-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWorld.py
714 lines (521 loc) · 25.9 KB
/
World.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
import pygame
import carla
from Utils.synch_mode import CarlaSyncMode
import Controller.PIDController as PIDController
import Controller.MPCController as MPCController
import time
from Utils.utils import *
import math
import gym
import gymnasium as gym
from gymnasium import spaces
import random
from Utils.CubicSpline.cubic_spline_planner import *
import csv
from Utils.HUD_visuals import *
class World(gym.Env):
def __init__(self, client, carla_world, hud, args, visuals=False):
self.world = carla_world
self.client = client
self.actor_role_name = args.rolename
self.map = self.world.get_map()
self.hud = hud
self.player = None
self.collision_sensor = None
self.lane_invasion_sensor = None
self.gnss_sensor = None
self.camera_manager = None
self._weather_index = 0
self._actor_filter = "vehicle.*"
self._gamma = args.gamma
self.args = args
self.recording_start = 0
self._gamma = args.gamma
self.waypoint_resolution = args.waypoint_resolution
self.waypoint_lookahead_distance = args.waypoint_lookahead_distance
self.desired_speed = args.desired_speed
self.planning_horizon = args.planning_horizon
self.time_step = args.time_step
self.control_mode = args.control_mode
self.controller = None
self.control_count = 0.0
self.random_spawn = 0
self.world.on_tick(hud.on_world_tick)
self.recording_enabled = False
self.im_width = 640
self.im_height = 480
self.episode_start = 0
self.visuals = visuals
self.episode_reward = 0
self.player = None
self.parked_vehicle = None
self.collision_sensor = None
self.camera_rgb = None
self.camera_rgb_vis = None
self.lane_invasion = None
self.collision_sensor_hud = None
self.lane_invasion_sensor = None
self.gnss_sensor = None
self.camera_manager = None
self._autopilot_enabled = False
self._control = carla.VehicleControl()
self._steer_cache = 0.0
self.max_dist = 4.5
self.y_values_RL =np.array([5, 10])
self.x_values_RL = np.array([-3.5, 3.5])
self.v_values_RL = np.array([0, 40])
self.min_values_obs = np.array([-6, -15, 0, -1.5, -3.14])
self.max_values_obs = np.array([6, 15, 40, 2, 3.14])
self.counter = 0
self.frame = None
self.delta_seconds = 1.0 / args.FPS
self.last_y = 0
self.distance_parked = 35
self.prev_action = np.array([0, 0, 0, 0, 0])
self.ttc_trigger = 1
self.episode_counter = 0
self.last_v = 0
self.save_list = []
self.file_name = 'F:/CollisionAvoidance-Carla-DRL-MPC/logs/1709461045-recurrentPPO-90kmh-transfer/evaluation/logger_test_10hp.csv'
self.logger = False
self.path = []
#VISUAL PYGAME
self._weather_presets = find_weather_presets()
self.visuals = visuals
self.collision_sensor_hud = None
self.lane_invasion_sensor = None
self.gnss_sensor = None
self.camera_manager = None
## RL STABLE BASELINES
self.action_space = spaces.Box(low=-1, high=1,shape=(5,),dtype="float32")
self.observation_space = spaces.Box(low=-1, high=1, shape=(10,), dtype="float64")
self.global_t = 0 # global timestep
def append_to_csv(self,file_name, data):
with open(file_name, 'a', newline='') as file:
writer = csv.writer(file)
writer.writerow(data)
def render(self, display):
self.camera_manager.render(display)
self.hud.render(display)
def reset(self, seed=None):
self.print_path(self.path)
time.sleep(2)
self.path = []
self.destroy()
self.world.apply_settings(carla.WorldSettings(
no_rendering_mode=False,
synchronous_mode=True,
fixed_delta_seconds=1/self.args.FPS))
self.episode_reward = 0
self.desired_speed = self.args.desired_speed
self.episode_counter += 1
if self.logger:
self.append_to_csv(file_name=self.file_name, data=self.save_list)
self.save_list = []
if self.visuals:
# Keep same camera config if the camera manager exists.
cam_index = self.camera_manager.index if self.camera_manager is not None else 0
cam_pos_index = self.camera_manager.transform_index if self.camera_manager is not None else 0
self.create_actors()
velocity_vec = self.player.get_velocity()
current_transform = self.player.get_transform()
current_location = current_transform.location
current_roration = current_transform.rotation
current_x = current_location.x
current_y = current_location.y
current_yaw = wrap_angle(current_roration.yaw)
current_speed = math.sqrt(velocity_vec.x**2 + velocity_vec.y**2 + velocity_vec.z**2)
frame, current_timestamp = self.hud.get_simulation_information()
self.controller.update_values(current_x, current_y, current_yaw, current_speed, current_timestamp, frame)
self.episode_start = time.time()
if self.visuals:
self.collision_sensor_hud = CollisionSensor(self.player, self.hud)
self.lane_invasion_sensor = LaneInvasionSensor(self.player, self.hud)
self.gnss_sensor = GnssSensor(self.player)
self.camera_manager = CameraManager(self.player, self.hud, self._gamma)
self.camera_manager.transform_index = cam_pos_index
self.camera_manager.set_sensor(cam_index, notify=False)
self.world.tick()
self.clock = pygame.time.Clock()
ttc = self.time_to_collison()
while ttc > self.ttc_trigger: #player_position < parked_position - self.realease_position:
# snapshot, image_rgb, lane, collision = self.synch_mode.tick(timeout=10.0)
self.clock.tick_busy_loop(self.args.FPS)
if self.visuals:
self.display = pygame.display.set_mode(
(self.args.width, self.args.height),
pygame.HWSURFACE | pygame.DOUBLEBUF)
self.display.fill((0,0,0))
for event in pygame.event.get():
if event.type == pygame.QUIT:
run = False
self.tick(self.clock)
self.render(self.display)
pygame.display.update()
if self.parse_events(clock=self.clock, action=None):
return
velocity_vec_st = self.player.get_velocity()
current_speed = math.sqrt(velocity_vec_st.x**2 + velocity_vec_st.y**2 + velocity_vec_st.z**2)
ttc = self.time_to_collison()
# print(f'ttc: {ttc}')
snapshot, image_rgb, lane, collision = self.synch_mode.tick(timeout=10.0)
obs = self.get_observation()
obs = np.array(np.append(obs, self.prev_action))
# img = process_img2(self, image_rgb)
last_transform = self.player.get_transform()
last_location = last_transform.location
self.last_y = last_location.y
self.last_v = current_speed
print(current_speed)
return obs, {}
def tick(self, clock):
self.hud.tick(self, clock)
def destroy(self):
self.world.tick()
actors = [
self.player,
self.collision_sensor,
self.camera_rgb,
self.lane_invasion,
self.parked_vehicle]
if self.collision_sensor_hud is not None:
actors.append(self.collision_sensor_hud.sensor)
actors.append(self.lane_invasion_sensor.sensor)
actors.append(self.gnss_sensor.sensor)
actors.append(self.camera_manager.sensor)
for actor in actors:
if actor is not None:
try:
actor.destroy()
self.world.tick()
except:
pass
def step(self, action):
self.reward = 0
done = False
cos_yaw_diff = 0
dist = 0
collision = 0
lane = 0
stat = 0
traveled = 0
if action is not None:
self.counter += 1
self.global_t += 1
self.clock.tick_busy_loop(self.args.FPS)
if self.parse_events(action, self.clock):
return
snapshot, image_rgb, lane, collision = self.synch_mode.tick(timeout=10.0)
obs = self.get_observation()
obs = np.array(np.append(obs, self.prev_action))
self.prev_action = []
self.prev_action.append(action)
cos_yaw_diff, dist, collision, lane, stat, traveled = self.get_reward_comp(self.player, self.spawn_waypoint, collision, lane, self.controller.stat)
self.reward = self.reward_value(cos_yaw_diff, dist, collision, lane, stat, traveled)
if self.visuals:
self.display.fill((0,0,0))
for event in pygame.event.get():
if event.type == pygame.QUIT:
run = False
self.tick(self.clock)
self.render(self.display)
pygame.display.flip()
self.episode_reward += self.reward
if dist > self.max_dist:
done=True
vehicle_location = self.player.get_location()
y_vh = vehicle_location.y
if y_vh > float(self.args.spawn_y)+self.distance_parked+15:
print("episode ended by reaching goal position")
done=True
truncated = False
if collision == 1:
done=True
print("Episode ended by collision")
if lane == 1:
done = True
print("Episode ended by lane invasion")
if dist > self.max_dist:
done=True
print(f"Episode ended with dist from waypoint: {dist}")
velocity_vec_st = self.player.get_velocity()
current_speed = math.sqrt(velocity_vec_st.x**2 + velocity_vec_st.y**2 + velocity_vec_st.z**2)
if current_speed < 0.1:
print("Episode ended by stopping")
done=True
return obs, self.reward, done, truncated, {}
def get_reward_comp(self, vehicle, waypoint, collision, lane, stat):
vehicle_location = vehicle.get_location()
x_wp = waypoint.transform.location.x
y_wp = waypoint.transform.location.y
x_vh = vehicle_location.x
y_vh = vehicle_location.y
wp_array = np.array([x_wp])
vh_array = np.array([x_vh])
dist = abs(np.linalg.norm(wp_array - vh_array))
vh_yaw = correct_yaw(vehicle.get_transform().rotation.yaw)
wp_yaw = correct_yaw(waypoint.transform.rotation.yaw)
cos_yaw_diff = np.cos((vh_yaw - wp_yaw)*np.pi/180.)
collision = 0 if collision is None else 1
if lane is not None:
lane_types = set(x.type for x in lane.crossed_lane_markings)
text = ['%r' % str(x).split()[-1] for x in lane_types]
lane = 1 if text[0] == "'Solid'" else 0
elif lane is None:
lane=0
# lane = 0 if lane is None else 1
traveled = y_vh - self.last_y
# print(traveled)
# print(stat)
if stat is None:
stat = 0
elif stat == "infeasible":
print(stat)
stat = -1
elif stat == "optimal":
stat = 1
# finish = 1 if y_vh > -40 else 0
return cos_yaw_diff, dist, collision, lane, stat, traveled
def reward_value(self, cos_yaw_diff, dist, collision, lane, stat, traveled, lambda_1=1, lambda_2=1, lambda_3=100, lambda_4=5, lambda_5=0.5):
reward = (lambda_1 * cos_yaw_diff) - (lambda_2 * dist) - (lambda_3 * collision) - (lambda_4 * lane) + (lambda_5 * traveled)
return reward
def parse_events(self, action, clock):
if not self._autopilot_enabled:
# Control loop
# get waypoints
current_location = self.player.get_location()
velocity_vec = self.player.get_velocity()
current_transform = self.player.get_transform()
current_location = current_transform.location
current_rotation = current_transform.rotation
current_x = current_location.x
current_y = current_location.y
current_yaw = wrap_angle(current_rotation.yaw)
current_speed = math.sqrt(velocity_vec.x**2 + velocity_vec.y**2 + velocity_vec.z**2)
# print(f"Control input : speed : {current_speed}, current position : {current_x}, {current_y}, yaw : {current_yaw}")
frame, current_timestamp =self.hud.get_simulation_information()
ready_to_go = self.controller.update_values(current_x, current_y, current_yaw, current_speed, current_timestamp, frame)
if ready_to_go:
if self.control_mode == "PID"and action is None:
current_location = self.player.get_location()
current_waypoint = self.map.get_waypoint(current_location).next(self.world.waypoint_resolution)[0]
# print(current_waypoint.transform.location.x-current_x)
# print(current_waypoint.transform.location.y-current_y)
waypoints = []
for i in range(int(self.world.waypoint_lookahead_distance / self.world.waypoint_resolution)):
waypoints.append([current_waypoint.transform.location.x, current_waypoint.transform.location.y, self.world.desired_speed])
current_waypoint = current_waypoint.next(self.world.waypoint_resolution)[0]
elif self.control_mode == "MPC" and action is None:
road_desired_speed = self.desired_speed
dist = self.time_step * current_speed + 0.1
prev_waypoint = self.map.get_waypoint(current_location)
current_waypoint = prev_waypoint.next(dist)[0]
# print(current_waypoint)
waypoints = []
# road_desired_speed = world.player.get_speed_limit()/3.6*0.95
for i in range(self.planning_horizon):
if self.control_count + i <= 100:
desired_speed = (self.control_count + 1 + i)/100.0 * road_desired_speed
else:
desired_speed = road_desired_speed
dist = self.time_step * road_desired_speed
current_waypoint = prev_waypoint.next(dist)[0]
# print(f"current_waypoint: {current_waypoint}")
waypoints.append([current_waypoint.transform.location.x, current_waypoint.transform.location.y, road_desired_speed, wrap_angle(current_waypoint.transform.rotation.yaw)])
prev_waypoint = current_waypoint
# print(f'wp real: {waypoints}')
if action is not None:
waypoints_RL = self.get_cubic_spline_path(action, current_x=current_x, current_y=current_y)
self.print_waypoints(waypoints_RL)
# print(waypoints_RL)
self.controller.update_waypoints(waypoints_RL)
else:
self.print_waypoints(waypoints)
self.controller.update_waypoints(waypoints)
self.controller.update_controls()
self._control.throttle, self._control.steer, self._control.brake = self.controller.get_commands()
# print(self._control)
self.player.apply_control(self._control)
self.control_count += 1
# world.player.set_transform(current_waypoint.transform)
def print_waypoints(self, waypoints):
for z in waypoints:
spawn_location_r = carla.Location()
spawn_location_r.x = float(z[0])
spawn_location_r.y = float(z[1])
spawn_location_r.z = 1.0
self.world.debug.draw_string(spawn_location_r, 'O', draw_shadow=False,
color=carla.Color(r=255, g=0, b=0), life_time=0.1,
persistent_lines=True)
def get_cubic_spline_path(self, action, current_x, current_y):
# print(current_x)
# x0 = current_x +(max(self.x_values_RL)-min(self.x_values_RL))*((action[0]+1)/2)+min(self.x_values_RL)
# y0 = (max(self.y_values_RL)-min(self.y_values_RL))*((action[1]+1)/2)+min(self.y_values_RL)+current_y
y0 = current_y
# print(x0)
x1 = (max(self.x_values_RL)-min(self.x_values_RL))*((action[0]+1)/2)+min(self.x_values_RL)+current_x
y1 = (max(self.y_values_RL)-min(self.y_values_RL))*((action[1]+1)/2)+min(self.y_values_RL)+y0
# y1 = y0 + self.waypoint_lookahead_distance
# print(x1)
x2 = current_x +(max(self.x_values_RL)-min(self.x_values_RL))*((action[2]+1)/2)+min(self.x_values_RL)
y2 = (max(self.y_values_RL)-min(self.y_values_RL))*((action[3]+1)/2)+min(self.y_values_RL)+y1
# y2 = y1 + self.waypoint_lookahead_distance
# print(x2)
x= [current_x , x1, x2]
# print(x)
y = [current_y + 2, y1, y2]
ds = self.waypoint_resolution # [m] distance of each interpolated points
sp = CubicSpline2D(x, y)
s = np.arange(0, sp.s[-1], ds)
rx, ry, ryaw= [], [], []
for i_s in s:
ix, iy = sp.calc_position(i_s)
rx.append(ix)
ry.append(iy)
ryaw.append(sp.calc_yaw(i_s))
desired_speed = (max(self.v_values_RL)-min(self.v_values_RL))*((action[4]+1)/2)+min(self.v_values_RL)
velocity_vec = self.player.get_velocity()
current_speed = math.sqrt(velocity_vec.x**2 + velocity_vec.y**2 + velocity_vec.z**2)
num_steps= len(rx)
speed_profile = [current_speed + (i / num_steps) * (desired_speed - current_speed) for i in range(num_steps + 1)]
nw_wp = []
for i in range(len(rx)):
nw_wp.append([rx[i], ry[i], speed_profile[i], ryaw[i]])
# print(nw_wp)
return nw_wp
def get_observation(self):
# Example min and max values
# min_values = [min_x_dist, min_y_dist, min_speed, min_acceleration, min_yaw]
# max_values = [max_x_dist, max_y_dist, max_speed, max_acceleration, max_yaw]
min_values = self.min_values_obs #np.array([-6, -15, 0, -1.5, -3.14])
max_values = self.max_values_obs #np.array([6, 15, 40, 2, 3.14])
# EGO information
velocity_vec = self.player.get_velocity()
current_transform = self.player.get_transform()
current_location = current_transform.location
current_roration = current_transform.rotation
current_x = current_location.x
current_y = current_location.y
current_yaw = wrap_angle(current_roration.yaw)
current_speed = math.sqrt(velocity_vec.x**2 + velocity_vec.y**2 + velocity_vec.z**2)
current_acceleration = self.controller._acceleration
current_steer = self.controller._steer
#Parked vehicle information
parked_transform = self.parked_vehicle.get_transform()
parked_location = parked_transform.location
parked_x = parked_location.x
parked_y = parked_location.y
x_dist = current_x -parked_x
y_dist = current_y -parked_y
self.path.append([current_x, current_y])
obs = [x_dist, y_dist, current_speed, current_acceleration, current_yaw]
# print(obs)
# Example observation data
data = np.array([x_dist, y_dist, current_speed, current_acceleration, current_yaw])
# Clipping the data
clipped_data = np.clip(data, min_values, max_values)
# print(clipped_data)
# Normalize the data to the range [-1, 1]
normalized_data = 2 * ((clipped_data - min_values) / (max_values - min_values)) - 1
# print(normalized_data)
acceleration_vec = self.player.get_acceleration()
sideslip = np.tanh(velocity_vec.x/np.abs(velocity_vec.y))
# print(self.player.get_telemetry_data())
self.save_list.append([self.episode_counter, self.desired_speed, self.last_v, self.ttc_trigger, self.distance_parked, self.clock.get_time(), current_x, current_y, x_dist, y_dist, current_speed, current_acceleration,
acceleration_vec.x, acceleration_vec.y, sideslip, current_yaw, current_steer])
return normalized_data
def time_to_collison(self):
# EGO information
velocity_vec = self.player.get_velocity()
current_transform = self.player.get_transform()
current_location = current_transform.location
current_x = current_location.x
current_y = current_location.y
current_speed = math.sqrt(velocity_vec.x**2 + velocity_vec.y**2 + velocity_vec.z**2)
#Parked vehicle information
parked_transform = self.parked_vehicle.get_transform()
velocity_parked = self.parked_vehicle.get_velocity()
parked_location = parked_transform.location
parked_x = parked_location.x
parked_y = parked_location.y
parked_speed = math.sqrt(velocity_parked.x**2 + velocity_parked.y**2 + velocity_parked.z**2)
dist = np.sqrt((parked_y-current_y)**2 + (current_x-parked_x)**2)
rel_speed = current_speed - parked_speed
ttc = dist/rel_speed
return np.abs(ttc)
def create_actors(self):
self.blueprint_library = self.world.get_blueprint_library()
self.vehicle_blueprint = self.blueprint_library.filter('*vehicle*')
self.walker_blueprint = self.blueprint_library.filter('*walker.*')
# PLAYER
spawn_location = carla.Location()
spawn_location.x = float(self.args.spawn_x)
spawn_location.y = float(self.args.spawn_y)
self.spawn_waypoint = self.map.get_waypoint(spawn_location)
spawn_transform = self.spawn_waypoint.transform
spawn_transform.location.z = 1.0
self.player = self.world.try_spawn_actor(self.vehicle_blueprint.filter('model3')[0], spawn_transform)
self.world.tick()
print('vehicle spawned')
physic_control = self.player.get_physics_control()
physic_control.use_sweep_wheel_collision = True
# Turn on position lights
current_lights = carla.VehicleLightState.NONE
current_lights |= carla.VehicleLightState.Position
self.player.set_light_state(carla.VehicleLightState.Position)
# CAMERA RGB
self.rgb_cam = self.blueprint_library.find('sensor.camera.rgb')
self.rgb_cam.set_attribute("image_size_x", f"{640}")
self.rgb_cam.set_attribute("image_size_y", f"{480}")
self.rgb_cam.set_attribute("fov", f"110")
self.camera_rgb = self.world.spawn_actor(
self.rgb_cam,
carla.Transform(carla.Location(x=2, z=1), carla.Rotation(0,0,0)),
attach_to=self.player)
self.world.tick()
# LANE SENSOR
self.lane_invasion = self.world.spawn_actor(
self.blueprint_library.find('sensor.other.lane_invasion'),
carla.Transform(),
attach_to=self.player)
self.world.tick()
# COLLISION SENSOR
self.collision_sensor = self.world.spawn_actor(
self.blueprint_library.find('sensor.other.collision'),
carla.Transform(),
attach_to=self.player)
self.world.tick()
# SYNCH MODE CONTEXT
self.synch_mode = CarlaSyncMode(self.world, self.camera_rgb, self.lane_invasion, self.collision_sensor)
# STATIONARY CAR
parking_position = carla.Transform(self.player.get_transform().location + carla.Location(-0.5, self.distance_parked, 0.5),
carla.Rotation(0,90,0))
self.parked_vehicle = self.world.spawn_actor(self.vehicle_blueprint.filter('model3')[0], parking_position) #self.vehicle_blueprint.filter('model3')[0]
self.world.tick()
# SPECTATOR
spectator = self.world.get_spectator()
if self.parked_vehicle is not None:
transform = self.parked_vehicle.get_transform()
else:
transform = self.player.get_transform()
spectator.set_transform(carla.Transform(transform.location + carla.Location(y=-10,z=28.5), carla.Rotation(pitch=-90)))
self.world.tick()
# CONTROLLER
self.control_count = 0
if self.control_mode == "PID":
self.controller = PIDController.Controller()
# print("Control: PID")
elif self.control_mode == "MPC":
physic_control = self.player.get_physics_control()
physic_control.use_sweep_wheel_collision = True
lf, lr, l = get_vehicle_wheelbases(physic_control.wheels, physic_control.center_of_mass )
self.controller = MPCController.Controller(lf = lf, lr = lr, wheelbase=l, planning_horizon = self.planning_horizon, time_step = self.time_step)
def print_path(self, waypoints):
for z in waypoints:
spawn_location_r = carla.Location()
spawn_location_r.x = float(z[0])
spawn_location_r.y = float(z[1])
spawn_location_r.z = 1.0
self.world.debug.draw_string(spawn_location_r, 'O', draw_shadow=False,
color=carla.Color(r=0, g=0, b=255), life_time=5,
persistent_lines=True)