_rv(2)%block(1:nb, 1:na) = blocks_rv(2)%block(1:nb, 1:na) + &
MATMUL(bchint(1:nb, 1:np, 3), TRANSPOSE(acint(1:na, 1:np, 1)))
blocks_rv(3)%block(1:nb, 1:na) = blocks_rv(3)%block(1:nb, 1:na) + &
MATMUL(bchint(1:nb, 1:np, 4), TRANSPOSE(acint(1:na, 1:np, 1)))
ENDIF
! -Vnl r
! with LAPACK
! CALL dgemm("N", "T", na, nb, np, -1._dp, achint(1, 1, 1), na, &
! bcint(1, 1, 2), nb, 1.0_dp, blocks_rv(1)%block, SIZE(blocks_rv(1)%block, 1)) ! -Vx
! CALL dgemm("N", "T", na, nb, np, -1._dp, achint(1, 1, 1), na, &
! bcint(1, 1, 3), nb, 1.0_dp, blocks_rv(2)%block, SIZE(blocks_rv(2)%block, 1)) ! -Vy
! CALL dgemm("N", "T", na, nb, np, -1._dp, achint(1, 1, 1), na, &
! bcint(1, 1, 4), nb, 1.0_dp, blocks_rv(3)%block, SIZE(blocks_rv(3)%block, 1)) ! -Vz
! with MATMUL
IF (iatom <= jatom) THEN
blocks_rv(1)%block(1:na, 1:nb) = blocks_rv(1)%block(1:na, 1:nb) - &
MATMUL(achint(1:na, 1:np, 1), TRANSPOSE(bcint(1:nb, 1:np, 2))) ! -Vx
blocks_rv(2)%block(1:na, 1:nb) = blocks_rv(2)%block(1:na, 1:nb) - &
MATMUL(achint(1:na, 1:np, 1), TRANSPOSE(bcint(1:nb, 1:np, 3))) ! -Vy
blocks_rv(3)%block(1:na, 1:nb) = blocks_rv(3)%block(1:na, 1:nb) - &
MATMUL(achint(1:na, 1:np, 1), TRANSPOSE(bcint(1:nb, 1:np, 4))) ! -Vz
ELSE
blocks_rv(1)%block(1:nb, 1:na) = blocks_rv(1)%block(1:nb, 1:na) - &
MATMUL(bchint(1:nb, 1:np, 1), TRANSPOSE(acint(1:na, 1:np, 2)))
blocks_rv(2)%block(1:nb, 1:na) = blocks_rv(2)%block(1:nb, 1:na) - &
MATMUL(bchint(1:nb, 1:np, 1), TRANSPOSE(acint(1:na, 1:np, 3)))
blocks_rv(3)%block(1:nb, 1:na) = blocks_rv(3)%block(1:nb, 1:na) - &
MATMUL(bchint(1:nb, 1:np, 1), TRANSPOSE(acint(1:na, 1:np, 4)))
ENDIF
ENDIF
IF (my_rxrv) THEN
! x-component (y [z,Vnl] - z [y, Vnl])
! with LAPACK
! CALL dgemm("N", "T", na, nb, np, 1.0_dp, achint(1, 1, 9), na, &
! bcint(1, 1, 1), nb, 1.0_dp, blocks_rxrv(1)%block, SIZE(blocks_rxrv(1)%block, 1)) ! yzV
! CALL dgemm("N", "T", na, nb, np, -1.0_dp, achint(1, 1, 3), na, &
! bcint(1, 1, 4), nb, 1.0_dp, blocks_rxrv(1)%block, SIZE(blocks_rxrv(1)%block, 1)) ! -yVz
! CALL dgemm("N", "T", na, nb, np, -1.0_dp, achint(1, 1, 9), na, &
! bcint(1, 1, 1), nb, 1.0_dp, blocks_rxrv(1)%block, SIZE(blocks_rxrv(1)%block, 1)) ! -zyV
! CALL dgemm("N", "T", na, nb, np, 1.0_dp, achint(1, 1, 4), na, &
! bcint(1, 1, 3), nb, 1.0_dp, blocks_rxrv(1)%block, SIZE(blocks_rxrv(1)%block, 1)) ! zVy
! with MATMUL
IF (iatom <= jatom) THEN
blocks_rxrv(1)%block(1:na, 1:nb) = blocks_rxrv(1)%block(1:na, 1:nb) + &
MATMUL(achint(1:na, 1:np, 9), TRANSPOSE(bcint(1:nb, 1:np, 1))) ! yzV
blocks_rxrv(1)%block(1:na, 1:nb) = blocks_rxrv(1)%block(1:na, 1:nb) - &
MATMUL(achint(1:na, 1:np, 3), TRANSPOSE(bcint(1:nb, 1:np, 4))) ! -yVz
blocks_rxrv(1)%block(1:na, 1:nb) = blocks_rxrv(1)%block(1:na, 1:nb) - &
MATMUL(achint(1:na, 1:np, 9), TRANSPOSE(bcint(1:nb, 1:np, 1))) ! -zyV
blocks_rxrv(1)%block(1:na, 1:nb) = blocks_rxrv(1)%block(1:na, 1:nb) + &
MATMUL(achint(1:na, 1:np, 4), TRANSPOSE(bcint(1:nb, 1:np, 3))) ! zVy
ELSE
blocks_rxrv(1)%block(1:nb, 1:na) = blocks_rxrv(1)%block(1:nb, 1:na) + &
MATMUL(bchint(1:nb, 1:np, 9), TRANSPOSE(acint(1:na, 1:np, 1))) ! yzV
blocks_rxrv(1)%block(1:nb, 1:na) = blocks_rxrv(1)%block(1:nb, 1:na) - &
MATMUL(bchint(1:nb, 1:np, 3), TRANSPOSE(acint(1:na, 1:np, 4))) ! -yVz
blocks_rxrv(1)%block(1:nb, 1:na) = blocks_rxrv(1)%block(1:nb, 1:na) - &
MATMUL(bchint(1:nb, 1:np, 9), TRANSPOSE(acint(1:na, 1:np, 1))) ! -zyV
blocks_rxrv(1)%block(1:nb, 1:na) = blocks_rxrv(1)%block(1:nb, 1:na) + &
MATMUL(bchint(1:nb, 1:np, 4), TRANSPOSE(acint(1:na, 1:np, 3))) ! zVy
ENDIF
! y-component (z [x,Vnl] - x [z, Vnl])
! with LAPACK
! CALL dgemm("N", "T", na, nb, np, 1.0_dp, achint(1, 1, 7), na, &
! bcint(1, 1, 1), nb, 1.0_dp, blocks_rxrv(2)%block, SIZE(blocks_rxrv(2)%block, 1)) ! zxV
! CALL dgemm("N", "T", na, nb, np, -1.0_dp, achint(1, 1, 4), na, &
! bcint(1, 1, 2), nb, 1.0_dp, blocks_rxrv(2)%block, SIZE(blocks_rxrv(2)%block, 1)) ! -zVx
! CALL dgemm("N", "T", na, nb, np, -1.0_dp, achint(1, 1, 7), na, &
! bcint(1, 1, 1), nb, 1.0_dp, blocks_rxrv(2)%block, SIZE(blocks_rxrv(2)%block, 1)) ! -xzV
! CALL dgemm("N", "T", na, nb, np, 1.0_dp, achint(1, 1, 2), na, &
! bcint(1, 1, 4), nb, 1.0_dp, blocks_rxrv(2)%block, SIZE(blocks_rxrv(2)%block, 1)) ! xVz
! with MATMUL
IF (iatom <= jatom) THEN
blocks_rxrv(2)%block(1:na, 1:nb) = blocks_rxrv(2)%block(1:na, 1:nb) + &
MATMUL(achint(1:na, 1:np, 7), TRANSPOSE(bcint(1:nb, 1:np, 1))) ! zxV
blocks_rxrv(2)%block(1:na, 1:nb) = blocks_rxrv(2)%block(1:na, 1:nb) - &
MATMUL(achint(1:na, 1:np, 4), TRANSPOSE(bcint(1:nb, 1:np, 2))) ! -zVx
blocks_rxrv(2)%block(1:na, 1:nb) = blocks_rxrv(2)%block(1:na, 1:nb) - &
MATMUL(achint(1:na, 1:np, 7), TRANSPOSE(bcint(1:nb, 1:np, 1))) ! -xzV
blocks_rxrv(2)%block(1:na, 1:nb) = blocks_rxrv(2)%block(1:na, 1:nb) + &
MATMUL(achint(1:na, 1:np, 2), TRANSPOSE(bcint(1:nb, 1:np, 4))) ! xVz
ELSE
blocks_rxrv(2)%block(1:nb, 1:na) = blocks_rxrv(2)%block(1:nb, 1:na) + &
MATMUL(bchint(1:nb, 1:np, 7), TRANSPOSE(acint(1:na, 1:np, 1))) ! zxV
blocks_rxrv(2)%block(1:nb, 1:na) = blocks_rxrv(2)%block(1:nb, 1:na) - &
MATMUL(bchint(1:nb, 1:np, 4), TRANSPOSE(acint(1:na, 1:np, 2))) ! -zVx
blocks_rxrv(2)%block(1:nb, 1:na) = blocks_rxrv(2)%block(1:nb, 1:na) - &
MATMUL(bchint(1:nb, 1:np, 7), TRANSPOSE(acint(1:na, 1:np, 1))) ! -xzV
blocks_rxrv(2)%block(1:nb, 1:na) = blocks_rxrv(2)%block(1:nb, 1:na) + &
MATMUL(bchint(1:nb, 1:np, 2), TRANSPOSE(acint(1:na, 1:np, 4))) ! xVz
ENDIF
! z-component (x [y,Vnl] - y [x, Vnl])
! with LAPACK
! CALL dgemm("N", "T", na, nb, np, 1.0_dp, achint(1, 1, 6), na, &
! bcint(1, 1, 1), nb, 1.0_dp, blocks_rxrv(3)%block, SIZE(blocks_rxrv(3)%block, 1)) ! xyV
! CALL dgemm("N", "T", na, nb, np, -1.0_dp, achint(1, 1, 2), na, &
! bcint(1, 1, 3), nb, 1.0_dp, blocks_rxrv(3)%block, SIZE(blocks_rxrv(3)%block, 1)) ! -xVy
! CALL dgemm("N", "T", na, nb, np, -1.0_dp, achint(1, 1, 6), na, &
! bcint(1, 1, 1), nb, 1.0_dp, blocks_rxrv(3)%block, SIZE(blocks_rxrv(3)%block, 1)) ! -yxV
! CALL dgemm("N", "T", na, nb, np, 1.0_dp, achint(1, 1, 3), na, &
! bcint(1, 1, 2), nb, 1.0_dp, blocks_rxrv(3)%block, SIZE(blocks_rxrv(3)%block, 1)) ! yVx
! with MATMUL
IF (iatom <= jatom) THEN
blocks_rxrv(3)%block(1:na, 1:nb) = blocks_rxrv(3)%block(1:na, 1:nb) + &
MATMUL(achint(1:na, 1:np, 6), TRANSPOSE(bcint(1:nb, 1:np, 1))) ! xyV
blocks_rxrv(3)%block(1:na, 1:nb) = blocks_rxrv(3)%block(1:na, 1:nb) - &
MATMUL(achint(1:na, 1:np, 2), TRANSPOSE(bcint(1:nb, 1:np, 3))) ! -xVy
blocks_rxrv(3)%block(1:na, 1:nb) = blocks_rxrv(3)%block(1:na, 1:nb) - &
MATMUL(achint(1:na, 1:np, 6), TRANSPOSE(bcint(1:nb, 1:np, 1))) ! -yxV
blocks_rxrv(3)%block(1:na, 1:nb) = blocks_rxrv(3)%block(1:na, 1:nb) + &
MATMUL(achint(1:na, 1:np, 3), TRANSPOSE(bcint(1:nb, 1:np, 2))) ! zVx
ELSE
blocks_rxrv(3)%block(1:nb, 1:na) = blocks_rxrv(3)%block(1:nb, 1:na) + &
MATMUL(bchint(1:nb, 1:np, 6), TRANSPOSE(acint(1:na, 1:np, 1))) ! xyV
blocks_rxrv(3)%block(1:nb, 1:na) = blocks_rxrv(3)%block(1:nb, 1:na) - &
MATMUL(bchint(1:nb, 1:np, 2), TRANSPOSE(acint(1:na, 1:np, 3))) ! -xVy
blocks_rxrv(3)%block(1:nb, 1:na) = blocks_rxrv(3)%block(1:nb, 1:na) - &
MATMUL(bchint(1:nb, 1:np, 6), TRANSPOSE(acint(1:na, 1:np, 1))) ! -yxV
blocks_rxrv(3)%block(1:nb, 1:na) = blocks_rxrv(3)%block(1:nb, 1:na) + &
MATMUL(bchint(1:nb, 1:np, 3), TRANSPOSE(acint(1:na, 1:np, 2))) ! zVx
ENDIF
ENDIF
IF (my_rrv) THEN
! r_alpha * r_beta * Vnl
! with LAPACK
! CALL dgemm("N", "T", na, nb, np, 1._dp, achint(1, 1, 5), na, &
! bcint(1, 1, 1), nb, 1.0_dp, blocks_rrv(1)%block, SIZE(blocks_rrv(1)%block, 1)) ! xxV
! CALL dgemm("N", "T", na, nb, np, 1._dp, achint(1, 1, 6), na, &
! bcint(1, 1, 1), nb, 1.0_dp, blocks_rrv(2)%block, SIZE(blocks_rrv(2)%block, 1)) ! xyV
! CALL dgemm("N", "T", na, nb, np, 1._dp, achint(1, 1, 7), na, &
! bcint(1, 1, 1), nb, 1.0_dp, blocks_rrv(3)%block, SIZE(blocks_rrv(3)%block, 1)) ! xzV
! CALL dgemm("N", "T", na, nb, np, 1._dp, achint(1, 1, 8), na, &
! bcint(1, 1, 1), nb, 1.0_dp, blocks_rrv(4)%block, SIZE(blocks_rrv(4)%block, 1)) ! yyV
! CALL dgemm("N", "T", na, nb, np, 1._dp, achint(1, 1, 9), na, &
! bcint(1, 1, 1), nb, 1.0_dp, blocks_rrv(5)%block, SIZE(blocks_rrv(5)%block, 1)) ! yzV
! CALL dgemm("N", "T", na, nb, np, 1._dp, achint(1, 1, 10), na, &
! bcint(1, 1, 1), nb, 1.0_dp, blocks_rrv(6)%block, SIZE(blocks_rrv(6)%block, 1)) ! zzV
! with MATMUL
IF (iatom <= jatom) THEN
blocks_rrv(1)%block(1:na, 1:nb) = blocks_rrv(1)%block(1:na, 1:nb) + &
MATMUL(achint(1:na, 1:np, 5), TRANSPOSE(bcint(1:nb, 1:np, 1))) ! xxV
blocks_rrv(2)%block(1:na, 1:nb) = blocks_rrv(2)%block(1:na, 1:nb) + &
MATMUL(achint(1:na, 1:np, 6), TRANSPOSE(bcint(1:nb, 1:np, 1))) ! xyV
blocks_rrv(3)%block(1:na, 1:nb) = blocks_rrv(3)%block(1:na, 1:nb) + &
MATMUL(achint(1:na, 1:np, 7), TRANSPOSE(bcint(1:nb, 1:np, 1))) ! xzV
blocks_rrv(4)%block(1:na, 1:nb) = blocks_rrv(4)%block(1:na, 1:nb) + &
MATMUL(achint(1:na, 1:np, 8), TRANSPOSE(bcint(1:nb, 1:np, 1))) ! yyV
blocks_rrv(5)%block(1:na, 1:nb) = blocks_rrv(5)%block(1:na, 1:nb) + &
MATMUL(achint(1:na, 1:np, 9), TRANSPOSE(bcint(1:nb, 1:np, 1))) ! yzV
blocks_rrv(6)%block(1:na, 1:nb) = blocks_rrv(6)%block(1:na, 1:nb) + &
MATMUL(achint(1:na, 1:np, 10), TRANSPOSE(bcint(1:nb, 1:np, 1))) ! zzV
ELSE
blocks_rrv(1)%block(1:nb, 1:na) = blocks_rrv(1)%block(1:nb, 1:na) + &
MATMUL(bchint(1:nb, 1:np, 5), TRANSPOSE(acint(1:na, 1:np, 1))) ! xxV
blocks_rrv(2)%block(1:nb, 1:na) = blocks_rrv(2)%block(1:nb, 1:na) + &
MATMUL(bchint(1:nb, 1:np, 6), TRANSPOSE(acint(1:na, 1:np, 1))) ! xyV
blocks_rrv(3)%block(1:nb, 1:na) = blocks_rrv(3)%block(1:nb, 1:na) + &
MATMUL(bchint(1:nb, 1:np, 7), TRANSPOSE(acint(1:na, 1:np, 1))) ! xzV
blocks_rrv(4)%block(1:nb, 1:na) = blocks_rrv(4)%block(1:nb, 1:na) + &
MATMUL(bchint(1:nb, 1:np, 8), TRANSPOSE(acint(1:na, 1:np, 1))) ! yyV
blocks_rrv(5)%block(1:nb, 1:na) = blocks_rrv(5)%block(1:nb, 1:na) + &
MATMUL(bchint(1:nb, 1:np, 9), TRANSPOSE(acint(1:na, 1:np, 1))) ! yzV
blocks_rrv(6)%block(1:nb, 1:na) = blocks_rrv(6)%block(1:nb, 1:na) + &
MATMUL(bchint(1:nb, 1:np, 10), TRANSPOSE(acint(1:na, 1:np, 1))) ! zzV
ENDIF
! - Vnl * r_alpha * r_beta
! with LAPACK
! CALL dgemm("N", "T", na, nb, np, -1._dp, achint(1, 1, 1), na, &
! bcint(1, 1, 5), nb, 1.0_dp, blocks_rrv(1)%block, SIZE(blocks_rrv(1)%block, 1)) ! Vxx
! CALL dgemm("N", "T", na, nb, np, -1._dp, achint(1, 1, 1), na, &
! bcint(1, 1, 6), nb, 1.0_dp, blocks_rrv(2)%block, SIZE(blocks_rrv(2)%block, 1)) ! Vxy
! CALL dgemm("N", "T", na, nb, np, -1._dp, achint(1, 1, 1), na, &
! bcint(1, 1, 7), nb, 1.0_dp, blocks_rrv(3)%block, SIZE(blocks_rrv(3)%block, 1)) ! Vxz
! CALL dgemm("N", "T", na, nb, np, -1._dp, achint(1, 1, 1), na, &
! bcint(1, 1, 8), nb, 1.0_dp, blocks_rrv(4)%block, SIZE(blocks_rrv(4)%block, 1)) ! Vyy
! CALL dgemm("N", "T", na, nb, np, -1._dp, achint(1, 1, 1), na, &
! bcint(1, 1, 9), nb, 1.0_dp, blocks_rrv(5)%block, SIZE(blocks_rrv(5)%block, 1)) ! Vyz
! CALL dgemm("N", "T", na, nb, np, -1._dp, achint(1, 1, 1), na, &
! bcint(1, 1, 10), nb, 1.0_dp, blocks_rrv(6)%block, SIZE(blocks_rrv(6)%block, 1)) ! Vzz
! with MATMUL
IF (iatom <= jatom) THEN
blocks_rrv(1)%block(1:na, 1:nb) = blocks_rrv(1)%block(1:na, 1:nb) - &
MATMUL(achint(1:na, 1:np, 1), TRANSPOSE(bcint(1:nb, 1:np, 5))) ! -Vxx
blocks_rrv(2)%block(1:na, 1:nb) = blocks_rrv(2)%block(1:na, 1:nb) - &
MATMUL(achint(1:na, 1:np, 1), TRANSPOSE(bcint(1:nb, 1:np, 6))) ! -Vxy
blocks_rrv(3)%block(1:na, 1:nb) = blocks_rrv(3)%block(1:na, 1:nb) - &
MATMUL(achint(1:na, 1:np, 1), TRANSPOSE(bcint(1:nb, 1:np, 7))) ! -Vxz
blocks_rrv(4)%block(1:na, 1:nb) = blocks_rrv(4)%block(1:na, 1:nb) - &
MATMUL(achint(1:na, 1:np, 1), TRANSPOSE(bcint(1:nb, 1:np, 8))) ! -Vyy
blocks_rrv(5)%block(1:na, 1:nb) = blocks_rrv(5)%block(1:na, 1:nb) - &
MATMUL(achint(1:na, 1:np, 1), TRANSPOSE(bcint(1:nb, 1:np, 9))) ! -Vyz
blocks_rrv(6)%block(1:na, 1:nb) = blocks_rrv(6)%block(1:na, 1:nb) - &
MATMUL(achint(1:na, 1:np, 1), TRANSPOSE(bcint(1:nb, 1:np, 10))) ! -Vzz
ELSE
blocks_rrv(1)%block(1:nb, 1:na) = blocks_rrv(1)%block(1:nb, 1:na) - &
MATMUL(bchint(1:nb, 1:np, 1), TRANSPOSE(acint(1:na, 1:np, 5))) ! -Vxx
blocks_rrv(2)%block(1:nb, 1:na) = blocks_rrv(2)%block(1:nb, 1:na) - &
MATMUL(bchint(1:nb, 1:np, 1), TRANSPOSE(acint(1:na, 1:np, 6))) ! -Vxy
blocks_rrv(3)%block(1:nb, 1:na) = blocks_rrv(3)%block(1:nb, 1:na) - &
MATMUL(bchint(1:nb, 1:np, 1), TRANSPOSE(acint(1:na, 1:np, 7))) ! -Vxz
blocks_rrv(4)%block(1:nb, 1:na) = blocks_rrv(4)%block(1:nb, 1:na) - &
MATMUL(bchint(1:nb, 1:np, 1), TRANSPOSE(acint(1:na, 1:np, 8))) ! -Vyy
blocks_rrv(5)%block(1:nb, 1:na) = blocks_rrv(5)%block(1:nb, 1:na) - &
MATMUL(bchint(1:nb, 1:np, 1), TRANSPOSE(acint(1:na, 1:np, 9))) ! -Vyz
blocks_rrv(6)%block(1:nb, 1:na) = blocks_rrv(6)%block(1:nb, 1:na) - &
MATMUL(bchint(1:nb, 1:np, 1), TRANSPOSE(acint(1:na, 1:np, 10))) ! -Vzz
ENDIF
ENDIF
!$ CALL omp_unset_lock(locks(hash))
EXIT ! We have found a match and there can be only one single match
END IF
END DO
END DO
END DO
ENDIF
IF (my_rv) THEN
DO ind = 1, 3
NULLIFY (blocks_rv(ind)%block)
ENDDO
DEALLOCATE (blocks_rv)
ENDIF
IF (my_rxrv) THEN
DO ind = 1, 3
NULLIFY (blocks_rxrv(ind)%block)
ENDDO
DEALLOCATE (blocks_rxrv)
ENDIF
IF (my_rrv) THEN
DO ind = 1, 6
NULLIFY (blocks_rrv(ind)%block)
ENDDO
DEALLOCATE (blocks_rrv)
ENDIF
END DO
!$OMP DO
!$ DO lock_num = 1, nlock
!$ call omp_destroy_lock(locks(lock_num))
!$ END DO
!$OMP END DO
!$OMP SINGLE
!$ DEALLOCATE (locks)
!$OMP END SINGLE NOWAIT
!$OMP END PARALLEL
CALL release_sap_int(sap_int)
DEALLOCATE (basis_set)
CALL timestop(handle)
END SUBROUTINE build_com_mom_nl
END MODULE commutator_rpnl