Reverse communication flag, should start with 0
- dnaupd
- Ptr Int
- dsaupd
- Ptr Int
Type of matrix, should be ‘I’ or ‘G’
- dnaupd
- Ptr Char
- dsaupd
- Ptr Char
Dimension of the eigenproblem
- dnaupd
- Ptr Int
- dsaupd
- Ptr Int
Which eigenvalues to calculate
- dnaupd
- Ptr Char (2), {L,S}{M,R,I}
- dsaupd
- Ptr Char (2), {L,S}{A,M}|BE
Number of eigenvalues to be calculated
- dnaupd
- Ptr Int, 0 < NEV < N - 1
- dsaupd
- Ptr Int, 0 < NEV < N
Numerical tolerance to be used
- dnaupd
- Ptr Double, 0 = machine precision
- dsaupd
- Ptr Double, 0 = machine precision
Residual vector
- dnaupd
- Ptr Double (N)
- dsaupd
- Ptr Double (N)
Number of columns of V
- dnaupd
- Ptr Int, NCV <= N, 2 <= NCV - NEV
- dsaupd
- Ptr Int, NCV <= N
Arnoldi/Lanczos basis vectors
- dnaupd
- Ptr Double, NCV*N
- dsaupd
- Ptr Double, NCV*N
Leading dimension of V
- dnaupd
- Ptr Int
- dsaupd
- Ptr Int
Parameters
- dnaupd
- Ptr Int (11)
- dsaupd
- Ptr Int (11)
Starting locations in the work arrays
- dnaupd
- Ptr Int (14)
- dsaupd
- Ptr Int (11)
Work array
- dnaupd
- Ptr Double (3N)
- dsaupd
- Ptr Double (3N)
Work array
- dnaupd
- Ptr Double (LWORKL)
- dsaupd
- Ptr Double (LWORKL)
Length of WORKL
- dnaupd
- Ptr Int, LWORKL >= 3 NCV^2 + 6 NCV
- dsaupd
- Ptr Int, LWORKL >= NCV^2 + 8 NCV
Return information
- dnaupd
- Ptr Int
- dsaupd
- Ptr Int
Whether to compute Ritz vectors
- dnaupd
- Ptr ‘Bool’
- dsaupd
- Ptr ‘Bool’
Form of the basis
- dnaupd
- Ptr Char, ‘A’,’P,’S’
- dsaupd
- Ptr Char, ‘A’,’S’
Choose which eigenvalues are to be calculated
- dnaupd
- Ptr Int (NCV)
- dsaupd
- Ptr Int (NCV)
Ritz value approximations
- dnaupd
- real and imaginary
- DR
- Ptr Double (NEV+1)
- DI
- Ptr Double (NEV+1)
- dsaupd
- Ptr Double (NEV)
Ritz vectors approximations
- dnaupd
- Ptr Double (N * NEV + 1)
- dsaupd
- Ptr Double (N * NEV)
Leading dimension of Z
- dnaupd
- Ptr Int
- dsaupd
- Ptr Int
Shift
- dnaupd
- real and imaginary
- SIGMAR
- Ptr Double
- SIGMAI
- Ptr Double
- dsaupd
- Ptr Double
Workplace
- dnaupd
- Ptr Double (3NCV)
- dsaupd
- Nothing