-
-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathdata_provider.py
45 lines (38 loc) · 1.79 KB
/
data_provider.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import codecs
import os
import collections
import numpy as np
class DataProvider:
def __init__(self, data_dir, batch_size, sequence_length):
self.batch_size = batch_size
self.sequence_length = sequence_length
with codecs.open(os.path.join(data_dir, "input.txt"), "r", encoding="utf-8") as file:
data = file.read()
count_pairs = sorted(collections.Counter(data).items(), key=lambda x: -x[1])
self.pointer = 0
self.chars, _ = zip(*count_pairs)
self.vocabulary_size = len(self.chars)
self.vocabulary = dict(zip(self.chars, range(len(self.chars))))
self.tensor = np.array(list(map(self.vocabulary.get, data)))
self.batches_size = int(self.tensor.size / (self.batch_size * self.sequence_length))
if self.batches_size == 0:
assert False, "Unable to generate batches. Reduce batch_size or sequence_length."
self.tensor = self.tensor[:self.batches_size * self.batch_size * self.sequence_length]
inputs = self.tensor
targets = np.copy(self.tensor)
targets[:-1] = inputs[1:]
targets[-1] = inputs[0]
self.input_batches = np.split(inputs.reshape(self.batch_size, -1), self.batches_size, 1)
self.target_batches = np.split(targets.reshape(self.batch_size, -1), self.batches_size, 1)
print "Tensor size: " + str(self.tensor.size)
print "Batch size: " + str(self.batch_size)
print "Sequence length: " + str(self.sequence_length)
print "Batches size: " + str(self.batches_size)
print ""
def next_batch(self):
inputs = self.input_batches[self.pointer]
targets = self.target_batches[self.pointer]
self.pointer += 1
return inputs, targets
def reset_batch_pointer(self):
self.pointer = 0