Skip to content

Latest commit

 

History

History
100 lines (89 loc) · 4.18 KB

README.md

File metadata and controls

100 lines (89 loc) · 4.18 KB

YOLOV4:You Only Look Once目标检测模型在pytorch当中的实现


目录

  1. 实现的内容 Achievement
  2. 所需环境 Environment
  3. 注意事项 Attention
  4. 小技巧的设置 TricksSet
  5. 文件下载 Download
  6. 预测步骤 How2predict
  7. 训练步骤 How2train
  8. 参考资料 Reference

实现的内容

  • 主干特征提取网络:DarkNet53 => CSPDarkNet53
  • 特征金字塔:SPP,PAN
  • 训练用到的小技巧:Mosaic数据增强、Label Smoothing平滑、CIOU、学习率余弦退火衰减
  • 激活函数:使用Mish激活函数
  • ……balabla

所需环境

torch==1.2.0

注意事项

代码中的yolo4_weights.pth是基于608x608的图片训练的,但是由于显存原因。我将代码中的图片大小修改成了416x416。有需要的可以修改回来。 代码中的默认anchors是基于608x608的图片的。
注意不要使用中文标签,文件夹中不要有空格!
在训练前需要务必在model_data下新建一个txt文档,文档中输入需要分的类,在train.py中将classes_path指向该文件

小技巧的设置

在train.py文件下:
1、mosaic参数可用于控制是否实现Mosaic数据增强。
2、Cosine_scheduler可用于控制是否使用学习率余弦退火衰减。
3、label_smoothing可用于控制是否Label Smoothing平滑。

文件下载

训练所需的yolo4_weights.pth可在百度网盘中下载。
链接: https://pan.baidu.com/s/1VNSYi39AaqjHVbdNpW_7sw 提取码: q2iv
yolo4_weights.pth是coco数据集的权重。
yolo4_voc_weights.pth是voc数据集的权重。

预测步骤

1、使用预训练权重

a、下载完库后解压,在百度网盘下载yolo4_weights.pth或者yolo4_voc_weights.pth,放入model_data,运行predict.py,输入

img/street.jpg

可完成预测。
b、利用video.py可进行摄像头检测。

2、使用自己训练的权重

a、按照训练步骤训练。
b、在yolo.py文件里面,在如下部分修改model_path和classes_path使其对应训练好的文件;model_path对应logs文件夹下面的权值文件,classes_path是model_path对应分的类

_defaults = {
    "model_path": 'model_data/yolo4_weights.pth',
    "anchors_path": 'model_data/yolo_anchors.txt',
    "classes_path": 'model_data/coco_classes.txt',
    "model_image_size" : (416, 416, 3),
    "confidence": 0.5,
    "cuda": True
}

c、运行predict.py,输入

img/street.jpg

可完成预测。
d、利用video.py可进行摄像头检测。

训练步骤

1、本文使用VOC格式进行训练。
2、训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的Annotation中。
3、训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。
4、在训练前利用voc2yolo4.py文件生成对应的txt。
5、再运行根目录下的voc_annotation.py,运行前需要将classes改成你自己的classes。注意不要使用中文标签,文件夹中不要有空格!

classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]

6、此时会生成对应的2007_train.txt,每一行对应其图片位置及其真实框的位置
7、在训练前需要务必在model_data下新建一个txt文档,文档中输入需要分的类,在train.py中将classes_path指向该文件,示例如下:

classes_path = 'model_data/new_classes.txt'    

model_data/new_classes.txt文件内容为:

cat
dog
...

8、运行train.py即可开始训练。

mAP目标检测精度计算更新

更新了get_gt_txt.py、get_dr_txt.py和get_map.py文件。
get_map文件克隆自https://github.com/Cartucho/mAP
具体mAP计算过程可参考:https://www.bilibili.com/video/BV1zE411u7Vw

Reference

https://github.com/qqwweee/keras-yolo3/
https://github.com/Cartucho/mAP
https://github.com/Ma-Dan/keras-yolo4