diff --git a/.nojekyll b/.nojekyll new file mode 100644 index 00000000..e69de29b diff --git a/index.html b/index.html new file mode 100644 index 00000000..9c020d73 --- /dev/null +++ b/index.html @@ -0,0 +1,7 @@ + + + + + + + diff --git a/ramanchada2.html b/ramanchada2.html new file mode 100644 index 00000000..f5a1672f --- /dev/null +++ b/ramanchada2.html @@ -0,0 +1,1547 @@ + + + + + + + ramanchada2 API documentation + + + + + + + + + + + + +
+
+

+ramanchada2

+ +

Purpose

+ +

ramanchada2 software package is meant to fill the gap between the theoretical +Raman analysis and the experimental Raman spectroscopy by providing means to +compare data of different origin. The software is in early development stage +but still able to solve practical problems.

+ +

Features

+ +

Read simulated data

+ +

Process simulated data by VASP and CRYSTAL and provide same interface. +CRYSTAL data contain intensities for multiple orientations -- laser beam +incidents perpendicularly or parallelly to the observation and information +for mono-crystals. VASP data provide data only for poly-crystals but in +different format. So the perpendicular and parallel intensities are calculated +by an implemented algorithm.

+ +

Models

+ +

LMFIT theoretical models can be build by spectral information obtained by +simulations or by provided by the user. These models can be fit to experimental +data, providing calibration information. At poor initial calibration the minimisation +procedure naturally fails. An iterative procedure aiming to solve this problem +was adopted in the code. On the first iteration the experimental spectrum lines +are artificially broadened. This makes it possible for the minimisation procedure +to find a parameters that are close enough to be used as an initial guess for +the second iteration. In few iterations the algorithm is able to fit to the original +experimental data. This idea is implemented and is at proof-of-concept level.

+ +

Generate spectra

+ +

Spectra can be generated by the theoretical models. Random Poissonian noise and +artificial random-generated baseline can be added to the generated spectra, making +them convenient tools to test new methods for analysis.

+ +

Spectrum manipulation

+ +

A number of filters can be applied to spectra (experimental and generated). +Scaling on both x and y axes is possible. Scaling could be linear or arbitrary +user defined function. A convolution is possible with set of predefined functions +as well as user defined model.

+ +

Concept

+ +

The code is object oriented, written in python. Main elements are Spectrum and +theoretical models. Theoretical models are based on LMFIT library, while +Spectrum is a custom made class. Spectrum object contains data for x and y axes +and metadata coming from experimental files or other sources. It is planned +to add information about the uncertainties in x and y. All filters and manipulation +procedures are available as class methods. Measures are taken to preserve spectrum +instances immutable, so filters are generating new spectra, preserving the original +unchanged. Additionally, Spectrum has information about its history -- the sequence +of applied filters.

+ +

File formats

+ +

.cha

+ +

ramanchada software package introduced .cha file format, which is an HDF5 +with a simple layout.

+ +

Cache in .cha files

+ +

The concept to keep previous variants of data is employed in ramanchada2. If +configured so, the software saves the data for all Spectrum instances to a +tree-organized .cha file. When a particular chain of operations is requested +by the user, the software checks if the final result is present in the cache file, +if so it is provided, otherwise the software checks for its parent. When a parent +or some of the grand parents are present, they are taken as a starting point and +the needed steps are applied to provide the final result. The current implementation +uses h5py library to access local hdf files. It is foreseen to have implementation +with h5pyd that support network operations.

+ +

Nexus format

+ +

The latest ramanchada2 package allows export of a spectrum to NeXus format.

+ +

Decorated Functions in Spectrum

+ +

Function: __add__

+ +

Docstring: No docstring available

+ +
+ +

Function: __init__

+ +

Docstring: No docstring available

+ +
+ +

Function: __mul__

+ +

Docstring: No docstring available

+ +
+ +

Function: __sub__

+ +

Docstring: No docstring available

+ +
+ +

Function: __truediv__

+ +

Docstring: No docstring available

+ +
+ +

Function: abs_nm_to_shift_cm_1

+ +

Docstring: + Convert wavelength to Ramanshift in wavenumber

+ +
Args:
+    spe: internal use only
+    laser_wave_length_nm: Laser wave length
+
+Returns: Corrected x-values
+
+ +
+ +

Function: abs_nm_to_shift_cm_1_filter

+ +

Docstring: + Convert wavelength to Ramanshift in wavenumber

+ +
Args:
+    spe: internal use only
+    laser_wave_length_nm: Laser wave length
+
+Returns: Spectrum with corrected x-values
+
+ +
+ +

Function: add_baseline

+ +

Docstring: + Add artificial baseline to the spectrum. + A random baseline is generated in frequency domain using uniform random numbers. + The baseline in frequency domain is tapered with bohman window to reduce the bandwidth + of the baseline to first n_freq frequencies and is transformed to "time" domain. + Additionaly by using func parameter the user can define arbitrary function + to be added as baseline.

+ +
Args:
+    n_freq:
+        Must be `> 2`. Number of lowest frequency bins distinct from zero.
+    amplitude:
+        Upper boundary for the uniform random generator.
+    pedestal:
+        Additive constant pedestal to the spectrum.
+    func:
+        Callable. User-defined function to be added as baseline. Example: `func = lambda x: x*.01 + x**2*.0001`.
+    rng_seed:
+        `int`, optional. Seed for the random generator.
+
+ +
+ +

Function: add_gaussian_noise

+ +

Docstring: + Add gaussian noise to the spectrum.

+ +
Random number i.i.d. $N(0, \sigma)$ is added to every sample
+
+Args:
+    old_spe: internal use only
+    new_spe: internal use only
+    sigma:
+        Sigma of the gaussian noise.
+    rng_seed:
+        `int` or rng state, optional, seed for the random generator.
+        If a state is provided, it is updated in-place.
+
+Returns: modified Spectrum
+
+ +
+ +

Function: add_gaussian_noise_drift

+ +

Docstring: + Add cumulative gaussian noise to the spectrum.

+ +
Exponential-moving-average-like gaussian noise is added
+to each sample. The goal is to mimic the low-frequency noise
+(or random substructures in spectra).
+The additive noise is
+$$a_i = coef*\sum_{j=0}^{i-1}g_j + g_i,$$
+
+where
+$$g_i = \mathcal{N}(0, 1+\frac{coef}{\sqrt 2}).$$
+
+This way drifting is possible while keeping the
+$$\sigma(\Delta(a)) \approx 1.$$
+
+Args:
+    old_spe: internal use only
+    new_spe: internal use only
+    sigma:
+        Sigma of the gaussian noise.
+    coef:
+        `float` in `[0, 1]`, drifting coefficient. If `coef == 0`,
+        the result is identical to `add_gaussian_noise()`.
+    rng_seed:
+        `int` or rng state, optional. Seed for the random generator.
+        If a state is provided, it is updated in-place.
+
+Returns: modified Spectrum
+
+ +
+ +

Function: add_poisson_noise

+ +

Docstring: + Add poisson noise to the spectrum.

+ +
For each particular sample the noise is proportional to $\sqrt{scale*a_i}$.
+
+Args:
+    old_spe: internal use only
+    new_spe: internal use only
+    scale:
+        `float`, optional, default is `1`. Scale the amplitude of the noise.
+    rng_seed:
+        `int` or rng state, optional. Seed for the random generator.
+        If a state is provided, it is updated in-place.
+
+Returns: modified Spectrum
+
+ +
+ +

Function: apply_processing

+ +

Docstring: No docstring available

+ +
+ +

Function: bayesian_gaussian_mixture

+ +

Docstring: + Decompose the spectrum to Bayesian Gaussian Mixture

+ +
Args:
+    spe: internal use only
+    n_samples: optional. Defaults to 5000.
+        Resampled dataset size
+    n_components: optional. Defaults to 50.
+        Number of expected gaussian components
+    max_iter: optional. Defaults to 100.
+        Maximal number of iterations.
+    moving_minimum_window: optional. Defaults to None.
+        If None no moving minimum is subtracted, otherwise as specified.
+    random_state: optional. Defaults to None.
+        Random generator seed to be used.
+    trim_range: optional. Defaults to None:
+        If None ignore trimming, otherwise trim range is in x-axis values.
+
+Returns:
+    BayesianGaussianMixture: Fitted Bayesian Gaussian Mixture
+
+ +
+ +

Function: calibrate_by_deltas_filter

+ +

Docstring: No docstring available

+ +
+ +

Function: calibrate_by_deltas_model

+ +

Docstring: + - Builds a composite model based on a set of user specified delta lines. + - Initial guess is calculated based on 10-th and 90-th percentiles of + the distributions.

+ +
The phasespace of the model is flat with big amount of narrow minima.
+In order to find the best fit, the experimental data are successively
+convolved with gaussians with different widths startign from wide to
+narrow. The model for the calibration is 3-th order polynomial, which
+potentialy can be changed for higher order polynomial. In order to avoid
+solving the inverse of the calibration function, the result is tabulated
+and interpolated linarly for each bin of the spectrum.
+This alogrithm is useful for corse calibration.
+
+ +
+ +

Function: central_moments

+ +

Docstring: No docstring available

+ +
+ +

Function: convolve

+ +

Docstring: + Convole spectrum with arbitrary lineshape.

+ +
Args:
+    old_spe: internal use only
+    new_spe: internal use only
+    lineshape:callable, `str` or `np.ndarray`.
+         If callable: should have a single positional argument `x`, e.g.
+        `lambda x: np.exp((x/5)**2)`.
+        If predefined peak profile: can be `gaussian`, `lorentzian`, `voigt`,
+        `pvoigt`, `moffat` or `pearson4`.
+        If `np.ndarray`: lineshape in samples.
+    **kwargs:
+        Additional kwargs will be passed to lineshape function.
+
+Returns: modified Spectrum
+
+ +
+ +

Function: derivative_sharpening

+ +

Docstring: + Derivative-based sharpening.

+ +
Sharpen the spectrum subtracting second derivative and add fourth derivative.
+
+Args:
+    old_spe: internal use only
+    new_spe: internal use only
+    filter_fraction `float` in (0; 1]: Default is 0.6
+        Depth of filtration
+    signal_width: The width of features to be enhanced in sample count
+    der2_factor: Second derivative scaling factor
+    der4_factor: Fourth derivative scaling factor
+
+Returns: modified Spectrum
+
+ +
+ +

Function: drop_spikes

+ +

Docstring: + Removes single-bin spikes.

+ +
Remove x, y pairs recognised as spikes using left and right
+successive differences and standard-deviation-based threshold.
+
+Args:
+    old_spe: internal use only
+    new_spe: internal use only
+    n_sigma: optional, default is `10`.
+        Threshold is `n_sigma` times the standard deviation.
+
+Returns: modified Spectrum
+
+ +
+ +

Function: find_peak_multipeak

+ +

Docstring: + Find groups of peaks in spectrum.

+ +
Args:
+    spe: internal use only
+    prominence: Optional. Defaults to None
+        If None the prominence value will be `spe.y_nose`. Reasonable value for
+        promience is `const * spe.y_noise_MAD`.
+    wlen: optional. Defaults to None.
+        wlen value used in `scipy.signal.find_peaks`. If wlen is None, 200 will be used.
+    width: optional. Defaults to None.
+        width value used in `scipy.signal.find_peaks`. If width is None, 2 will be used.
+    hht_chain: optional. Defaults to None.
+        List of hht_chain window sizes. If None, no hht sharpening is performed.
+    bgm_kwargs: kwargs for bayesian_gaussian_mixture
+    sharpening 'hht' or None. Defaults to None.
+        If 'hht' hht sharpening will be performed before finding peaks.
+    strategy: optional. Defauts to 'topo'.
+        Peakfinding method
+
+Returns:
+    ListPeakCandidateMultiModel: Located peak groups
+
+ +
+ +

Function: find_peak_multipeak_filter

+ +

Docstring: + Same as find_peak_multipeak but the result is stored as metadata in the returned spectrum.

+ +
Args:
+    old_spe: internal use only
+    new_spe: internal use only
+    *args, **kwargs: same as `find_peak_multipeak`
+
+ +
+ +

Function: fit_peak_multimodel

+ +

Docstring: No docstring available

+ +
+ +

Function: fit_peak_positions

+ +

Docstring: + Calculate peak positions and amplitudes.

+ +
Sequence of multiple processings:
+- `subtract_moving_minimum`
+- `find_peak_multipeak`
+- filter peaks with x-location better than threshold
+
+Args:
+    spe: internal use only
+    mov_min: optional. Defaults to 40
+        subtract moving_minimum with the specified window.
+    center_err_threshold: optional. Defaults to 0.5.
+        threshold for centroid standard deviation. Only peaks
+        with better uncertainty will be returned.
+
+    find_peaks_kw: optional
+        keyword arguments to be used with find_peak_multipeak
+    fit_peaks_kw: optional
+        keyword arguments to be used with fit_peaks_multipeak
+
+Returns:
+    Dict[float, float]: {positions: amplitudes}
+
+ +
+ +

Function: fit_peaks_filter

+ +

Docstring: + Same as fit_peak_multipeak but the result is stored as metadata in the returned spectrum.

+ +
Args:
+    old_spe: internal use only
+    new_spe: internal use only
+    should_break: same as in fit_peaks_multipeak
+    *args, **kwargs: same as `fit_peaks_multipeak`
+
+ +
+ +

Function: from_cache_or_calc

+ +

Docstring: + Load spectrum from cache or calculate if needed.

+ +
The cache is a nested structure of spectra. All processings applied to
+a spectrum result to spectra of the initial one. If part of the requred
+processings are available, only the needed steps are calculated and added
+to the cache.
+
+Args:
+    required_steps: List of required steps in the form
+        [{'proc': str, 'args': List[Any], 'kwargs': Dict[str, Any]}, ...]
+    cachefile: optional. Defaults to None.
+        Filename of the cache. If None no cache is used
+
+ +
+ +

Function: from_chada

+ +

Docstring: No docstring available

+ +
+ +

Function: from_delta_lines

+ +

Docstring: + Generate Spectrum with delta lines.

+ +
Args:
+    deltas:
+        Keys of the dictionary are the `x` positions of the deltas; values are the amplitudes of the corresponding
+        deltas.
+    xcal:
+        Callable, optional. `x` axis calibration function.
+    nbins:
+        `int`, optional. Number of bins in the spectrum.
+
+Example:
+
+This will produce spectrum with 1000 bins in the range `[-1000, 2000)`:
+
+
+
+
xcal = lambda x: x*3 -1000, nbins=1000
+
+
+
+ +
+ +

Function: from_local_file

+ +

Docstring: + Read experimental spectrum from a local file.

+ +
Args:
+    in_file_name:
+        Path to a local file containing a spectrum.
+    filetype:
+        Specify the filetype. Filetype can be any of: `spc`, `sp`, `spa`, `0`, `1`, `2`, `wdf`, `ngs`, `jdx`, `dx`,
+        `txt`, `txtr`, `csv`, `prn`, `rruf` or `None`. `None` used to determine by extension of the file.
+    backend:
+        `native`, `rc1_parser` or `None`. `None` means both.
+
+Raises:
+    ValueError:
+        When called with unsupported file formats.
+
+ +
+ +

Function: from_simulation

+ +

Docstring: + Generate spectrum from simulation file.

+ +
The returned spectrum has only few x/y pairs -- one for each simulated line. Values along
+the x-axis will not be uniform. To make it uniform, one needs to resample the spectrum.
+
+Args:
+    in_file:
+        Path to a local file, or file-like object.
+    sim_type:
+        If `vasp`: `.dat` file from VASP simulation. If `crystal_out`: `.out` file from CRYSTAL simulation, not
+        preferred. If `crystal_dat`: `.dat` file from CRYSTAL simulation.
+    use:
+        One of the directions `I_tot`, `I_perp`, `I_par`, `I_xx`, `I_xy`,
+        `I_xz`, `I_yy`, `I_yz`, `I_zz`, `I_tot`, `I_perp`, `I_par` are
+        available for both CRYSTAL and VASP. `I_xx`, `I_xy`, `I_xz`,
+        `I_yy`, `I_yz`, `I_zz` are available only for CRYSTAL. If a Dict is
+        passed, the key should be directions and values should be weighting factor.
+        For example, `use={'I_perp': .1, 'I_par': .9}`
+
+ +
+ +

Function: from_spectral_component_collection

+ +

Docstring: + from_spectral_component_collection

+ +
Args:
+    spe_components:
+        SpectralComponentCollection
+    x:
+        `int` or array-like, optional, default `2000`. `x` axis of the spectrum.
+
+ +
+ +

Function: from_test_spe

+ +

Docstring: Create new spectrum from test data.

+ +
Args:
+    index:
+        `int` or `None`, optional, default is `None`. If `int`: will be used as an index of filtered list. If
+        `None`: a random spectrum will be taken.
+    **kwargs:
+        The rest of the parameters will be used as filter.
+
+ +
+ +

Function: from_theoretical_lines

+ +

Docstring: + Generate spectrum from lmfit shapes.

+ +
Args:
+    shapes:
+        The shapes to be used for spectrum generation.
+    params:
+        Shape parameters to be applied to be used with shapes.
+    x:
+        Array with `x` values, by default `np.array(2000)`.
+
+ +
+ +

Function: gen_samples

+ +

Docstring: No docstring available

+ +
+ +

Function: get_spikes

+ +

Docstring: + Get single-bin spikes only.

+ +
Get x, y pairs recognised as spikes using left and right
+successive differences and standard-deviation-based threshold
+and linear interpolation.
+
+Args:
+    old_spe: internal use only
+    new_spe: internal use only
+    n_sigma: optional, default is `10`.
+        Threshold is `n_sigma` times the standard deviation.
+
+Returns: modified Spectrum
+
+ +
+ +

Function: hdr_from_multi_exposure

+ +

Docstring: Create an HDR spectrum from several spectra with different exposures.

+ +
The resulting spectrum will have the details in low-intensity peaks
+from long-exposure-time spectrum. As long-exposure-time
+spectrum might be sturated, the information for high-intensity
+peaks will be taken from short-exposure-time spectrum.
+This function will work on a very limited number of spectra,
+because we still do not have standardized metadata.
+
+ +
+ +

Function: hht_sharpening

+ +

Docstring: + Hilbert-Huang based sharpening.

+ +
In order to reduce the overshooting, moving minimum is subtracted from the result
+
+Args:
+    old_spe: internal use only
+    new_spe: internal use only
+    movmin: optional. Default is 100
+        Window size for moving minimum
+
+Returns: modified Spectrum
+
+ +
+ +

Function: hht_sharpening_chain

+ +

Docstring: + Hilbert-Huang based chain sharpening.

+ +
Sequence of Hilbert-Huang sharpening procedures are performed.
+
+Args:
+    old_spe: internal use only
+    new_spe: internal use only
+    movmin: List[int], optional. Default is [150, 50]
+        The numer of values in the list defines how many iterations
+        of HHT_sharpening will be performed and the values define
+        the moving minimum window sizes for the corresponding operations.
+
+Returns: modified Spectrum
+
+ +
+ +

Function: moving_average

+ +

Docstring: + Moving average filter.

+ +
Args:
+    old_spe: internal use only
+    new_spe: internal use only
+    window_size:
+        `int`, optional, default is `10`.
+
+Returns: modified Spectrum
+
+ +
+ +

Function: moving_average_convolve

+ +

Docstring: + Moving average filter.

+ +
Args:
+    old_spe: internal use only
+    new_spe: internal use only
+    window_size:
+        `int`, optional, default is `10`.
+
+Returns: modified Spectrum
+
+ +
+ +

Function: moving_median

+ +

Docstring: + Moving median filter.

+ +
The resultant spectrum is moving minimum of the input.
+
+Args:
+    old_spe: internal use only
+    new_spe: internal use only
+    window_size:
+        `int`, optional, default is `10`.
+
+Returns: modified Spectrum
+
+ +
+ +

Function: moving_minimum

+ +

Docstring: + Moving minimum baseline estimator. + Successive values are calculated as minima of rolling rectangular window.

+ +
+ +

Function: normalize

+ +

Docstring: + Normalize the spectrum.

+ +
Args:
+    strategy:
+        If `unity`: normalize to `sum(y)`. If `min_unity`: subtract the minimum and normalize to 'unity'. If
+        `unity_density`: normalize to `Σ(y_i*Δx_i)`. If `unity_area`: same as `unity_density`. If `minmax`: scale
+        amplitudes in range `[0, 1]`. If 'L1' or 'L2': L1 or L2 norm without subtracting the pedestal.
+
+ +
+ +

Function: pad_zeros

+ +

Docstring: + Extend x-axis by 100% in both directions.

+ +
The x-axis of resultant spectrum will be:
+$[x_{lower}-(x_{upper}-x_{lower})..(x_{upper}+(x_{upper}-x_{lower}))]$.
+The length of the new spectrum is 3 times the original. The added values
+are with an uniform step. In the middle is the original spectrum with
+original x and y values. The coresponding y vallues for the newly added
+x-values are always zeros.
+
+Args:
+    old_spe: internal use only
+    new_spe: internal use only
+
+Returns: modified Spectrum
+
+ +
+ +

Function: recover_spikes

+ +

Docstring: + Recover single-bin spikes.

+ +
Recover x, y pairs recognised as spikes using left and right
+successive differences and standard-deviation-based threshold
+and linear interpolation.
+
+Args:
+    old_spe: internal use only
+    new_spe: internal use only
+    n_sigma: optional, default is `10`.
+        Threshold is `n_sigma` times the standard deviation.
+
+Returns: modified Spectrum
+
+ +
+ +

Function: resample_NUDFT

+ +

Docstring: + Resample the spectrum using Non-uniform discrete fourier transform.

+ +
The x-axis of the result will be uniform. The corresponding y-values
+will be calculated with NUDFT and inverse FFT.
+
+Args:
+    spe: internal use only
+    x_range: optional. Defaults to (0, 4000).
+        The x_range of the new spectrum.
+    xnew_bins: optional. Defaults to 100.
+        Number of bins of the new spectrum
+    window: optional, Defaults to None.
+        The window to be used for lowpass filter. If None 'blackmanharris' is used.
+        If no low-pass filter is required, one can use `window=lambda x: [1]*len(x)`.
+    cumulative: optional. Defaults to False.
+        If True, the resultant spectrum will be cumulative and normalized
+        (in analogy with CDF).
+
+Returns:
+    (x_values, y_values)
+
+ +
+ +

Function: resample_NUDFT_filter

+ +

Docstring: + Resample the spectrum using Non-uniform discrete fourier transform.

+ +
The x-axis of the result will be uniform. The corresponding y-values
+will be calculated with NUDFT and inverse FFT.
+
+Args:
+    old_spe: internal use only
+    new_spe: internal use only
+    x_range: optional. Defaults to (0, 4000).
+        The x_range of the new spectrum.
+    xnew_bins: optional. Defaults to 100.
+        Number of bins of the new spectrum
+    window: optional, Defaults to None.
+        The window to be used for lowpass filter. If None 'blackmanharris' is used.
+        If no low-pass filter is required, one can use `window=lambda x: [1]*len(x)`.
+    cumulative: optional. Defaults to False.
+        If True, the resultant spectrum will be cumulative and normalized
+        (in analogy with CDF).
+
+Returns: modified Spectrum
+
+ +
+ +

Function: resample_spline

+ +

Docstring: + Resample the spectrum using spline interpolation.

+ +
The x-axis of the result will be uniform. The corresponding y-values
+will be calculated with spline interpolation.
+
+Args:
+    spe: internal use only
+    x_range: optional. Defaults to (0, 4000).
+        The x_range of the new spectrum.
+    xnew_bins: optional. Defaults to 100.
+        Number of bins of the new spectrum
+    spline: optional, Defaults to 'pchip'.
+        Name of the spline funcion to be used.
+    cumulative: optional. Defaults to False.
+        If True, the resultant spectrum will be cumulative and normalized
+        (in analogy with CDF).
+
+Returns:
+    (x_values, y_values)
+
+ +
+ +

Function: resample_spline_filter

+ +

Docstring: + Resample the spectrum using spline interpolation.

+ +
The x-axis of the result will be uniform. The corresponding y-values
+will be calculated with spline interpolation.
+
+Args:
+    old_spe: internal use only
+    new_spe: internal use only
+    x_range: optional. Defaults to (0, 4000).
+        The x_range of the new spectrum.
+    xnew_bins: optional. Defaults to 100.
+        Number of bins of the new spectrum
+    spline: optional, Defaults to 'pchip'.
+        Name of the spline funcion to be used.
+    cumulative: optional. Defaults to False.
+        If True, the resultant spectrum will be cumulative and normalized
+        (in analogy with CDF).
+
+Returns: modified Spectrum
+
+ +
+ +

Function: scale_xaxis_fun

+ +

Docstring: + Apply arbitrary calibration function to the x-axis values.

+ +
Args:
+    old_spe: internal use only
+    new_spe: internal use only
+    fun: function to be applied
+    args: Additional arguments to the provided functions
+
+Returns: Corrected spectrum
+
+Raises:
+    ValueError: If the new x-values are not strictly monotonically increasing.
+
+ +
+ +

Function: scale_xaxis_linear

+ +

Docstring: + Scale x-axis using a factor.

+ +
Args:
+    old_spe: internal use only
+    new_spe: internal use only
+    factor: Defaults to 1.
+        Multiply x-axis values with `factor`
+    preserve_integral: optional. Defaults to False.
+        If True, preserves the integral in sence
+        $\sum y_{orig;\,i}*{\Delta x_{orig}}_i = \sum y_{new;\,i}*{\Delta x_{new}}_i = $
+Returns: Corrected spectrum
+
+ +
+ +

Function: scale_yaxis_linear

+ +

Docstring: + Scale y-axis values

+ +
This function provides the same result as `spe*const`
+
+Args:
+    old_spe: internal use only
+    new_spe: internal use only
+    factor optional. Defaults to 1.
+        Y-values scaling factor
+
+Returns: corrected spectrum
+
+ +
+ +

Function: set_new_xaxis

+ +

Docstring: + Substitute x-axis values with new ones

+ +
Args:
+    old_spe: internal use only
+    new_spe: internal use only
+    xaxis: new x-axis values
+
+Returns: corrected spectrum
+
+Raises:
+    ValueError: If the provided array does not match the shape of the spectrum.
+
+ +
+ +

Function: shift_cm_1_to_abs_nm

+ +

Docstring: + Convert Ramanshift in wavenumber to wavelength

+ +
Args:
+    spe: internal use only
+    laser_wave_length_nm: Laser wave length
+
+Returns: Corrected x-values
+
+ +
+ +

Function: shift_cm_1_to_abs_nm_filter

+ +

Docstring: + Convert Ramanshift in wavenumber to wavelength

+ +
Args:
+    spe: internal use only
+    laser_wave_length_nm: Laser wave length
+
+Returns: Spectrum with corrected x-values
+
+ +
+ +

Function: smoothing_RC1

+ +

Docstring: + Smooth the spectrum.

+ +
The spectrum will be smoothed using the specified filter.
+This method is inherited from ramanchada1 for compatibility reasons.
+
+Args:
+    old_spe: internal use only
+    new_spe: internal use only
+    method: method to be used
+    **kwargs: keyword arguments to be passed to the selected method
+
+Returns: modified Spectrum
+
+ +
+ +

Function: spe_distribution

+ +

Docstring: No docstring available

+ +
+ +

Function: spike_indices

+ +

Docstring: + Find spikes in spectrum

+ +
Single-bin spikes are located using left and right successive
+differences. The threshold is based on the standart deviation
+of the metric which makes this algorithm less optimal.
+
+Args:
+    spe: internal use only
+    n_sigma: Threshold value should be `n_sigma` times the standart
+      deviation of the metric.
+
+Returns: List of spike indices
+
+ +
+ +

Function: subtract_baseline_rc1_als

+ +

Docstring: No docstring available

+ +
+ +

Function: subtract_baseline_rc1_snip

+ +

Docstring: No docstring available

+ +
+ +

Function: subtract_moving_median

+ +

Docstring: + Subtract moving median filter.

+ +
The resultant spectrum is moving minimum of the input subtracted from the input.
+
+Args:
+    old_spe: internal use only
+    new_spe: internal use only
+    window_size:
+        `int`, optional, default is `10`.
+
+Returns: modified Spectrum
+
+ +
+ +

Function: subtract_moving_minimum

+ +

Docstring: No docstring available

+ +
+ +

Function: trim_axes

+ +

Docstring: + Trim axes of the spectrum.

+ +
Args:
+    old_spe: internal use only
+    new_spe: internal use only
+    method: 'x-axis' or 'bins'
+        If 'x-axis' boundaries will be interpreted as x-axis values.
+        If 'bins' boundaries will be interpreted as indices.
+    boundaries: lower and upper boundary for the trimming.
+
+Returns: modified Spectrum
+
+ +
+ +

Function: xcal_fine

+ +

Docstring: No docstring available

+ +
+ +

Function: xcal_fine_RBF

+ +

Docstring: Wavelength calibration using Radial basis fuction interpolation

+ +
Please be cautious! Interpolation might not be the most appropriate
+approach for this type of calibration.
+
+**kwargs are passed to RBFInterpolator
+
+ +
+ +

Function: y_noise_savgol

+ +

Docstring: No docstring available

+ +
+ +

Function: y_noise_savgol_DL

+ +

Docstring: No docstring available

+ +
+
+ + + + + +
  1#!/usr/bin/env python3
+  2
+  3
+  4"""
+  5# Purpose
+  6`ramanchada2` software package is meant to fill the gap between the theoretical
+  7Raman analysis and the experimental Raman spectroscopy by providing means to
+  8compare data of different origin. The software is in early development stage
+  9but still able to solve practical problems.
+ 10
+ 11# Features
+ 12
+ 13## Read simulated data
+ 14Process simulated data by [VASP][] and [CRYSTAL][] and provide same interface.
+ 15CRYSTAL data contain intensities for multiple orientations -- laser beam
+ 16incidents perpendicularly or parallelly to the observation and information
+ 17for mono-crystals. VASP data provide data only for poly-crystals but in
+ 18different format. So the perpendicular and parallel intensities are calculated
+ 19by an implemented [algorithm][].
+ 20
+ 21## Models
+ 22[LMFIT][] theoretical models can be build by spectral information obtained by
+ 23simulations or by provided by the user. These models can be fit to experimental
+ 24data, providing calibration information. At poor initial calibration the minimisation
+ 25procedure naturally fails. An iterative procedure aiming to solve this problem
+ 26was adopted in the code. On the first iteration the experimental spectrum lines
+ 27are artificially broadened. This makes it possible for the minimisation procedure
+ 28to find a parameters that are close enough to be used as an initial guess for
+ 29the second iteration. In few iterations the algorithm is able to fit to the original
+ 30experimental data. This idea is implemented and is at proof-of-concept level.
+ 31
+ 32## Generate spectra
+ 33Spectra can be generated by the theoretical models. Random Poissonian noise and
+ 34artificial random-generated baseline can be added to the generated spectra, making
+ 35them convenient tools to test new methods for analysis.
+ 36
+ 37## Spectrum manipulation
+ 38A number of filters can be applied to spectra (experimental and generated).
+ 39Scaling on both x and y axes is possible. Scaling could be linear or arbitrary
+ 40user defined function. A convolution is possible with set of predefined functions
+ 41as well as user defined model.
+ 42
+ 43# Concept
+ 44The code is object oriented, written in python. Main elements are Spectrum and
+ 45theoretical models. Theoretical models are based on LMFIT library, while
+ 46Spectrum is a custom made class. Spectrum object contains data for x and y axes
+ 47and metadata coming from experimental files or other sources. It is planned
+ 48to add information about the uncertainties in x and y. All filters and manipulation
+ 49procedures are available as class methods. Measures are taken to preserve spectrum
+ 50instances immutable, so filters are generating new spectra, preserving the original
+ 51unchanged. Additionally, Spectrum has information about its history -- the sequence
+ 52of applied filters.
+ 53
+ 54# File formats
+ 55
+ 56## `.cha`
+ 57[ramanchada][] software package introduced `.cha` file format, which is an [HDF5][]
+ 58with a simple layout.
+ 59
+ 60### Cache in .cha files
+ 61The concept to keep previous variants of data is employed in `ramanchada2`. If
+ 62configured so, the software saves the data for all Spectrum instances to a
+ 63tree-organized `.cha` file. When a particular chain of operations is requested
+ 64by the user, the software checks if the final result is present in the cache file,
+ 65if so it is provided, otherwise the software checks for its parent. When a parent
+ 66or some of the grand parents are present, they are taken as a starting point and
+ 67the needed steps are applied to provide the final result. The current implementation
+ 68uses [h5py][] library to access local hdf files. It is foreseen to have implementation
+ 69with [h5pyd][] that support network operations.
+ 70
+ 71## Nexus format
+ 72
+ 73The latest ramanchada2 package allows export of a spectrum to [NeXus][] format.
+ 74
+ 75
+ 76[CRYSTAL]: https://www.crystal.unito.it/index.php
+ 77[HDF5]: https://hdfgroup.org/
+ 78[LMFIT]: https://lmfit.github.io/lmfit-py/index.html
+ 79[VASP]: https://www.vasp.at/
+ 80[algorithm]: https://doi.org/10.1103/PhysRevB.54.7830
+ 81[h5py]: https://h5py.org/
+ 82[h5pyd]: https://github.com/HDFGroup/h5pyd
+ 83[ramanchada]: https://github.com/h2020charisma/ramanchada
+ 84[NeXus]: https://www.nexusformat.org/
+ 85
+ 86.. include:: ../../../../../../spectrum_functions.md
+ 87"""
+ 88
+ 89from __future__ import annotations
+ 90
+ 91from . import spectrum
+ 92from . import theoretical_lines
+ 93__all__ = [
+ 94    'auxiliary',
+ 95    'io',
+ 96    'misc',
+ 97    'protocols',
+ 98    'spectral_components',
+ 99    'spectrum',
+100    'theoretical_lines'
+101]
+102__version__ = '1.2.0'
+103
+104
+105import logging
+106
+107
+108class CustomFormatter(logging.Formatter):
+109    green = "\x1b[32m"
+110    blue = "\x1b[34m"
+111    yellow = "\x1b[33m"
+112    red = "\x1b[31m"
+113    bold_red = "\x1b[31;1m"
+114    reset = "\x1b[0m"
+115    fmt = "%(asctime)s %(name)s %(levelname)s - %(message)s"
+116    fmt = "%(levelname)s - %(filename)s:%(lineno)d %(funcName)s() - %(message)s"
+117
+118    FORMATS = {
+119        logging.DEBUG: green + fmt + reset,
+120        logging.INFO: blue + fmt + reset,
+121        logging.WARNING: yellow + fmt + reset,
+122        logging.ERROR: red + fmt + reset,
+123        logging.CRITICAL: bold_red + fmt + reset
+124    }
+125
+126    def format(self, record):
+127        log_fmt = self.FORMATS.get(record.levelno)
+128        formatter = logging.Formatter(log_fmt)
+129        return formatter.format(record)
+130
+131
+132def basicConfig(level=logging.INFO):
+133    ch = logging.StreamHandler()
+134    ch.setLevel(level)
+135    ch.setFormatter(CustomFormatter())
+136    logging.basicConfig(handlers=[ch], force=True)
+137
+138
+139stream = logging.StreamHandler()
+140stream.setFormatter(CustomFormatter())
+141logging.basicConfig(handlers=[stream], force=True)
+142logger = logging.getLogger(__name__)
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/auxiliary.html b/ramanchada2/auxiliary.html new file mode 100644 index 00000000..e2da5e25 --- /dev/null +++ b/ramanchada2/auxiliary.html @@ -0,0 +1,259 @@ + + + + + + + ramanchada2.auxiliary API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.auxiliary

+ + + + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/auxiliary/spectra.html b/ramanchada2/auxiliary/spectra.html new file mode 100644 index 00000000..c9835078 --- /dev/null +++ b/ramanchada2/auxiliary/spectra.html @@ -0,0 +1,265 @@ + + + + + + + ramanchada2.auxiliary.spectra API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.auxiliary.spectra

+ + + + + + +
1from . import datasets2, simulated
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/auxiliary/spectra/datasets2.html b/ramanchada2/auxiliary/spectra/datasets2.html new file mode 100644 index 00000000..235bae5f --- /dev/null +++ b/ramanchada2/auxiliary/spectra/datasets2.html @@ -0,0 +1,641 @@ + + + + + + + ramanchada2.auxiliary.spectra.datasets2 API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.auxiliary.spectra.datasets2

+ + + + + + +
  1import pandas as pd
+  2import importlib.resources
+  3from functools import reduce
+  4
+  5data = [
+  6    {'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/NeonSNQ043_iR532_Probe_5msx2.txt',
+  7        'laser_wl': '532', 'provider': 'FNMT', 'sample': 'Neon'},
+  8    {'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/NeonSNQ043_iR532_Probe_100msx2.txt',
+  9        'laser_wl': '532', 'provider': 'FNMT', 'sample': 'Neon'},
+ 10    {'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/PST10_iR532_Probe_100_3000msx7.txt',
+ 11        'laser_wl': '532', 'provider': 'FNMT', 'sample': 'PST'},
+ 12    {'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/S0B10_iR532_Probe_100_60000msx2.txt',
+ 13        'laser_wl': '532', 'provider': 'FNMT', 'sample': 'S0B'},
+ 14    {'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/S0N10_iR532_Probe_100_30000msx3.txt',
+ 15        'laser_wl': '532', 'provider': 'FNMT', 'sample': 'S0N'},
+ 16    {'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/S0P10_iR532_Probe_100_60000msx2.txt',
+ 17        'laser_wl': '532', 'provider': 'FNMT', 'sample': 'S0P'},
+ 18    {'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/S1N10_iR532_Probe_100_22000msx2.txt',
+ 19        'laser_wl': '532', 'provider': 'FNMT', 'sample': 'S1N'},
+ 20    {'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/Sil10_iR532_Probe_100_60000msx2.txt',
+ 21        'laser_wl': '532', 'provider': 'FNMT', 'sample': 'Sil_'},
+ 22    {'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/nCAL10_iR532_Probe_100_2500msx3.txt',
+ 23        'laser_wl': '532', 'provider': 'FNMT', 'sample': 'nCAL'},
+ 24    {'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/sCAL10_iR532_Probe_100_3200msx4.txt',
+ 25        'laser_wl': '532', 'provider': 'FNMT', 'sample': 'sCAL'},
+ 26    {'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/LED532_Probe_40msx3_1.txt',
+ 27        'laser_wl': '532', 'provider': 'FNMT', 'sample': 'LED532_EL0-9001'},
+ 28    {'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/NIST532_Probe_3000msx8_1.txt',
+ 29        'laser_wl': '532', 'provider': 'FNMT', 'sample': 'NIST532_SRM2242a'},
+ 30    {'OP': '01', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/NeonSNQ043_iR785_OP01.txt',
+ 31        'laser_wl': '785', 'provider': 'FNMT', 'sample': 'Neon'},
+ 32    {'OP': '01', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/PST10_iR785_OP01_40000msx4.txt',
+ 33        'laser_wl': '785', 'provider': 'FNMT', 'sample': 'PST'},
+ 34    {'OP': '01', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S0B10_iR785_OP01_6000msx4.txt',
+ 35        'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S0B'},
+ 36    {'OP': '01', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S0N10_iR785_OP01_6000msx4.txt',
+ 37        'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S0N'},
+ 38    {'OP': '01', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S0P10_iR785_OP01_6000msx4.txt',
+ 39        'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S0P'},
+ 40    {'OP': '01', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S1N10_iR785_OP01_6000msx4.txt',
+ 41        'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S1N'},
+ 42    {'OP': '01', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/Sil10_iR785_OP01_6000msx4.txt',
+ 43        'laser_wl': '785', 'provider': 'FNMT', 'sample': 'Sil'},
+ 44    {'OP': '01', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/nCAL10_iR785_OP01_6000msx4.txt',
+ 45        'laser_wl': '785', 'provider': 'FNMT', 'sample': 'nCAL'},
+ 46    {'OP': '01', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/sCAL10_iR785_OP01_4000msx4.txt',
+ 47        'laser_wl': '785', 'provider': 'FNMT', 'sample': 'sCAL'},
+ 48    {'OP': '02', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/NeonSNQ043_iR785_OP02.txt',
+ 49        'laser_wl': '785', 'provider': 'FNMT', 'sample': 'Neon'},
+ 50    {'OP': '02', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/PST10_iR785_OP02_50000msx2.txt',
+ 51        'laser_wl': '785', 'provider': 'FNMT', 'sample': 'PST'},
+ 52    {'OP': '02', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S0B10_iR785_OP02_25000msx2.txt',
+ 53        'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S0B'},
+ 54    {'OP': '02', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S0N10_iR785_OP02_25000msx2.txt',
+ 55        'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S0N'},
+ 56    {'OP': '02', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S0P10_iR785_OP02_25000msx2.txt',
+ 57        'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S0P'},
+ 58    {'OP': '02', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S1N10_iR785_OP02_25000msx2.txt',
+ 59        'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S1N'},
+ 60    {'OP': '02', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/Sil10_iR785_OP02_25000msx2.txt',
+ 61        'laser_wl': '785', 'provider': 'FNMT', 'sample': 'Sil'},
+ 62    {'OP': '02', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/nCAL10_iR785_OP02_20000msx2.txt',
+ 63        'laser_wl': '785', 'provider': 'FNMT', 'sample': 'nCAL'},
+ 64    {'OP': '02', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/sCAL10_iR785_OP02_15000msx2.txt',
+ 65        'laser_wl': '785', 'provider': 'FNMT', 'sample': 'sCAL'},
+ 66    {'OP': '03', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/NeonSNQ043_iR785_OP03.txt',
+ 67        'laser_wl': '785', 'provider': 'FNMT', 'sample': 'Neon'},
+ 68    {'OP': '03', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/PST10_iR785_OP03_8000msx2.txt',
+ 69        'laser_wl': '785', 'provider': 'FNMT', 'sample': 'PST'},
+ 70    {'OP': '03', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S0B10_iR785_OP03_8000msx2.txt',
+ 71        'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S0B'},
+ 72    {'OP': '03', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S0N10_iR785_OP03_8000msx2.txt',
+ 73        'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S0N'},
+ 74    {'OP': '03', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S0P10_iR785_OP03_8000msx2.txt',
+ 75        'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S0P'},
+ 76    {'OP': '03', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S1N10_iR785_OP03_8000msx2.txt',
+ 77        'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S1N'},
+ 78    {'OP': '03', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/Sil10_iR785_OP03_8000msx2.txt',
+ 79        'laser_wl': '785', 'provider': 'FNMT', 'sample': 'Sil'},
+ 80    {'OP': '03', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/nCAL10_iR785_OP03_8000msx2.txt',
+ 81        'laser_wl': '785', 'provider': 'FNMT', 'sample': 'nCAL'},
+ 82    {'OP': '03', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/sCAL10_iR785_OP03_8000msx2.txt',
+ 83        'laser_wl': '785', 'provider': 'FNMT', 'sample': 'sCAL'},
+ 84    {'OP': '03', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/LED785_Lens_1000x10_2.txt',
+ 85        'laser_wl': '785', 'provider': 'FNMT', 'sample': 'NIR785_EL0-9002'},
+ 86    {'OP': '03', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/NIST785_Lens_80000x5_2.txt',
+ 87        'laser_wl': '785', 'provider': 'FNMT', 'sample': 'NIST785_SRM2241'},
+ 88    {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW532/Ne_532nm_x50_800ms.txt',
+ 89        'laser_wl': '532', 'provider': 'ICV', 'sample': 'Neon'},
+ 90    {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW532/Ne_532nm_x50_25ms.txt',
+ 91        'laser_wl': '532', 'provider': 'ICV', 'sample': 'Neon'},
+ 92    {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW532/PST02_iRPlus532_Z050_100_2500msx5.txt',
+ 93        'laser_wl': '532', 'provider': 'ICV', 'sample': 'PST'},
+ 94    {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW532/S0B02_iRPlus532_Z050_100_30000ms.txt',
+ 95        'laser_wl': '532', 'provider': 'ICV', 'sample': 'S0B'},
+ 96    {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW532/S0N02_iRPlus532_Z050_100_40000ms.txt',
+ 97        'laser_wl': '532', 'provider': 'ICV', 'sample': 'S0N'},
+ 98    {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW532/S0P02_iRPlus532_Z050_100_30000ms.txt',
+ 99        'laser_wl': '532', 'provider': 'ICV', 'sample': 'S0P'},
+100    {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW532/S1N02_iRPlus532_Z050_100_12000ms.txt',
+101        'laser_wl': '532', 'provider': 'ICV', 'sample': 'S1N'},
+102    {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW532/nCAL02_iRPlus532_Z050_100_9000ms.txt',
+103        'laser_wl': '532', 'provider': 'ICV', 'sample': 'nCAL'},
+104    {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW532/sCAL02_iRPlus532_Z050_100_20000ms.txt',
+105        'laser_wl': '532', 'provider': 'ICV', 'sample': 'sCAL'},
+106    {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW532/Ne_532nm_x100_2000ms.txt',
+107        'laser_wl': '532', 'provider': 'ICV', 'sample': 'Neon'},
+108    {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW532/Ne_532nm_x100_110ms.txt',
+109        'laser_wl': '532', 'provider': 'ICV', 'sample': 'Neon'},
+110    {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW532/PST02_iRPlus532_Z100_100_50000ms.txt',
+111        'laser_wl': '532', 'provider': 'ICV', 'sample': 'PST'},
+112    {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW532/S0B02_iRPlus532_Z100_100_22000ms.txt',
+113        'laser_wl': '532', 'provider': 'ICV', 'sample': 'S0B'},
+114    {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW532/S0N02_iRPlus532_Z100_100_28000ms.txt',
+115        'laser_wl': '532', 'provider': 'ICV', 'sample': 'S0N'},
+116    {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW532/S0P02_iRPlus532_Z100_100_20000ms.txt',
+117        'laser_wl': '532', 'provider': 'ICV', 'sample': 'S0P'},
+118    {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW532/S1N02_iRPlus532_Z100_100_6500ms.txt',
+119        'laser_wl': '532', 'provider': 'ICV', 'sample': 'S1N'},
+120    {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW532/nCAL02_iRPlus532_Z100_100_30000ms.txt',
+121        'laser_wl': '532', 'provider': 'ICV', 'sample': 'nCAL'},
+122    {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW532/sCAL02_iRPlus532_Z100_100_65000ms.txt',
+123        'laser_wl': '532', 'provider': 'ICV', 'sample': 'sCAL'},
+124    {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW532/Visible_532nm_130ms_100X_2.txt',
+125        'laser_wl': '532', 'provider': 'ICV', 'sample': 'LED532_EL0-9001'},
+126    {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW532/NISTSRM2242aC_BW532_100x_800msx10.txt',
+127        'laser_wl': '532', 'provider': 'ICV', 'sample': 'NIST532_SRM2242a'},
+128    {'OP': '020', 'device': 'BWtek', 'filename': './ICV_BW785/PST02_iRPlus785_Z020_100_1300ms.txt',
+129        'laser_wl': '785', 'provider': 'ICV', 'sample': 'PST'},
+130    {'OP': '020', 'device': 'BWtek', 'filename': './ICV_BW785/S0B02_iRPlus785_Z020_100_full.txt',
+131        'laser_wl': '785', 'provider': 'ICV', 'sample': 'S0B'},
+132    {'OP': '020', 'device': 'BWtek', 'filename': './ICV_BW785/S0B02_iRPlus785_Z020_100_12000ms.txt',
+133        'laser_wl': '785', 'provider': 'ICV', 'sample': 'S0B'},
+134    {'OP': '020', 'device': 'BWtek', 'filename': './ICV_BW785/S0N02_iRPlus785_Z020_100_3800ms.txt',
+135        'laser_wl': '785', 'provider': 'ICV', 'sample': 'S0N'},
+136    {'OP': '020', 'device': 'BWtek', 'filename': './ICV_BW785/S0P02_iRPlus785_Z020_100_12000ms.txt',
+137        'laser_wl': '785', 'provider': 'ICV', 'sample': 'S0P'},
+138    {'OP': '020', 'device': 'BWtek', 'filename': './ICV_BW785/S1N02_iRPlus785_Z020_100_3800ms.txt',
+139        'laser_wl': '785', 'provider': 'ICV', 'sample': 'S1N'},
+140    {'OP': '020', 'device': 'BWtek', 'filename': './ICV_BW785/nCAL02_iRPlus785_Z020_100_1100ms.txt',
+141        'laser_wl': '785', 'provider': 'ICV', 'sample': 'nCAL'},
+142    {'OP': '020', 'device': 'BWtek', 'filename': './ICV_BW785/sCAL02_iRPlus785_Z020_100_2400ms.txt',
+143        'laser_wl': '785', 'provider': 'ICV', 'sample': 'sCAL'},
+144    {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW785/PST02_iRPlus785_Z050_100_3200ms.txt',
+145        'laser_wl': '785', 'provider': 'ICV', 'sample': 'PST'},
+146    {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW785/S0B02_iRPlus785_Z050_100_5500ms.txt',
+147        'laser_wl': '785', 'provider': 'ICV', 'sample': 'S0B'},
+148    {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW785/S0N02_iRPlus785_Z050_100_3200ms.txt',
+149        'laser_wl': '785', 'provider': 'ICV', 'sample': 'S0N'},
+150    {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW785/S0P02_iRPlus785_Z050_100_5700ms.txt',
+151        'laser_wl': '785', 'provider': 'ICV', 'sample': 'S0P'},
+152    {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW785/S1N02_iRPlus785_Z050_100_2100ms.txt',
+153        'laser_wl': '785', 'provider': 'ICV', 'sample': 'S1N'},
+154    {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW785/nCAL02_iRPlus785_Z050_100_2100ms.txt',
+155        'laser_wl': '785', 'provider': 'ICV', 'sample': 'nCAL'},
+156    {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW785/sCAL02_iRPlus785_Z050_100_3800ms.txt',
+157        'laser_wl': '785', 'provider': 'ICV', 'sample': 'sCAL'},
+158    {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW785/PST02_iRPlus785_Z100_100_9000ms.txt',
+159        'laser_wl': '785', 'provider': 'ICV', 'sample': 'PST'},
+160    {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW785/S0B02_iRPlus785_Z100_100_4700ms.txt',
+161        'laser_wl': '785', 'provider': 'ICV', 'sample': 'S0B'},
+162    {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW785/S0N02_iRPlus785_Z100_100_3100ms.txt',
+163        'laser_wl': '785', 'provider': 'ICV', 'sample': 'S0N'},
+164    {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW785/S0P02_iRPlus785_Z100_100_4800ms.txt',
+165        'laser_wl': '785', 'provider': 'ICV', 'sample': 'S0P'},
+166    {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW785/S1N02_iRPlus785_Z100_100_2000ms.txt',
+167        'laser_wl': '785', 'provider': 'ICV', 'sample': 'S1N'},
+168    {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW785/nCAL02_iRPlus785_Z100_100_6000ms.txt',
+169        'laser_wl': '785', 'provider': 'ICV', 'sample': 'nCAL'},
+170    {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW785/sCAL02_iRPlus785_Z100_100_9500ms.txt',
+171        'laser_wl': '785', 'provider': 'ICV', 'sample': 'sCAL'},
+172    {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW785/NIR_785nm_2000ms_100X_2.txt',
+173        'laser_wl': '785', 'provider': 'ICV', 'sample': 'NIR785_EL0-9002'},
+174    {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW785/NISTSRM2241_BW785_100x_25sx5.txt',
+175        'laser_wl': '785', 'provider': 'ICV', 'sample': 'NIST785_SRM2241'},
+176    {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW785/Ne_785nm_x20_50ms.txt',
+177        'laser_wl': '785', 'provider': 'ICV', 'sample': 'Neon'},
+178
+179    {'OP': '010', 'device': 'Horiba', 'filename': './TOP_Ho633/neon_new2_Z010.txt',
+180        'laser_wl': '633', 'provider': 'TOP', 'sample': 'Neon'},
+181    {'OP': '010', 'device': 'Horiba', 'filename': './TOP_Ho633/Pol_HLR633_Z010_100_15sx5.txt',
+182        'laser_wl': '633', 'provider': 'TOP', 'sample': 'PST'},
+183    {'OP': '010', 'device': 'Horiba', 'filename': './TOP_Ho633/S0B_HLR633_Z010_100_40sx5.txt',
+184        'laser_wl': '633', 'provider': 'TOP', 'sample': 'S0B'},
+185    {'OP': '010', 'device': 'Horiba', 'filename': './TOP_Ho633/S0N_HLR633_Z010_100_15sx5.txt',
+186        'laser_wl': '633', 'provider': 'TOP', 'sample': 'S0N'},
+187    {'OP': '010', 'device': 'Horiba', 'filename': './TOP_Ho633/S0P_HLR633_Z010_100_40sx5.txt',
+188        'laser_wl': '633', 'provider': 'TOP', 'sample': 'S0P'},
+189    {'OP': '010', 'device': 'Horiba', 'filename': './TOP_Ho633/S1N_HLR633_Z010_100_10sx5.txt',
+190        'laser_wl': '633', 'provider': 'TOP', 'sample': 'S1N'},
+191    {'OP': '010', 'device': 'Horiba', 'filename': './TOP_Ho633/Si_HLR633_Z010_100_40sx5.txt',
+192        'laser_wl': '633', 'provider': 'TOP', 'sample': 'Sil'},
+193    {'OP': '010', 'device': 'Horiba', 'filename': './TOP_Ho633/nCAL_HLR633_Z010_100_5sx5.txt',
+194        'laser_wl': '633', 'provider': 'TOP', 'sample': 'nCAL'},
+195    {'OP': '010', 'device': 'Horiba', 'filename': './TOP_Ho633/sCAL_HLR633_Z010_100_15sx5.txt',
+196        'laser_wl': '633', 'provider': 'TOP', 'sample': 'sCAL'},
+197]
+198
+199
+200df = pd.DataFrame.from_dict(data)
+201loc = importlib.resources.files(__name__)
+202
+203
+204def filtered_df(**kwargs):
+205    filters = [reduce(lambda a, b: a | b, [df[k] == i for i in v]) for k, v in kwargs.items() if v]
+206    if filters:
+207        return df[reduce(lambda a, b: a & b, filters)]
+208    else:
+209        return df
+210
+211
+212def get_filters(**kwargs):
+213    df_tmp = filtered_df(**kwargs)
+214    return {c: df_tmp[c].unique() for c in df_tmp.columns if c != 'filename'}
+215
+216
+217def get_filenames(**kwargs):
+218    df_tmp = filtered_df(**kwargs)
+219    return df_tmp['filename']
+220
+221
+222def prepend_prefix(filenames):
+223    return [str(loc.joinpath(fn)) for fn in filenames]
+
+ + +
+
+
+ data = + + [{'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/NeonSNQ043_iR532_Probe_5msx2.txt', 'laser_wl': '532', 'provider': 'FNMT', 'sample': 'Neon'}, {'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/NeonSNQ043_iR532_Probe_100msx2.txt', 'laser_wl': '532', 'provider': 'FNMT', 'sample': 'Neon'}, {'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/PST10_iR532_Probe_100_3000msx7.txt', 'laser_wl': '532', 'provider': 'FNMT', 'sample': 'PST'}, {'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/S0B10_iR532_Probe_100_60000msx2.txt', 'laser_wl': '532', 'provider': 'FNMT', 'sample': 'S0B'}, {'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/S0N10_iR532_Probe_100_30000msx3.txt', 'laser_wl': '532', 'provider': 'FNMT', 'sample': 'S0N'}, {'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/S0P10_iR532_Probe_100_60000msx2.txt', 'laser_wl': '532', 'provider': 'FNMT', 'sample': 'S0P'}, {'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/S1N10_iR532_Probe_100_22000msx2.txt', 'laser_wl': '532', 'provider': 'FNMT', 'sample': 'S1N'}, {'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/Sil10_iR532_Probe_100_60000msx2.txt', 'laser_wl': '532', 'provider': 'FNMT', 'sample': 'Sil_'}, {'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/nCAL10_iR532_Probe_100_2500msx3.txt', 'laser_wl': '532', 'provider': 'FNMT', 'sample': 'nCAL'}, {'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/sCAL10_iR532_Probe_100_3200msx4.txt', 'laser_wl': '532', 'provider': 'FNMT', 'sample': 'sCAL'}, {'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/LED532_Probe_40msx3_1.txt', 'laser_wl': '532', 'provider': 'FNMT', 'sample': 'LED532_EL0-9001'}, {'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/NIST532_Probe_3000msx8_1.txt', 'laser_wl': '532', 'provider': 'FNMT', 'sample': 'NIST532_SRM2242a'}, {'OP': '01', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/NeonSNQ043_iR785_OP01.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'Neon'}, {'OP': '01', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/PST10_iR785_OP01_40000msx4.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'PST'}, {'OP': '01', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S0B10_iR785_OP01_6000msx4.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S0B'}, {'OP': '01', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S0N10_iR785_OP01_6000msx4.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S0N'}, {'OP': '01', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S0P10_iR785_OP01_6000msx4.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S0P'}, {'OP': '01', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S1N10_iR785_OP01_6000msx4.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S1N'}, {'OP': '01', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/Sil10_iR785_OP01_6000msx4.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'Sil'}, {'OP': '01', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/nCAL10_iR785_OP01_6000msx4.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'nCAL'}, {'OP': '01', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/sCAL10_iR785_OP01_4000msx4.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'sCAL'}, {'OP': '02', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/NeonSNQ043_iR785_OP02.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'Neon'}, {'OP': '02', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/PST10_iR785_OP02_50000msx2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'PST'}, {'OP': '02', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S0B10_iR785_OP02_25000msx2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S0B'}, {'OP': '02', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S0N10_iR785_OP02_25000msx2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S0N'}, {'OP': '02', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S0P10_iR785_OP02_25000msx2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S0P'}, {'OP': '02', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S1N10_iR785_OP02_25000msx2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S1N'}, {'OP': '02', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/Sil10_iR785_OP02_25000msx2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'Sil'}, {'OP': '02', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/nCAL10_iR785_OP02_20000msx2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'nCAL'}, {'OP': '02', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/sCAL10_iR785_OP02_15000msx2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'sCAL'}, {'OP': '03', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/NeonSNQ043_iR785_OP03.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'Neon'}, {'OP': '03', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/PST10_iR785_OP03_8000msx2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'PST'}, {'OP': '03', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S0B10_iR785_OP03_8000msx2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S0B'}, {'OP': '03', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S0N10_iR785_OP03_8000msx2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S0N'}, {'OP': '03', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S0P10_iR785_OP03_8000msx2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S0P'}, {'OP': '03', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S1N10_iR785_OP03_8000msx2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S1N'}, {'OP': '03', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/Sil10_iR785_OP03_8000msx2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'Sil'}, {'OP': '03', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/nCAL10_iR785_OP03_8000msx2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'nCAL'}, {'OP': '03', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/sCAL10_iR785_OP03_8000msx2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'sCAL'}, {'OP': '03', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/LED785_Lens_1000x10_2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'NIR785_EL0-9002'}, {'OP': '03', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/NIST785_Lens_80000x5_2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'NIST785_SRM2241'}, {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW532/Ne_532nm_x50_800ms.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'Neon'}, {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW532/Ne_532nm_x50_25ms.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'Neon'}, {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW532/PST02_iRPlus532_Z050_100_2500msx5.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'PST'}, {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW532/S0B02_iRPlus532_Z050_100_30000ms.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'S0B'}, {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW532/S0N02_iRPlus532_Z050_100_40000ms.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'S0N'}, {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW532/S0P02_iRPlus532_Z050_100_30000ms.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'S0P'}, {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW532/S1N02_iRPlus532_Z050_100_12000ms.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'S1N'}, {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW532/nCAL02_iRPlus532_Z050_100_9000ms.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'nCAL'}, {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW532/sCAL02_iRPlus532_Z050_100_20000ms.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'sCAL'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW532/Ne_532nm_x100_2000ms.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'Neon'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW532/Ne_532nm_x100_110ms.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'Neon'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW532/PST02_iRPlus532_Z100_100_50000ms.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'PST'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW532/S0B02_iRPlus532_Z100_100_22000ms.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'S0B'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW532/S0N02_iRPlus532_Z100_100_28000ms.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'S0N'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW532/S0P02_iRPlus532_Z100_100_20000ms.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'S0P'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW532/S1N02_iRPlus532_Z100_100_6500ms.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'S1N'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW532/nCAL02_iRPlus532_Z100_100_30000ms.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'nCAL'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW532/sCAL02_iRPlus532_Z100_100_65000ms.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'sCAL'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW532/Visible_532nm_130ms_100X_2.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'LED532_EL0-9001'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW532/NISTSRM2242aC_BW532_100x_800msx10.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'NIST532_SRM2242a'}, {'OP': '020', 'device': 'BWtek', 'filename': './ICV_BW785/PST02_iRPlus785_Z020_100_1300ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'PST'}, {'OP': '020', 'device': 'BWtek', 'filename': './ICV_BW785/S0B02_iRPlus785_Z020_100_full.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'S0B'}, {'OP': '020', 'device': 'BWtek', 'filename': './ICV_BW785/S0B02_iRPlus785_Z020_100_12000ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'S0B'}, {'OP': '020', 'device': 'BWtek', 'filename': './ICV_BW785/S0N02_iRPlus785_Z020_100_3800ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'S0N'}, {'OP': '020', 'device': 'BWtek', 'filename': './ICV_BW785/S0P02_iRPlus785_Z020_100_12000ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'S0P'}, {'OP': '020', 'device': 'BWtek', 'filename': './ICV_BW785/S1N02_iRPlus785_Z020_100_3800ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'S1N'}, {'OP': '020', 'device': 'BWtek', 'filename': './ICV_BW785/nCAL02_iRPlus785_Z020_100_1100ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'nCAL'}, {'OP': '020', 'device': 'BWtek', 'filename': './ICV_BW785/sCAL02_iRPlus785_Z020_100_2400ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'sCAL'}, {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW785/PST02_iRPlus785_Z050_100_3200ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'PST'}, {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW785/S0B02_iRPlus785_Z050_100_5500ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'S0B'}, {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW785/S0N02_iRPlus785_Z050_100_3200ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'S0N'}, {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW785/S0P02_iRPlus785_Z050_100_5700ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'S0P'}, {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW785/S1N02_iRPlus785_Z050_100_2100ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'S1N'}, {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW785/nCAL02_iRPlus785_Z050_100_2100ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'nCAL'}, {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW785/sCAL02_iRPlus785_Z050_100_3800ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'sCAL'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW785/PST02_iRPlus785_Z100_100_9000ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'PST'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW785/S0B02_iRPlus785_Z100_100_4700ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'S0B'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW785/S0N02_iRPlus785_Z100_100_3100ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'S0N'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW785/S0P02_iRPlus785_Z100_100_4800ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'S0P'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW785/S1N02_iRPlus785_Z100_100_2000ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'S1N'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW785/nCAL02_iRPlus785_Z100_100_6000ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'nCAL'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW785/sCAL02_iRPlus785_Z100_100_9500ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'sCAL'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW785/NIR_785nm_2000ms_100X_2.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'NIR785_EL0-9002'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW785/NISTSRM2241_BW785_100x_25sx5.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'NIST785_SRM2241'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW785/Ne_785nm_x20_50ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'Neon'}, {'OP': '010', 'device': 'Horiba', 'filename': './TOP_Ho633/neon_new2_Z010.txt', 'laser_wl': '633', 'provider': 'TOP', 'sample': 'Neon'}, {'OP': '010', 'device': 'Horiba', 'filename': './TOP_Ho633/Pol_HLR633_Z010_100_15sx5.txt', 'laser_wl': '633', 'provider': 'TOP', 'sample': 'PST'}, {'OP': '010', 'device': 'Horiba', 'filename': './TOP_Ho633/S0B_HLR633_Z010_100_40sx5.txt', 'laser_wl': '633', 'provider': 'TOP', 'sample': 'S0B'}, {'OP': '010', 'device': 'Horiba', 'filename': './TOP_Ho633/S0N_HLR633_Z010_100_15sx5.txt', 'laser_wl': '633', 'provider': 'TOP', 'sample': 'S0N'}, {'OP': '010', 'device': 'Horiba', 'filename': './TOP_Ho633/S0P_HLR633_Z010_100_40sx5.txt', 'laser_wl': '633', 'provider': 'TOP', 'sample': 'S0P'}, {'OP': '010', 'device': 'Horiba', 'filename': './TOP_Ho633/S1N_HLR633_Z010_100_10sx5.txt', 'laser_wl': '633', 'provider': 'TOP', 'sample': 'S1N'}, {'OP': '010', 'device': 'Horiba', 'filename': './TOP_Ho633/Si_HLR633_Z010_100_40sx5.txt', 'laser_wl': '633', 'provider': 'TOP', 'sample': 'Sil'}, {'OP': '010', 'device': 'Horiba', 'filename': './TOP_Ho633/nCAL_HLR633_Z010_100_5sx5.txt', 'laser_wl': '633', 'provider': 'TOP', 'sample': 'nCAL'}, {'OP': '010', 'device': 'Horiba', 'filename': './TOP_Ho633/sCAL_HLR633_Z010_100_15sx5.txt', 'laser_wl': '633', 'provider': 'TOP', 'sample': 'sCAL'}] + + +
+ + + + +
+
+
+ df = + + OP device ... provider sample +0 01 BWtek ... FNMT Neon +1 01 BWtek ... FNMT Neon +2 01 BWtek ... FNMT PST +3 01 BWtek ... FNMT S0B +4 01 BWtek ... FNMT S0N +.. ... ... ... ... ... +90 010 Horiba ... TOP S0P +91 010 Horiba ... TOP S1N +92 010 Horiba ... TOP Sil +93 010 Horiba ... TOP nCAL +94 010 Horiba ... TOP sCAL + +[95 rows x 6 columns] + + +
+ + + + +
+
+
+ loc = + + PosixPath('/home/runner/work/ramanchada2/ramanchada2/.tox/docs/lib/python3.11/site-packages/ramanchada2/auxiliary/spectra/datasets2') + + +
+ + + + +
+
+ +
+ + def + filtered_df(**kwargs): + + + +
+ +
205def filtered_df(**kwargs):
+206    filters = [reduce(lambda a, b: a | b, [df[k] == i for i in v]) for k, v in kwargs.items() if v]
+207    if filters:
+208        return df[reduce(lambda a, b: a & b, filters)]
+209    else:
+210        return df
+
+ + + + +
+
+ +
+ + def + get_filters(**kwargs): + + + +
+ +
213def get_filters(**kwargs):
+214    df_tmp = filtered_df(**kwargs)
+215    return {c: df_tmp[c].unique() for c in df_tmp.columns if c != 'filename'}
+
+ + + + +
+
+ +
+ + def + get_filenames(**kwargs): + + + +
+ +
218def get_filenames(**kwargs):
+219    df_tmp = filtered_df(**kwargs)
+220    return df_tmp['filename']
+
+ + + + +
+
+ +
+ + def + prepend_prefix(filenames): + + + +
+ +
223def prepend_prefix(filenames):
+224    return [str(loc.joinpath(fn)) for fn in filenames]
+
+ + + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/auxiliary/spectra/simulated.html b/ramanchada2/auxiliary/spectra/simulated.html new file mode 100644 index 00000000..147b4ec5 --- /dev/null +++ b/ramanchada2/auxiliary/spectra/simulated.html @@ -0,0 +1,309 @@ + + + + + + + ramanchada2.auxiliary.spectra.simulated API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.auxiliary.spectra.simulated

+ + + + + + +
 1import importlib.resources
+ 2
+ 3loc = importlib.resources.files(__name__)
+ 4
+ 5
+ 6FILES = {
+ 7    'calcite_crystal_raw': './crystal/calcite_CRYSTAL_PBE_raw_data.dat',
+ 8    'calcite_crystal_convolved': './crystal/calcite_CRYSTAL_PBE_convoluted.dat',
+ 9    'calcite_vasp': './vasp/snCAL_vasp_raman_ALL.dat',
+10}
+11
+12
+13for f in FILES:
+14    FILES[f] = str(loc.joinpath(FILES[f]))
+
+ + +
+
+
+ loc = + + PosixPath('/home/runner/work/ramanchada2/ramanchada2/.tox/docs/lib/python3.11/site-packages/ramanchada2/auxiliary/spectra/simulated') + + +
+ + + + +
+
+
+ FILES = + + {'calcite_crystal_raw': '/home/runner/work/ramanchada2/ramanchada2/.tox/docs/lib/python3.11/site-packages/ramanchada2/auxiliary/spectra/simulated/crystal/calcite_CRYSTAL_PBE_raw_data.dat', 'calcite_crystal_convolved': '/home/runner/work/ramanchada2/ramanchada2/.tox/docs/lib/python3.11/site-packages/ramanchada2/auxiliary/spectra/simulated/crystal/calcite_CRYSTAL_PBE_convoluted.dat', 'calcite_vasp': '/home/runner/work/ramanchada2/ramanchada2/.tox/docs/lib/python3.11/site-packages/ramanchada2/auxiliary/spectra/simulated/vasp/snCAL_vasp_raman_ALL.dat'} + + +
+ + + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/io.html b/ramanchada2/io.html new file mode 100644 index 00000000..05e04397 --- /dev/null +++ b/ramanchada2/io.html @@ -0,0 +1,267 @@ + + + + + + + ramanchada2.io API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.io

+ + + + + + +
1#!/usr/bin/env python3
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/io/HSDS.html b/ramanchada2/io/HSDS.html new file mode 100644 index 00000000..47de155b --- /dev/null +++ b/ramanchada2/io/HSDS.html @@ -0,0 +1,639 @@ + + + + + + + ramanchada2.io.HSDS API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.io.HSDS

+ + + + + + +
  1import logging
+  2from typing import Dict, Tuple
+  3
+  4import h5py
+  5import numpy as np
+  6import numpy.typing as npt
+  7from pydantic import validate_call
+  8
+  9from ramanchada2.misc.exceptions import ChadaReadNotFoundError
+ 10
+ 11logger = logging.getLogger()
+ 12
+ 13
+ 14# https://manual.nexusformat.org/examples/napi/python.html
+ 15# https://manual.nexusformat.org/examples/python/simple_example_basic/index.html
+ 16@validate_call(config=dict(arbitrary_types_allowed=True))
+ 17def write_nexus(filename: str,
+ 18                dataset: str,
+ 19                x: npt.NDArray, y: npt.NDArray, meta: Dict, h5module=None):
+ 20    _h5 = h5module or h5py
+ 21    try:
+ 22        with _h5.File(filename, 'a') as f:
+ 23            f.attrs['default'] = dataset
+ 24            try:
+ 25                nxentry = f.require_group('sample')
+ 26            except:  # noqa: E722
+ 27                pass
+ 28
+ 29            nxentry = f.require_group('instrument')
+ 30            for m in meta:
+ 31                print(m, meta[m])
+ 32
+ 33            try:
+ 34                nxentry = f.require_group(dataset)
+ 35                nxentry.attrs["NX_class"] = 'NXentry'
+ 36                nxentry.attrs['default'] = 'data'
+ 37            except:  # noqa: E722
+ 38                pass
+ 39
+ 40            try:
+ 41                nxdata = nxentry.require_group('data')
+ 42                nxdata.attrs["NX_class"] = 'NXdata'
+ 43                nxdata.attrs['signal'] = 'spectrum'
+ 44                nxdata.attrs['axes'] = 'raman_shift'
+ 45                nxdata.attrs['raman_shift_indices'] = [0,]
+ 46            except:  # noqa: E722
+ 47                pass
+ 48
+ 49            try:
+ 50                tth = nxdata.require_group('raman_shift', data=x)
+ 51                tth.attrs['units'] = 'cm-1'
+ 52                tth.attrs['long_name'] = 'Raman shift (cm-1)'
+ 53            except:  # noqa: E722
+ 54                pass
+ 55
+ 56            try:
+ 57                counts = nxdata.create_dataset('spectrum', data=y)
+ 58                counts.attrs['units'] = 'au'
+ 59                counts.attrs['long_name'] = 'spectrum'
+ 60            except:  # noqa: E722
+ 61                pass
+ 62
+ 63    except ValueError as e:
+ 64        logger.warning(repr(e))
+ 65
+ 66
+ 67class DatasetExistsError(Exception):
+ 68    pass
+ 69
+ 70
+ 71@validate_call(config=dict(arbitrary_types_allowed=True))
+ 72def write_cha(filename: str,
+ 73              dataset: str,
+ 74              x: npt.NDArray, y: npt.NDArray, meta: Dict, h5module=None):
+ 75    data = np.stack([x, y])
+ 76    try:
+ 77        _h5 = h5module or h5py
+ 78        with _h5.File(filename, mode='a') as h5:
+ 79            if h5.get(dataset) is None:
+ 80                ds = h5.create_dataset(dataset, data=data)
+ 81                ds.attrs.update(meta)
+ 82            else:
+ 83                raise DatasetExistsError(f'dataset `{dataset}` already exists in file `{filename}`')
+ 84    except ValueError as e:
+ 85        raise e
+ 86
+ 87
+ 88def read_cha(filename: str,
+ 89             dataset: str, h5module=None
+ 90             ) -> Tuple[npt.NDArray, npt.NDArray, Dict]:
+ 91    _h5 = h5module or h5py
+ 92    with _h5.File(filename, mode='r') as h5:
+ 93        data = h5.get(dataset)
+ 94        if data is None:
+ 95            raise ChadaReadNotFoundError(f'dataset `{dataset}` not found in file `{filename}`')
+ 96        x, y = data[:]
+ 97        meta = dict(data.attrs)
+ 98    return x, y, meta
+ 99
+100
+101def filter_dataset(topdomain, domain, process_file, sample=None, wavelength=None, instrument=None,
+102                   provider=None, investigation=None, kwargs={}, h5module=None):
+103    _h5 = h5module or h5py
+104    with _h5.File(domain) as dataset:
+105        if (sample is not None) and (dataset["annotation_sample"].attrs["sample"] == sample):
+106            process_file(topdomain, domain, **kwargs)
+107
+108
+109def visit_domain(topdomain="/", process_dataset=None, kwargs={}, h5module=None):
+110    _h5 = h5module or h5py
+111    if topdomain.endswith("/"):
+112        with _h5.Folder(topdomain) as domain:
+113            domain._getSubdomains()
+114            for domain in domain._subdomains:
+115                if domain["class"] == "folder":
+116                    visit_domain("{}/".format(domain["name"]), process_dataset, kwargs, h5module=_h5)
+117                else:
+118                    if not (process_dataset is None):
+119                        process_dataset(topdomain, domain["name"], **kwargs, h5module=_h5)
+120    else:
+121        if not (process_dataset is None):
+122            process_dataset(None, topdomain, **kwargs, h5module=_h5)
+
+ + +
+
+
+ logger = +<RootLogger root (WARNING)> + + +
+ + + + +
+
+ +
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + write_nexus( filename: str, dataset: str, x: numpy.ndarray[typing.Any, numpy.dtype[+_ScalarType_co]], y: numpy.ndarray[typing.Any, numpy.dtype[+_ScalarType_co]], meta: Dict, h5module=None): + + + +
+ +
17@validate_call(config=dict(arbitrary_types_allowed=True))
+18def write_nexus(filename: str,
+19                dataset: str,
+20                x: npt.NDArray, y: npt.NDArray, meta: Dict, h5module=None):
+21    _h5 = h5module or h5py
+22    try:
+23        with _h5.File(filename, 'a') as f:
+24            f.attrs['default'] = dataset
+25            try:
+26                nxentry = f.require_group('sample')
+27            except:  # noqa: E722
+28                pass
+29
+30            nxentry = f.require_group('instrument')
+31            for m in meta:
+32                print(m, meta[m])
+33
+34            try:
+35                nxentry = f.require_group(dataset)
+36                nxentry.attrs["NX_class"] = 'NXentry'
+37                nxentry.attrs['default'] = 'data'
+38            except:  # noqa: E722
+39                pass
+40
+41            try:
+42                nxdata = nxentry.require_group('data')
+43                nxdata.attrs["NX_class"] = 'NXdata'
+44                nxdata.attrs['signal'] = 'spectrum'
+45                nxdata.attrs['axes'] = 'raman_shift'
+46                nxdata.attrs['raman_shift_indices'] = [0,]
+47            except:  # noqa: E722
+48                pass
+49
+50            try:
+51                tth = nxdata.require_group('raman_shift', data=x)
+52                tth.attrs['units'] = 'cm-1'
+53                tth.attrs['long_name'] = 'Raman shift (cm-1)'
+54            except:  # noqa: E722
+55                pass
+56
+57            try:
+58                counts = nxdata.create_dataset('spectrum', data=y)
+59                counts.attrs['units'] = 'au'
+60                counts.attrs['long_name'] = 'spectrum'
+61            except:  # noqa: E722
+62                pass
+63
+64    except ValueError as e:
+65        logger.warning(repr(e))
+
+ + + + +
+
+ +
+ + class + DatasetExistsError(builtins.Exception): + + + +
+ +
68class DatasetExistsError(Exception):
+69    pass
+
+ + +

Common base class for all non-exit exceptions.

+
+ + +
+
Inherited Members
+
+
builtins.Exception
+
Exception
+ +
+
builtins.BaseException
+
with_traceback
+
add_note
+
args
+ +
+
+
+
+
+ +
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + write_cha( filename: str, dataset: str, x: numpy.ndarray[typing.Any, numpy.dtype[+_ScalarType_co]], y: numpy.ndarray[typing.Any, numpy.dtype[+_ScalarType_co]], meta: Dict, h5module=None): + + + +
+ +
72@validate_call(config=dict(arbitrary_types_allowed=True))
+73def write_cha(filename: str,
+74              dataset: str,
+75              x: npt.NDArray, y: npt.NDArray, meta: Dict, h5module=None):
+76    data = np.stack([x, y])
+77    try:
+78        _h5 = h5module or h5py
+79        with _h5.File(filename, mode='a') as h5:
+80            if h5.get(dataset) is None:
+81                ds = h5.create_dataset(dataset, data=data)
+82                ds.attrs.update(meta)
+83            else:
+84                raise DatasetExistsError(f'dataset `{dataset}` already exists in file `{filename}`')
+85    except ValueError as e:
+86        raise e
+
+ + + + +
+
+ +
+ + def + read_cha( filename: str, dataset: str, h5module=None) -> Tuple[numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]], numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]], Dict]: + + + +
+ +
89def read_cha(filename: str,
+90             dataset: str, h5module=None
+91             ) -> Tuple[npt.NDArray, npt.NDArray, Dict]:
+92    _h5 = h5module or h5py
+93    with _h5.File(filename, mode='r') as h5:
+94        data = h5.get(dataset)
+95        if data is None:
+96            raise ChadaReadNotFoundError(f'dataset `{dataset}` not found in file `{filename}`')
+97        x, y = data[:]
+98        meta = dict(data.attrs)
+99    return x, y, meta
+
+ + + + +
+
+ +
+ + def + filter_dataset( topdomain, domain, process_file, sample=None, wavelength=None, instrument=None, provider=None, investigation=None, kwargs={}, h5module=None): + + + +
+ +
102def filter_dataset(topdomain, domain, process_file, sample=None, wavelength=None, instrument=None,
+103                   provider=None, investigation=None, kwargs={}, h5module=None):
+104    _h5 = h5module or h5py
+105    with _h5.File(domain) as dataset:
+106        if (sample is not None) and (dataset["annotation_sample"].attrs["sample"] == sample):
+107            process_file(topdomain, domain, **kwargs)
+
+ + + + +
+
+ +
+ + def + visit_domain(topdomain='/', process_dataset=None, kwargs={}, h5module=None): + + + +
+ +
110def visit_domain(topdomain="/", process_dataset=None, kwargs={}, h5module=None):
+111    _h5 = h5module or h5py
+112    if topdomain.endswith("/"):
+113        with _h5.Folder(topdomain) as domain:
+114            domain._getSubdomains()
+115            for domain in domain._subdomains:
+116                if domain["class"] == "folder":
+117                    visit_domain("{}/".format(domain["name"]), process_dataset, kwargs, h5module=_h5)
+118                else:
+119                    if not (process_dataset is None):
+120                        process_dataset(topdomain, domain["name"], **kwargs, h5module=_h5)
+121    else:
+122        if not (process_dataset is None):
+123            process_dataset(None, topdomain, **kwargs, h5module=_h5)
+
+ + + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/io/experimental.html b/ramanchada2/io/experimental.html new file mode 100644 index 00000000..df4e16c0 --- /dev/null +++ b/ramanchada2/io/experimental.html @@ -0,0 +1,272 @@ + + + + + + + ramanchada2.io.experimental API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.io.experimental

+ + + + + + +
1#!/usr/bin/env python3
+2
+3from .read_txt import read_txt
+4from .read_csv import read_csv
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/io/experimental/bw_format.html b/ramanchada2/io/experimental/bw_format.html new file mode 100644 index 00000000..8b5722a6 --- /dev/null +++ b/ramanchada2/io/experimental/bw_format.html @@ -0,0 +1,324 @@ + + + + + + + ramanchada2.io.experimental.bw_format API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.io.experimental.bw_format

+ + + + + + +
 1#!/usr/bin/env python3
+ 2
+ 3from typing import List, Tuple, Dict
+ 4
+ 5import pandas
+ 6
+ 7
+ 8def bw_format(lines: List[str]) -> Tuple[pandas.DataFrame, Dict]:
+ 9    section_split = 0
+10    for i, ll in enumerate(lines):
+11        if ll.count(';') > 1:
+12            section_split = i
+13            break
+14    meta = lines[:section_split]
+15    spec = lines[section_split:]
+16
+17    meta_dict = dict([m.replace(',', '.').strip().split(';') for m in meta])
+18
+19    spec_split = [s.replace(',', '.').replace(' ', '').strip('\r\n ;').split(';') for s in spec]
+20    spe_parsed = pandas.DataFrame.from_records(data=spec_split[1:], columns=spec_split[0])
+21    spe_parsed = spe_parsed.apply(pandas.to_numeric)
+22    spe_parsed = spe_parsed.dropna(axis=0)
+23
+24    return spe_parsed, meta_dict
+
+ + +
+
+ +
+ + def + bw_format(lines: List[str]) -> Tuple[pandas.core.frame.DataFrame, Dict]: + + + +
+ +
 9def bw_format(lines: List[str]) -> Tuple[pandas.DataFrame, Dict]:
+10    section_split = 0
+11    for i, ll in enumerate(lines):
+12        if ll.count(';') > 1:
+13            section_split = i
+14            break
+15    meta = lines[:section_split]
+16    spec = lines[section_split:]
+17
+18    meta_dict = dict([m.replace(',', '.').strip().split(';') for m in meta])
+19
+20    spec_split = [s.replace(',', '.').replace(' ', '').strip('\r\n ;').split(';') for s in spec]
+21    spe_parsed = pandas.DataFrame.from_records(data=spec_split[1:], columns=spec_split[0])
+22    spe_parsed = spe_parsed.apply(pandas.to_numeric)
+23    spe_parsed = spe_parsed.dropna(axis=0)
+24
+25    return spe_parsed, meta_dict
+
+ + + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/io/experimental/neegala_format.html b/ramanchada2/io/experimental/neegala_format.html new file mode 100644 index 00000000..98ce0631 --- /dev/null +++ b/ramanchada2/io/experimental/neegala_format.html @@ -0,0 +1,316 @@ + + + + + + + ramanchada2.io.experimental.neegala_format API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.io.experimental.neegala_format

+ + + + + + +
 1from typing import Dict, List, Tuple
+ 2
+ 3import pandas
+ 4
+ 5
+ 6def neegala_format(lines: List[str]) -> Tuple[pandas.DataFrame, Dict]:
+ 7    for i, ll in enumerate(lines):
+ 8        if ll.startswith('Pixels,Wavelength,Wavenumbers,Raman_Shift,Raw_Data,Background_Data,Processed_Data'):
+ 9            start_spe = i
+10            break
+11    else:
+12        raise ValueError('The input is not neegala format')
+13    meta = dict([i.split(',', 1) for i in lines[:start_spe]])
+14    spe_lines = [ll.strip().split(',') for ll in lines[start_spe:]]
+15
+16    data = pandas.DataFrame.from_records(
+17        data=spe_lines[1:], columns=spe_lines[0]
+18        ).apply(pandas.to_numeric).dropna(axis=0)
+19    return data, meta
+
+ + +
+
+ +
+ + def + neegala_format(lines: List[str]) -> Tuple[pandas.core.frame.DataFrame, Dict]: + + + +
+ +
 7def neegala_format(lines: List[str]) -> Tuple[pandas.DataFrame, Dict]:
+ 8    for i, ll in enumerate(lines):
+ 9        if ll.startswith('Pixels,Wavelength,Wavenumbers,Raman_Shift,Raw_Data,Background_Data,Processed_Data'):
+10            start_spe = i
+11            break
+12    else:
+13        raise ValueError('The input is not neegala format')
+14    meta = dict([i.split(',', 1) for i in lines[:start_spe]])
+15    spe_lines = [ll.strip().split(',') for ll in lines[start_spe:]]
+16
+17    data = pandas.DataFrame.from_records(
+18        data=spe_lines[1:], columns=spe_lines[0]
+19        ).apply(pandas.to_numeric).dropna(axis=0)
+20    return data, meta
+
+ + + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/io/experimental/rc1_parser.html b/ramanchada2/io/experimental/rc1_parser.html new file mode 100644 index 00000000..a9ed71a1 --- /dev/null +++ b/ramanchada2/io/experimental/rc1_parser.html @@ -0,0 +1,267 @@ + + + + + + + ramanchada2.io.experimental.rc1_parser API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.io.experimental.rc1_parser

+ + + + + + +
1from .io import parse
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/io/experimental/rc1_parser/binary_readers.html b/ramanchada2/io/experimental/rc1_parser/binary_readers.html new file mode 100644 index 00000000..4d2e3025 --- /dev/null +++ b/ramanchada2/io/experimental/rc1_parser/binary_readers.html @@ -0,0 +1,769 @@ + + + + + + + ramanchada2.io.experimental.rc1_parser.binary_readers API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.io.experimental.rc1_parser.binary_readers

+ + + + + + +
  1import numpy as np
+  2import struct
+  3
+  4
+  5def readSPA(filename: str, flip=True):
+  6    """
+  7    function to read k-vector and spectrum from a *.SPA file
+  8
+  9    Args:
+ 10        filename:
+ 11            Full path to the file to be read.
+ 12
+ 13    Returns:
+ 14        k-vector and spectrum as separate arrays: `(np.array, np.array)`.
+ 15    """
+ 16    k = None
+ 17    spec = None
+ 18    with open(filename, 'rb') as f:
+ 19        # the data offset is saved at offset 386
+ 20        f.seek(386, 0)
+ 21        offset = struct.unpack("i", f.read(4))[0]
+ 22        # the number of data points is saved at offset 564
+ 23        f.seek(564, 0)
+ 24        n = struct.unpack("i", f.read(4))[0]
+ 25        # the max and min wavenumbers are saved at 576 and 580 respectively
+ 26        f.seek(576, 0)
+ 27        w_max = struct.unpack("f", f.read(4))[0]
+ 28        w_min = struct.unpack("f", f.read(4))[0]
+ 29        k = np.linspace(w_min, w_max, n)
+ 30        # read the data points
+ 31        f.seek(offset, 0)
+ 32        spec = np.array([struct.unpack("f", f.read(4))[0] for i in range(n)])
+ 33        if flip:
+ 34            spec = np.flip(spec)
+ 35        # set corrupt counts to zero
+ 36        spec[spec > 1e5] = 0
+ 37    return k, spec, {}
+ 38
+ 39
+ 40def read_ngs(file):
+ 41    with open(file, "rb") as f:
+ 42        # read NextGen string
+ 43        s = f.read(10)
+ 44        # if the string does not match, abort
+ 45        nextgen_string = s.decode("utf-8").lower()
+ 46        if nextgen_string != 'ngsnextgen':
+ 47            print('Not a readable file !')
+ 48            return
+ 49        # read DataMatrix string form byte #18
+ 50        s = f.seek(18)
+ 51        # read length of string as single byte
+ 52        s = f.read(1)
+ 53        ll = int.from_bytes(s, "big")
+ 54        # read the actual string
+ 55        s = f.read(ll)
+ 56        datamatrix_string = s.decode("utf-8").lower()
+ 57        # if the string does not match, abort
+ 58        if datamatrix_string != 'datamatrix':
+ 59            print('Not a readable file !')
+ 60            return
+ 61        # read filename at byte #38
+ 62        s = f.seek(38)
+ 63        # read length of string as single byte
+ 64        s = f.read(1)
+ 65        ll = int.from_bytes(s, "big")
+ 66        # read the actual string
+ 67        s = f.read(ll)
+ 68        file_name = s.decode("utf-8")
+ 69        # Read no. of channels as 32 bit integer, 16 bytes from end of filename
+ 70        s = f.seek(16, 1)
+ 71        s = f.read(4)
+ 72        n = struct.unpack('i', s)[0]
+ 73        print(f'Reading Labspec .ngs file {file_name} with {n} channels.')
+ 74        # Read data block, starting 8 bytes from end of channel num. Each y count is a 32 bit integer.
+ 75        y = read_4byte_datablock(f, n, 8)
+ 76        # Read parameter block. Before, there's a rather complicated sequence of skipping obsolete parameters...
+ 77        f.seek(2, 1)
+ 78        s = f.read(1)
+ 79        ll = int.from_bytes(s, "big")
+ 80        # Skip bytes as long as they are zeros
+ 81        if ll == 0:
+ 82            while ll == 0:
+ 83                s = f.read(1)
+ 84                ll = int.from_bytes(s, "big")
+ 85            f.seek(1, 1)
+ 86            s = f.read(1)
+ 87            ll = int.from_bytes(s, "big")
+ 88
+ 89        f.seek(ll, 1)
+ 90        s = f.read(1)
+ 91        ll = int.from_bytes(s, "big")
+ 92
+ 93        f.seek(ll, 1)
+ 94        f.seek(2, 1)
+ 95        s = f.read(1)
+ 96        ll = int.from_bytes(s, "big")
+ 97
+ 98        f.seek(ll, 1)
+ 99        s = f.read(1)
+100        ll = int.from_bytes(s, "big")
+101
+102        f.seek(ll, 1)
+103        f.seek(16, 1)
+104        # Finally, read the start and end wavenumbers (start_x)
+105        s = f.read(4)
+106        start_x = struct.unpack('f', s)[0]
+107        s = f.read(4)
+108        end_x = struct.unpack('f', s)[0]
+109        # Check whether end_x is equal to no. of channels
+110        if end_x == n:
+111            x = read_4byte_datablock(f, n, 20)
+112        else:
+113            # Construct x axis
+114            x = np.linspace(start_x, end_x, n)
+115        meta = read_ngs_meta(f)
+116    return x, y, meta
+117
+118
+119def read_4byte_datablock(f, length, skip=8):
+120    s = f.seek(skip, 1)
+121    y = np.zeros(length)
+122    for ii in range(length):
+123        s = f.read(4)
+124        y[ii] = struct.unpack('f', s)[0]
+125    return y
+126
+127
+128def read_bytestring(f):
+129    # read length of string as single byte
+130    s = f.read(1)
+131    ll = int.from_bytes(s, "big")
+132    # read the actual string
+133    s = f.read(ll)
+134    return s.decode('iso-8859-1')
+135
+136
+137def read_ngs_meta(f):
+138    position = f.tell()+1
+139    f.seek(position)
+140    abl = ''
+141    while abl != 'Table':
+142        s = f.read(1)
+143        ll = int.from_bytes(s, "big")
+144        if ll == 5:
+145            f.seek(-1, 1)
+146            abl = read_bytestring(f)
+147        else:
+148            position += 1
+149            f.seek(position)
+150    abl = ''
+151    position = f.tell()
+152    f.seek(position)
+153    while abl != 'Table':
+154        s = f.read(1)
+155        ll = int.from_bytes(s, "big")
+156        if ll == 5:
+157            f.seek(-1, 1)
+158            abl = read_bytestring(f)
+159            position = f.tell()
+160        else:
+161            position += 1
+162            f.seek(position)
+163    abl = read_bytestring(f)
+164    # Make dictionary
+165    meta = {}
+166    if abl.upper() == 'ACQ':
+167        abl = read_bytestring(f)
+168        f.seek(4, 1)
+169        # read no. of params
+170        s = f.read(1)
+171        ll = int.from_bytes(s, "big")
+172        f.seek(1, 1)
+173        par_names = []
+174        # Read parameter names
+175        for ii in range(ll):
+176            abl = read_bytestring(f)
+177            par_names.append(abl)
+178        # Skip some stuff
+179        f.seek(2, 1)
+180        abl = read_bytestring(f)
+181        abl = read_bytestring(f)
+182        f.seek(10, 1)
+183        s = f.read(1)
+184        # read no. of values
+185        ll = int.from_bytes(s, "big")
+186        f.seek(1, 1)
+187        # Read parameter values
+188        par_values = []
+189        for ii in range(ll):
+190            abl = read_bytestring(f)
+191            par_values.append(abl)
+192        f.seek(2, 1)
+193        # Read parameter units
+194        par_units = []
+195        for ii in range(ll):
+196            abl = read_bytestring(f)
+197            # add unit to dict key and exchange for new key
+198            par_units.append(abl)
+199        # add units to par names
+200        par = [name + f' [{unit}]' for name, unit in zip(par_names, par_units)]
+201        meta = dict(zip(par, par_values))
+202        return meta
+
+ + +
+
+ +
+ + def + readSPA(filename: str, flip=True): + + + +
+ +
 6def readSPA(filename: str, flip=True):
+ 7    """
+ 8    function to read k-vector and spectrum from a *.SPA file
+ 9
+10    Args:
+11        filename:
+12            Full path to the file to be read.
+13
+14    Returns:
+15        k-vector and spectrum as separate arrays: `(np.array, np.array)`.
+16    """
+17    k = None
+18    spec = None
+19    with open(filename, 'rb') as f:
+20        # the data offset is saved at offset 386
+21        f.seek(386, 0)
+22        offset = struct.unpack("i", f.read(4))[0]
+23        # the number of data points is saved at offset 564
+24        f.seek(564, 0)
+25        n = struct.unpack("i", f.read(4))[0]
+26        # the max and min wavenumbers are saved at 576 and 580 respectively
+27        f.seek(576, 0)
+28        w_max = struct.unpack("f", f.read(4))[0]
+29        w_min = struct.unpack("f", f.read(4))[0]
+30        k = np.linspace(w_min, w_max, n)
+31        # read the data points
+32        f.seek(offset, 0)
+33        spec = np.array([struct.unpack("f", f.read(4))[0] for i in range(n)])
+34        if flip:
+35            spec = np.flip(spec)
+36        # set corrupt counts to zero
+37        spec[spec > 1e5] = 0
+38    return k, spec, {}
+
+ + +

function to read k-vector and spectrum from a *.SPA file

+ +
Arguments:
+ +
    +
  • filename: Full path to the file to be read.
  • +
+ +
Returns:
+ +
+

k-vector and spectrum as separate arrays: (np.array, np.array).

+
+
+ + +
+
+ +
+ + def + read_ngs(file): + + + +
+ +
 41def read_ngs(file):
+ 42    with open(file, "rb") as f:
+ 43        # read NextGen string
+ 44        s = f.read(10)
+ 45        # if the string does not match, abort
+ 46        nextgen_string = s.decode("utf-8").lower()
+ 47        if nextgen_string != 'ngsnextgen':
+ 48            print('Not a readable file !')
+ 49            return
+ 50        # read DataMatrix string form byte #18
+ 51        s = f.seek(18)
+ 52        # read length of string as single byte
+ 53        s = f.read(1)
+ 54        ll = int.from_bytes(s, "big")
+ 55        # read the actual string
+ 56        s = f.read(ll)
+ 57        datamatrix_string = s.decode("utf-8").lower()
+ 58        # if the string does not match, abort
+ 59        if datamatrix_string != 'datamatrix':
+ 60            print('Not a readable file !')
+ 61            return
+ 62        # read filename at byte #38
+ 63        s = f.seek(38)
+ 64        # read length of string as single byte
+ 65        s = f.read(1)
+ 66        ll = int.from_bytes(s, "big")
+ 67        # read the actual string
+ 68        s = f.read(ll)
+ 69        file_name = s.decode("utf-8")
+ 70        # Read no. of channels as 32 bit integer, 16 bytes from end of filename
+ 71        s = f.seek(16, 1)
+ 72        s = f.read(4)
+ 73        n = struct.unpack('i', s)[0]
+ 74        print(f'Reading Labspec .ngs file {file_name} with {n} channels.')
+ 75        # Read data block, starting 8 bytes from end of channel num. Each y count is a 32 bit integer.
+ 76        y = read_4byte_datablock(f, n, 8)
+ 77        # Read parameter block. Before, there's a rather complicated sequence of skipping obsolete parameters...
+ 78        f.seek(2, 1)
+ 79        s = f.read(1)
+ 80        ll = int.from_bytes(s, "big")
+ 81        # Skip bytes as long as they are zeros
+ 82        if ll == 0:
+ 83            while ll == 0:
+ 84                s = f.read(1)
+ 85                ll = int.from_bytes(s, "big")
+ 86            f.seek(1, 1)
+ 87            s = f.read(1)
+ 88            ll = int.from_bytes(s, "big")
+ 89
+ 90        f.seek(ll, 1)
+ 91        s = f.read(1)
+ 92        ll = int.from_bytes(s, "big")
+ 93
+ 94        f.seek(ll, 1)
+ 95        f.seek(2, 1)
+ 96        s = f.read(1)
+ 97        ll = int.from_bytes(s, "big")
+ 98
+ 99        f.seek(ll, 1)
+100        s = f.read(1)
+101        ll = int.from_bytes(s, "big")
+102
+103        f.seek(ll, 1)
+104        f.seek(16, 1)
+105        # Finally, read the start and end wavenumbers (start_x)
+106        s = f.read(4)
+107        start_x = struct.unpack('f', s)[0]
+108        s = f.read(4)
+109        end_x = struct.unpack('f', s)[0]
+110        # Check whether end_x is equal to no. of channels
+111        if end_x == n:
+112            x = read_4byte_datablock(f, n, 20)
+113        else:
+114            # Construct x axis
+115            x = np.linspace(start_x, end_x, n)
+116        meta = read_ngs_meta(f)
+117    return x, y, meta
+
+ + + + +
+
+ +
+ + def + read_4byte_datablock(f, length, skip=8): + + + +
+ +
120def read_4byte_datablock(f, length, skip=8):
+121    s = f.seek(skip, 1)
+122    y = np.zeros(length)
+123    for ii in range(length):
+124        s = f.read(4)
+125        y[ii] = struct.unpack('f', s)[0]
+126    return y
+
+ + + + +
+
+ +
+ + def + read_bytestring(f): + + + +
+ +
129def read_bytestring(f):
+130    # read length of string as single byte
+131    s = f.read(1)
+132    ll = int.from_bytes(s, "big")
+133    # read the actual string
+134    s = f.read(ll)
+135    return s.decode('iso-8859-1')
+
+ + + + +
+
+ +
+ + def + read_ngs_meta(f): + + + +
+ +
138def read_ngs_meta(f):
+139    position = f.tell()+1
+140    f.seek(position)
+141    abl = ''
+142    while abl != 'Table':
+143        s = f.read(1)
+144        ll = int.from_bytes(s, "big")
+145        if ll == 5:
+146            f.seek(-1, 1)
+147            abl = read_bytestring(f)
+148        else:
+149            position += 1
+150            f.seek(position)
+151    abl = ''
+152    position = f.tell()
+153    f.seek(position)
+154    while abl != 'Table':
+155        s = f.read(1)
+156        ll = int.from_bytes(s, "big")
+157        if ll == 5:
+158            f.seek(-1, 1)
+159            abl = read_bytestring(f)
+160            position = f.tell()
+161        else:
+162            position += 1
+163            f.seek(position)
+164    abl = read_bytestring(f)
+165    # Make dictionary
+166    meta = {}
+167    if abl.upper() == 'ACQ':
+168        abl = read_bytestring(f)
+169        f.seek(4, 1)
+170        # read no. of params
+171        s = f.read(1)
+172        ll = int.from_bytes(s, "big")
+173        f.seek(1, 1)
+174        par_names = []
+175        # Read parameter names
+176        for ii in range(ll):
+177            abl = read_bytestring(f)
+178            par_names.append(abl)
+179        # Skip some stuff
+180        f.seek(2, 1)
+181        abl = read_bytestring(f)
+182        abl = read_bytestring(f)
+183        f.seek(10, 1)
+184        s = f.read(1)
+185        # read no. of values
+186        ll = int.from_bytes(s, "big")
+187        f.seek(1, 1)
+188        # Read parameter values
+189        par_values = []
+190        for ii in range(ll):
+191            abl = read_bytestring(f)
+192            par_values.append(abl)
+193        f.seek(2, 1)
+194        # Read parameter units
+195        par_units = []
+196        for ii in range(ll):
+197            abl = read_bytestring(f)
+198            # add unit to dict key and exchange for new key
+199            par_units.append(abl)
+200        # add units to par names
+201        par = [name + f' [{unit}]' for name, unit in zip(par_names, par_units)]
+202        meta = dict(zip(par, par_values))
+203        return meta
+
+ + + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/io/experimental/rc1_parser/io.html b/ramanchada2/io/experimental/rc1_parser/io.html new file mode 100644 index 00000000..20b771f4 --- /dev/null +++ b/ramanchada2/io/experimental/rc1_parser/io.html @@ -0,0 +1,463 @@ + + + + + + + ramanchada2.io.experimental.rc1_parser.io API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.io.experimental.rc1_parser.io

+ + + + + + +
 1import os.path
+ 2from .third_party_readers import readSPC, readWDF, readOPUS
+ 3from .txt_format_readers import read_JCAMP, readTXT
+ 4from .binary_readers import readSPA, read_ngs
+ 5
+ 6
+ 7class UnsupportedFileTypeError(Exception):
+ 8    pass
+ 9
+10
+11def parse(source_path, file_type=None):
+12    filename, file_extension = os.path.splitext(source_path)
+13
+14    if file_type is None:
+15        file_type = file_extension[1:].lower()  # without the leading dot
+16
+17    if file_type in {'spc', 'sp'}:
+18        reader = readSPC
+19    elif file_type in {'spa'}:
+20        reader = readSPA
+21    elif file_type in {'0', '1', '2'}:
+22        reader = readOPUS
+23    elif file_type in {'wdf'}:
+24        reader = readWDF
+25    elif file_type in {'ngs'}:
+26        reader = read_ngs
+27    elif file_type in {'jdx', 'dx'}:
+28        reader = read_JCAMP
+29    elif file_type in {'txt', 'txtr', 'csv', 'prn', 'rruf'}:
+30        reader = readTXT
+31    else:
+32        raise UnsupportedFileTypeError(
+33            f'file type "{file_type}" is not supported'
+34        )
+35
+36    x_data, y_data, metadata = reader(source_path)
+37    # Get rid of bytes that are found in some of the formats
+38    metadata = cleanMeta(metadata)
+39    # Flatten metadata
+40    metadata = dict(zip(metadata.keys(), [str(v) for v in metadata.values()]))
+41    # Extract metadata from native metadata and spectrum data,
+42    # store in metadata dictionary, and include in CHADA archive.
+43    metadata["Original file"] = os.path.basename(source_path)
+44    return x_data, y_data, metadata
+45
+46
+47def cleanMeta(meta):
+48    # This cleans complex-strcutures metadata, and returns a dict
+49    if isinstance(meta, dict):
+50        meta = {i: meta[i] for i in meta if i != ""}
+51        for key, value in meta.items():
+52            meta[key] = cleanMeta(value)
+53    if isinstance(meta, list):
+54        for ii, value in enumerate(meta):
+55            meta[ii] = cleanMeta(value)
+56    if isinstance(meta, str):
+57        meta = meta.replace('\\x00', '')
+58        meta = meta.replace('\x00', '')
+59    if isinstance(meta, bytes):
+60        try:
+61            meta = meta.decode('utf-8')
+62            meta = cleanMeta(meta)
+63        except Exception:
+64            meta = []
+65    return meta
+
+ + +
+
+ +
+ + class + UnsupportedFileTypeError(builtins.Exception): + + + +
+ +
8class UnsupportedFileTypeError(Exception):
+9    pass
+
+ + +

Common base class for all non-exit exceptions.

+
+ + +
+
Inherited Members
+
+
builtins.Exception
+
Exception
+ +
+
builtins.BaseException
+
with_traceback
+
add_note
+
args
+ +
+
+
+
+
+ +
+ + def + parse(source_path, file_type=None): + + + +
+ +
12def parse(source_path, file_type=None):
+13    filename, file_extension = os.path.splitext(source_path)
+14
+15    if file_type is None:
+16        file_type = file_extension[1:].lower()  # without the leading dot
+17
+18    if file_type in {'spc', 'sp'}:
+19        reader = readSPC
+20    elif file_type in {'spa'}:
+21        reader = readSPA
+22    elif file_type in {'0', '1', '2'}:
+23        reader = readOPUS
+24    elif file_type in {'wdf'}:
+25        reader = readWDF
+26    elif file_type in {'ngs'}:
+27        reader = read_ngs
+28    elif file_type in {'jdx', 'dx'}:
+29        reader = read_JCAMP
+30    elif file_type in {'txt', 'txtr', 'csv', 'prn', 'rruf'}:
+31        reader = readTXT
+32    else:
+33        raise UnsupportedFileTypeError(
+34            f'file type "{file_type}" is not supported'
+35        )
+36
+37    x_data, y_data, metadata = reader(source_path)
+38    # Get rid of bytes that are found in some of the formats
+39    metadata = cleanMeta(metadata)
+40    # Flatten metadata
+41    metadata = dict(zip(metadata.keys(), [str(v) for v in metadata.values()]))
+42    # Extract metadata from native metadata and spectrum data,
+43    # store in metadata dictionary, and include in CHADA archive.
+44    metadata["Original file"] = os.path.basename(source_path)
+45    return x_data, y_data, metadata
+
+ + + + +
+
+ +
+ + def + cleanMeta(meta): + + + +
+ +
48def cleanMeta(meta):
+49    # This cleans complex-strcutures metadata, and returns a dict
+50    if isinstance(meta, dict):
+51        meta = {i: meta[i] for i in meta if i != ""}
+52        for key, value in meta.items():
+53            meta[key] = cleanMeta(value)
+54    if isinstance(meta, list):
+55        for ii, value in enumerate(meta):
+56            meta[ii] = cleanMeta(value)
+57    if isinstance(meta, str):
+58        meta = meta.replace('\\x00', '')
+59        meta = meta.replace('\x00', '')
+60    if isinstance(meta, bytes):
+61        try:
+62            meta = meta.decode('utf-8')
+63            meta = cleanMeta(meta)
+64        except Exception:
+65            meta = []
+66    return meta
+
+ + + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/io/experimental/rc1_parser/third_party_readers.html b/ramanchada2/io/experimental/rc1_parser/third_party_readers.html new file mode 100644 index 00000000..ce6a4a9e --- /dev/null +++ b/ramanchada2/io/experimental/rc1_parser/third_party_readers.html @@ -0,0 +1,410 @@ + + + + + + + ramanchada2.io.experimental.rc1_parser.third_party_readers API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.io.experimental.rc1_parser.third_party_readers

+ + + + + + +
 1import numpy as np
+ 2
+ 3from renishawWiRE import WDFReader
+ 4from spc_io import SPC
+ 5from brukeropusreader import read_file
+ 6
+ 7
+ 8def readWDF(file):
+ 9    s = WDFReader(file)
+10    y_data = s.spectra
+11    x_data = s.xdata
+12    if np.mean(np.diff(x_data)) < 0:
+13        y_data = np.flip(y_data)
+14        x_data = np.flip(x_data)
+15    static_metadata = {
+16        "laser wavelength": s.laser_length,
+17        "no. of accumulations": s.accumulation_count,
+18        "spectral unit": s.spectral_unit.name,
+19        "OEM software name": s.application_name,
+20        "OEM software version": s.application_version
+21        }
+22    return x_data, y_data, static_metadata
+23
+24
+25def readSPC(file):
+26    with open(file, 'rb') as f:
+27        spc = SPC.from_bytes_io(f)
+28    if len(spc) != 1:
+29        raise ValueError(f'Only 1 sub supported, {len(spc)} found')
+30    x_data = spc[0].xarray
+31    y_data = spc[0].yarray
+32    static_metadata = spc.log_book.text
+33    return x_data, y_data, static_metadata
+34
+35
+36def readOPUS(file, obj_no=0):
+37    opus_data = read_file(file)
+38    x = opus_data.get_range("AB")
+39    y = opus_data["AB"]
+40    meta = {}
+41    for key in opus_data:
+42        if key == "AB":
+43            continue
+44        if isinstance(opus_data[key], dict):
+45            for subkey in opus_data[key]:
+46                meta["{}.{}".format(key, subkey)] = opus_data[key][subkey]
+47        else:
+48            meta[key] = opus_data[key]
+49    return x, y, meta
+
+ + +
+
+ +
+ + def + readWDF(file): + + + +
+ +
 9def readWDF(file):
+10    s = WDFReader(file)
+11    y_data = s.spectra
+12    x_data = s.xdata
+13    if np.mean(np.diff(x_data)) < 0:
+14        y_data = np.flip(y_data)
+15        x_data = np.flip(x_data)
+16    static_metadata = {
+17        "laser wavelength": s.laser_length,
+18        "no. of accumulations": s.accumulation_count,
+19        "spectral unit": s.spectral_unit.name,
+20        "OEM software name": s.application_name,
+21        "OEM software version": s.application_version
+22        }
+23    return x_data, y_data, static_metadata
+
+ + + + +
+
+ +
+ + def + readSPC(file): + + + +
+ +
26def readSPC(file):
+27    with open(file, 'rb') as f:
+28        spc = SPC.from_bytes_io(f)
+29    if len(spc) != 1:
+30        raise ValueError(f'Only 1 sub supported, {len(spc)} found')
+31    x_data = spc[0].xarray
+32    y_data = spc[0].yarray
+33    static_metadata = spc.log_book.text
+34    return x_data, y_data, static_metadata
+
+ + + + +
+
+ +
+ + def + readOPUS(file, obj_no=0): + + + +
+ +
37def readOPUS(file, obj_no=0):
+38    opus_data = read_file(file)
+39    x = opus_data.get_range("AB")
+40    y = opus_data["AB"]
+41    meta = {}
+42    for key in opus_data:
+43        if key == "AB":
+44            continue
+45        if isinstance(opus_data[key], dict):
+46            for subkey in opus_data[key]:
+47                meta["{}.{}".format(key, subkey)] = opus_data[key][subkey]
+48        else:
+49            meta[key] = opus_data[key]
+50    return x, y, meta
+
+ + + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/io/experimental/rc1_parser/txt_format_readers.html b/ramanchada2/io/experimental/rc1_parser/txt_format_readers.html new file mode 100644 index 00000000..f6fdc308 --- /dev/null +++ b/ramanchada2/io/experimental/rc1_parser/txt_format_readers.html @@ -0,0 +1,721 @@ + + + + + + + ramanchada2.io.experimental.rc1_parser.txt_format_readers API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.io.experimental.rc1_parser.txt_format_readers

+ + + + + + +
  1import numpy as np
+  2import os
+  3import re
+  4import pandas as pd
+  5import logging
+  6
+  7logger = logging.getLogger(__name__)
+  8
+  9
+ 10def read_JCAMP(file, verbose=True):
+ 11    x = []
+ 12    y = []
+ 13    # open .txt and read as lines
+ 14    with open(file) as d:
+ 15        lines = d.readlines()
+ 16    end_index = [i for i, s in enumerate(lines) if 'END' in s][-1]
+ 17    lines = lines[:end_index]
+ 18    # ## Marks meta data
+ 19    meta_lines = [ll for ll in lines if ll.startswith('##')][:-1]
+ 20    meta = dict([mm.strip('##').strip('\n').split('=') for mm in meta_lines])
+ 21    data_lines = [ll for ll in lines if not ll.startswith('##')]
+ 22    # read up to second last line
+ 23    for ll in data_lines[:-1]:
+ 24        # split line into individual numbers
+ 25        items = ll.strip('\n').strip().split()
+ 26        # 1st is x, the rest is y values
+ 27        x.append(float(items[0]))
+ 28        [y.append(float(item)) for item in items[1:]]
+ 29    # convert to np.array
+ 30    # calc num of y per x
+ 31    y_per_x = len(y)//len(x)
+ 32    x_increment = np.mean(np.diff(np.array(x))) / y_per_x
+ 33    new_x = []
+ 34    for xx in x:
+ 35        for ii in range(y_per_x):
+ 36            new_x.append(xx + x_increment*ii)
+ 37    # Read last line (may not be complete)
+ 38    items = data_lines[-1].strip('\n').strip().split()
+ 39    for ii, item in enumerate(items[1:]):
+ 40        # 1st is x, the rest is y values
+ 41        new_x.append(float(items[0]) + x_increment*ii)
+ 42        y.append(float(item))
+ 43    return np.array(new_x), np.array(y), meta
+ 44
+ 45
+ 46def readTXT(file, x_col=0, y_col=0, verbose=True):
+ 47    # open .txt and read as lines
+ 48    with open(file) as d:
+ 49        lines = d.readlines()
+ 50    # Find data lines and convert to np.array
+ 51    start, stop = startStop(lines)
+ 52    logger.debug("Importing " + str(stop-start+1) +
+ 53                 " data lines starting from line " + str(start) +
+ 54                 " in " + os.path.basename(file) + ".")
+ 55    data_lines = lines[start:stop]
+ 56    data = dataFromTxtLines(data_lines)
+ 57    # if columns not specified, assign x (Raman shift) and y (counts) axes
+ 58    if x_col == y_col == 0:
+ 59        # x axis is the one with mean closest to 1750
+ 60        score = 1./np.abs(data.mean(0)-1750)
+ 61        # x axis must be monotonous!
+ 62        s = np.sign(np.diff(data, axis=0))
+ 63        mono = np.array([np.all(c == c[0]) for c in s.T]) * 1.
+ 64        score *= mono
+ 65        x_col = np.argmax(score)
+ 66        # y axis is the one with maximal std/mean
+ 67        score = np.nan_to_num(data.std(0)/data.mean(0), nan=0)
+ 68        # Do not choose x axis again for y
+ 69        score[x_col] = -1000
+ 70        y_col = np.argmax(score)
+ 71        # if there's mroe than 2 columns and a header line
+ 72        if startStop(lines)[0] > 0 and data.shape[1] > 2:
+ 73            logger.debug("Found more than 2 data columns in " +
+ 74                         os.path.basename(file) + ".")
+ 75            header_line = lines[startStop(lines)[0]-1].strip('\n')
+ 76            header_line = [s.casefold() for s in re.split(';|,|\t', header_line)]
+ 77            # x axis is header line with "Shift"
+ 78            indices = [i for i, s in enumerate(header_line) if 'shift' in s]
+ 79            if indices != []:
+ 80                x_col = indices[0]
+ 81                logger.debug("X data: assigning column labelled '" +
+ 82                             header_line[x_col] + "'.")
+ 83            else:
+ 84                logger.debug("X data: assigning column # " + str(x_col) + ".")
+ 85            # y axis is header line with "Subtracted"
+ 86            indices = [i for i, s in enumerate(header_line) if 'subtracted' in s]
+ 87            if indices != []:
+ 88                y_col = indices[0]
+ 89                logger.debug("Y data: assigning column labelled '" +
+ 90                             header_line[y_col] + "'.")
+ 91            else:
+ 92                logger.debug("Y data: assigning column # " + str(y_col) + ".")
+ 93    x, y = data[:, x_col], data[:, y_col]
+ 94    # Only use unique x data points
+ 95    x, unique_ind = np.unique(x, return_index=True)
+ 96    y = y[unique_ind]
+ 97    # is x inverted?
+ 98    if all(np.diff(x) <= 0):
+ 99        x = np.flip(x)
+100        y = np.flip(y)
+101    meta_lines = lines[:startStop(lines)[0]]
+102    logger.debug("Importing " + str(start-1) + " metadata lines from " +
+103                 os.path.basename(file) + ".")
+104    meta_lines = [re.split(';|,|\t|=', ll.strip()) for ll in meta_lines]
+105    ml = {}
+106    for ll in meta_lines:
+107        ml.update({ll[0]: ll[1:]})
+108    # is x axis pixel numbers instead of Raman shifts?
+109    if all(np.diff(x) == 1) and (x[0] == 0 or x[0] == 1):
+110        if "Start WN" in ml:
+111            start_x = np.int(np.array(ml["Start WN"])[0])
+112        if "End WN" in ml:
+113            stop_x = np.int(np.array(ml["End WN"])[0])
+114        x = np.linspace(start_x, stop_x, len(x))
+115        logger.debug("X data: using linspace from " + str(start_x) + " to " +
+116                     str(stop_x) + " 1/cm.")
+117    return x, y, ml
+118
+119
+120def dataFromTxtLines(data_lines):
+121    data = []
+122    for ii, ll in enumerate(data_lines):
+123        ll = ll.strip('\n').replace("\t", " ")
+124        if ";" in ll:
+125            separator = ";"
+126        elif "," in ll and "." in ll:
+127            separator = ","
+128        elif "," in ll and " " in ll:
+129            separator = " "
+130        elif "," in ll:
+131            separator = ","
+132        else:
+133            separator = " "
+134        items = ll.split(separator)
+135        items = [item.replace(",", ".") for item in items]
+136        data.append(items)
+137    D = pd.DataFrame(np.array(data))
+138    D = D.replace(r'^\s*$', 0, regex=True)
+139    D = D.apply(pd.to_numeric)
+140    D = D.dropna()
+141    return D.to_numpy()
+142
+143
+144def isDataLine(line):
+145    line = line.strip("\n").replace("\t", " ")
+146    blank = all([c == " " for c in line])
+147    # has more than 75% digits
+148    digits = np.sum([d.isdigit() for d in line]) / len(line) > .25
+149    # apart from digits, has only ".", ";", ",", " "
+150    chars = all([c in '.,;+-eE ' for c in line if not c.isdigit()])
+151    return (not blank) & digits & chars
+152
+153
+154def startStop(lines):
+155    start_line, stop_line = 0, 0
+156    for ii, line in enumerate(lines):
+157        # if this is a data line and the following 5 lines are also data lines, then here is the start line
+158        if (len(lines) - ii) > 5 and start_line == 0:
+159            if all([isDataLine(ll) for ll in lines[ii:ii+5]]):
+160                start_line = ii
+161        # if this is a data line and the following 5 lines are also data lines, then here is the start line
+162        if (not isDataLine(line)) and stop_line <= start_line:
+163            stop_line = ii
+164    if stop_line <= start_line:
+165        stop_line = len(lines)-1
+166    return start_line, stop_line
+167
+168
+169def getYDataType(y_data):
+170    types = {0: "Single spectrum", 1: "Line scan", 2: "Map", 3: "Map series / volume"}
+171    return types[len(y_data.shape)-1]
+
+ + +
+
+
+ logger = +<Logger ramanchada2.io.experimental.rc1_parser.txt_format_readers (WARNING)> + + +
+ + + + +
+
+ +
+ + def + read_JCAMP(file, verbose=True): + + + +
+ +
11def read_JCAMP(file, verbose=True):
+12    x = []
+13    y = []
+14    # open .txt and read as lines
+15    with open(file) as d:
+16        lines = d.readlines()
+17    end_index = [i for i, s in enumerate(lines) if 'END' in s][-1]
+18    lines = lines[:end_index]
+19    # ## Marks meta data
+20    meta_lines = [ll for ll in lines if ll.startswith('##')][:-1]
+21    meta = dict([mm.strip('##').strip('\n').split('=') for mm in meta_lines])
+22    data_lines = [ll for ll in lines if not ll.startswith('##')]
+23    # read up to second last line
+24    for ll in data_lines[:-1]:
+25        # split line into individual numbers
+26        items = ll.strip('\n').strip().split()
+27        # 1st is x, the rest is y values
+28        x.append(float(items[0]))
+29        [y.append(float(item)) for item in items[1:]]
+30    # convert to np.array
+31    # calc num of y per x
+32    y_per_x = len(y)//len(x)
+33    x_increment = np.mean(np.diff(np.array(x))) / y_per_x
+34    new_x = []
+35    for xx in x:
+36        for ii in range(y_per_x):
+37            new_x.append(xx + x_increment*ii)
+38    # Read last line (may not be complete)
+39    items = data_lines[-1].strip('\n').strip().split()
+40    for ii, item in enumerate(items[1:]):
+41        # 1st is x, the rest is y values
+42        new_x.append(float(items[0]) + x_increment*ii)
+43        y.append(float(item))
+44    return np.array(new_x), np.array(y), meta
+
+ + + + +
+
+ +
+ + def + readTXT(file, x_col=0, y_col=0, verbose=True): + + + +
+ +
 47def readTXT(file, x_col=0, y_col=0, verbose=True):
+ 48    # open .txt and read as lines
+ 49    with open(file) as d:
+ 50        lines = d.readlines()
+ 51    # Find data lines and convert to np.array
+ 52    start, stop = startStop(lines)
+ 53    logger.debug("Importing " + str(stop-start+1) +
+ 54                 " data lines starting from line " + str(start) +
+ 55                 " in " + os.path.basename(file) + ".")
+ 56    data_lines = lines[start:stop]
+ 57    data = dataFromTxtLines(data_lines)
+ 58    # if columns not specified, assign x (Raman shift) and y (counts) axes
+ 59    if x_col == y_col == 0:
+ 60        # x axis is the one with mean closest to 1750
+ 61        score = 1./np.abs(data.mean(0)-1750)
+ 62        # x axis must be monotonous!
+ 63        s = np.sign(np.diff(data, axis=0))
+ 64        mono = np.array([np.all(c == c[0]) for c in s.T]) * 1.
+ 65        score *= mono
+ 66        x_col = np.argmax(score)
+ 67        # y axis is the one with maximal std/mean
+ 68        score = np.nan_to_num(data.std(0)/data.mean(0), nan=0)
+ 69        # Do not choose x axis again for y
+ 70        score[x_col] = -1000
+ 71        y_col = np.argmax(score)
+ 72        # if there's mroe than 2 columns and a header line
+ 73        if startStop(lines)[0] > 0 and data.shape[1] > 2:
+ 74            logger.debug("Found more than 2 data columns in " +
+ 75                         os.path.basename(file) + ".")
+ 76            header_line = lines[startStop(lines)[0]-1].strip('\n')
+ 77            header_line = [s.casefold() for s in re.split(';|,|\t', header_line)]
+ 78            # x axis is header line with "Shift"
+ 79            indices = [i for i, s in enumerate(header_line) if 'shift' in s]
+ 80            if indices != []:
+ 81                x_col = indices[0]
+ 82                logger.debug("X data: assigning column labelled '" +
+ 83                             header_line[x_col] + "'.")
+ 84            else:
+ 85                logger.debug("X data: assigning column # " + str(x_col) + ".")
+ 86            # y axis is header line with "Subtracted"
+ 87            indices = [i for i, s in enumerate(header_line) if 'subtracted' in s]
+ 88            if indices != []:
+ 89                y_col = indices[0]
+ 90                logger.debug("Y data: assigning column labelled '" +
+ 91                             header_line[y_col] + "'.")
+ 92            else:
+ 93                logger.debug("Y data: assigning column # " + str(y_col) + ".")
+ 94    x, y = data[:, x_col], data[:, y_col]
+ 95    # Only use unique x data points
+ 96    x, unique_ind = np.unique(x, return_index=True)
+ 97    y = y[unique_ind]
+ 98    # is x inverted?
+ 99    if all(np.diff(x) <= 0):
+100        x = np.flip(x)
+101        y = np.flip(y)
+102    meta_lines = lines[:startStop(lines)[0]]
+103    logger.debug("Importing " + str(start-1) + " metadata lines from " +
+104                 os.path.basename(file) + ".")
+105    meta_lines = [re.split(';|,|\t|=', ll.strip()) for ll in meta_lines]
+106    ml = {}
+107    for ll in meta_lines:
+108        ml.update({ll[0]: ll[1:]})
+109    # is x axis pixel numbers instead of Raman shifts?
+110    if all(np.diff(x) == 1) and (x[0] == 0 or x[0] == 1):
+111        if "Start WN" in ml:
+112            start_x = np.int(np.array(ml["Start WN"])[0])
+113        if "End WN" in ml:
+114            stop_x = np.int(np.array(ml["End WN"])[0])
+115        x = np.linspace(start_x, stop_x, len(x))
+116        logger.debug("X data: using linspace from " + str(start_x) + " to " +
+117                     str(stop_x) + " 1/cm.")
+118    return x, y, ml
+
+ + + + +
+
+ +
+ + def + dataFromTxtLines(data_lines): + + + +
+ +
121def dataFromTxtLines(data_lines):
+122    data = []
+123    for ii, ll in enumerate(data_lines):
+124        ll = ll.strip('\n').replace("\t", " ")
+125        if ";" in ll:
+126            separator = ";"
+127        elif "," in ll and "." in ll:
+128            separator = ","
+129        elif "," in ll and " " in ll:
+130            separator = " "
+131        elif "," in ll:
+132            separator = ","
+133        else:
+134            separator = " "
+135        items = ll.split(separator)
+136        items = [item.replace(",", ".") for item in items]
+137        data.append(items)
+138    D = pd.DataFrame(np.array(data))
+139    D = D.replace(r'^\s*$', 0, regex=True)
+140    D = D.apply(pd.to_numeric)
+141    D = D.dropna()
+142    return D.to_numpy()
+
+ + + + +
+
+ +
+ + def + isDataLine(line): + + + +
+ +
145def isDataLine(line):
+146    line = line.strip("\n").replace("\t", " ")
+147    blank = all([c == " " for c in line])
+148    # has more than 75% digits
+149    digits = np.sum([d.isdigit() for d in line]) / len(line) > .25
+150    # apart from digits, has only ".", ";", ",", " "
+151    chars = all([c in '.,;+-eE ' for c in line if not c.isdigit()])
+152    return (not blank) & digits & chars
+
+ + + + +
+
+ +
+ + def + startStop(lines): + + + +
+ +
155def startStop(lines):
+156    start_line, stop_line = 0, 0
+157    for ii, line in enumerate(lines):
+158        # if this is a data line and the following 5 lines are also data lines, then here is the start line
+159        if (len(lines) - ii) > 5 and start_line == 0:
+160            if all([isDataLine(ll) for ll in lines[ii:ii+5]]):
+161                start_line = ii
+162        # if this is a data line and the following 5 lines are also data lines, then here is the start line
+163        if (not isDataLine(line)) and stop_line <= start_line:
+164            stop_line = ii
+165    if stop_line <= start_line:
+166        stop_line = len(lines)-1
+167    return start_line, stop_line
+
+ + + + +
+
+ +
+ + def + getYDataType(y_data): + + + +
+ +
170def getYDataType(y_data):
+171    types = {0: "Single spectrum", 1: "Line scan", 2: "Map", 3: "Map series / volume"}
+172    return types[len(y_data.shape)-1]
+
+ + + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/io/experimental/read_csv.html b/ramanchada2/io/experimental/read_csv.html new file mode 100644 index 00000000..bac2dc91 --- /dev/null +++ b/ramanchada2/io/experimental/read_csv.html @@ -0,0 +1,313 @@ + + + + + + + ramanchada2.io.experimental.read_csv API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.io.experimental.read_csv

+ + + + + + +
 1#!/usr/bin/env python3
+ 2
+ 3from typing import TextIO, Tuple, Dict
+ 4
+ 5from numpy.typing import NDArray
+ 6import numpy as np
+ 7
+ 8
+ 9def read_csv(data_in: TextIO) -> Tuple[NDArray, NDArray, Dict]:
+10    lines = data_in.readlines()
+11    positions, intensities = np.genfromtxt(lines, delimiter=',', dtype=float).T
+12    filter_nan = ~(
+13        np.isnan(positions) |
+14        np.isnan(intensities)
+15    )
+16    positions = positions[filter_nan]
+17    intensities = intensities[filter_nan]
+18    meta: Dict[str, None] = dict()
+19    return positions, intensities, meta
+
+ + +
+
+ +
+ + def + read_csv( data_in: <class 'TextIO'>) -> Tuple[numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]], numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]], Dict]: + + + +
+ +
10def read_csv(data_in: TextIO) -> Tuple[NDArray, NDArray, Dict]:
+11    lines = data_in.readlines()
+12    positions, intensities = np.genfromtxt(lines, delimiter=',', dtype=float).T
+13    filter_nan = ~(
+14        np.isnan(positions) |
+15        np.isnan(intensities)
+16    )
+17    positions = positions[filter_nan]
+18    intensities = intensities[filter_nan]
+19    meta: Dict[str, None] = dict()
+20    return positions, intensities, meta
+
+ + + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/io/experimental/read_txt.html b/ramanchada2/io/experimental/read_txt.html new file mode 100644 index 00000000..43f06f94 --- /dev/null +++ b/ramanchada2/io/experimental/read_txt.html @@ -0,0 +1,367 @@ + + + + + + + ramanchada2.io.experimental.read_txt API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.io.experimental.read_txt

+ + + + + + +
 1from typing import Dict, TextIO, Tuple
+ 2
+ 3import numpy as np
+ 4from numpy.typing import NDArray
+ 5
+ 6from .bw_format import bw_format
+ 7from .neegala_format import neegala_format
+ 8from .rruf_format import rruf_format
+ 9
+10""" There are 4 types of TXT data files that can be distinguished by their first line:
+11    1. File Version;BWRam4.11_11
+12    2. File Version;BWSpec4.11_1
+13    3. <wavenumber>	<intensity>
+14    4. #Wave		#Intensity
+15      <wavenumber>	<intensity>
+16    """
+17
+18
+19def read_txt(data_in: TextIO) -> Tuple[NDArray, NDArray, Dict]:
+20    lines = data_in.readlines()
+21    if lines[0].startswith('File Version;BW'):
+22        data, meta = bw_format(lines)
+23        positions = data['RamanShift'].to_numpy()
+24        intensities = data['DarkSubtracted#1'].to_numpy()
+25        meta['@axes'] = ['RamanShift']
+26        meta['@signal'] = 'DarkSubtracted'
+27    elif lines[0].startswith('##'):
+28        # rruf format
+29        positions, intensities, meta = rruf_format(lines)
+30        meta['@axes'] = ['']
+31        meta['@signal'] = ''
+32    elif ',' in lines[0] and not lines[0].split(',')[0].isdigit():
+33        data, meta = neegala_format(lines)
+34        positions = data['Raman_Shift'].to_numpy()
+35        intensities = data['Processed_Data'].to_numpy()
+36        meta['@axes'] = ['Raman_Shift']
+37        meta['@signal'] = 'Processed_Data'
+38    else:  # assume two column spectrum
+39        meta = dict()
+40        if lines[0].startswith('#'):
+41            # assume header row
+42            data = np.genfromtxt(lines, names=True, loose=False)
+43            meta['@axes'] = [data.dtype.names[0]]
+44            meta['@signal'] = data.dtype.names[1]
+45            data = np.array(data.tolist())
+46        else:
+47            data = np.genfromtxt(lines, loose=False)
+48            meta['@axes'] = ['']
+49            meta['@signal'] = ''
+50        positions, intensities = data.T
+51    return positions, intensities, meta
+
+ + +
+
+ +
+ + def + read_txt( data_in: <class 'TextIO'>) -> Tuple[numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]], numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]], Dict]: + + + +
+ +
20def read_txt(data_in: TextIO) -> Tuple[NDArray, NDArray, Dict]:
+21    lines = data_in.readlines()
+22    if lines[0].startswith('File Version;BW'):
+23        data, meta = bw_format(lines)
+24        positions = data['RamanShift'].to_numpy()
+25        intensities = data['DarkSubtracted#1'].to_numpy()
+26        meta['@axes'] = ['RamanShift']
+27        meta['@signal'] = 'DarkSubtracted'
+28    elif lines[0].startswith('##'):
+29        # rruf format
+30        positions, intensities, meta = rruf_format(lines)
+31        meta['@axes'] = ['']
+32        meta['@signal'] = ''
+33    elif ',' in lines[0] and not lines[0].split(',')[0].isdigit():
+34        data, meta = neegala_format(lines)
+35        positions = data['Raman_Shift'].to_numpy()
+36        intensities = data['Processed_Data'].to_numpy()
+37        meta['@axes'] = ['Raman_Shift']
+38        meta['@signal'] = 'Processed_Data'
+39    else:  # assume two column spectrum
+40        meta = dict()
+41        if lines[0].startswith('#'):
+42            # assume header row
+43            data = np.genfromtxt(lines, names=True, loose=False)
+44            meta['@axes'] = [data.dtype.names[0]]
+45            meta['@signal'] = data.dtype.names[1]
+46            data = np.array(data.tolist())
+47        else:
+48            data = np.genfromtxt(lines, loose=False)
+49            meta['@axes'] = ['']
+50            meta['@signal'] = ''
+51        positions, intensities = data.T
+52    return positions, intensities, meta
+
+ + + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/io/experimental/rruf_format.html b/ramanchada2/io/experimental/rruf_format.html new file mode 100644 index 00000000..f740d9bd --- /dev/null +++ b/ramanchada2/io/experimental/rruf_format.html @@ -0,0 +1,319 @@ + + + + + + + ramanchada2.io.experimental.rruf_format API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.io.experimental.rruf_format

+ + + + + + +
 1from typing import Dict, List, Tuple
+ 2
+ 3import pandas
+ 4from numpy.typing import NDArray
+ 5
+ 6
+ 7def rruf_format(lines: List[str]) -> Tuple[NDArray, NDArray, Dict]:
+ 8    for i, ll in enumerate(lines):
+ 9        if not ll.startswith('##'):
+10            start_spe = i
+11            break
+12    meta = dict([ll.strip()[2:].split('=') for ll in lines[:start_spe]])
+13    for i, ll in enumerate(lines):
+14        if ll.startswith('##END'):
+15            stop_spe = i
+16            break
+17    data = pandas.DataFrame.from_records(
+18        data=[ll.split(',') for ll in lines[start_spe:stop_spe]]
+19        ).apply(pandas.to_numeric).dropna(axis=0)
+20    positions, intensities = data.to_numpy().T
+21    return positions, intensities, meta
+
+ + +
+
+ +
+ + def + rruf_format( lines: List[str]) -> Tuple[numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]], numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]], Dict]: + + + +
+ +
 8def rruf_format(lines: List[str]) -> Tuple[NDArray, NDArray, Dict]:
+ 9    for i, ll in enumerate(lines):
+10        if not ll.startswith('##'):
+11            start_spe = i
+12            break
+13    meta = dict([ll.strip()[2:].split('=') for ll in lines[:start_spe]])
+14    for i, ll in enumerate(lines):
+15        if ll.startswith('##END'):
+16            stop_spe = i
+17            break
+18    data = pandas.DataFrame.from_records(
+19        data=[ll.split(',') for ll in lines[start_spe:stop_spe]]
+20        ).apply(pandas.to_numeric).dropna(axis=0)
+21    positions, intensities = data.to_numpy().T
+22    return positions, intensities, meta
+
+ + + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/io/output.html b/ramanchada2/io/output.html new file mode 100644 index 00000000..f8a3c456 --- /dev/null +++ b/ramanchada2/io/output.html @@ -0,0 +1,264 @@ + + + + + + + ramanchada2.io.output API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.io.output

+ + + + + + +
1#!/usr/bin/env python3
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/io/output/write_csv.html b/ramanchada2/io/output/write_csv.html new file mode 100644 index 00000000..92ac5028 --- /dev/null +++ b/ramanchada2/io/output/write_csv.html @@ -0,0 +1,290 @@ + + + + + + + ramanchada2.io.output.write_csv API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.io.output.write_csv

+ + + + + + +
1from typing import List
+2
+3
+4def write_csv(x, y, delimiter=',') -> List[str]:
+5    return [f'{x[i]}{delimiter}{y[i]}\n' for i in range(len(x))]
+
+ + +
+
+ +
+ + def + write_csv(x, y, delimiter=',') -> List[str]: + + + +
+ +
5def write_csv(x, y, delimiter=',') -> List[str]:
+6    return [f'{x[i]}{delimiter}{y[i]}\n' for i in range(len(x))]
+
+ + + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/io/simulated.html b/ramanchada2/io/simulated.html new file mode 100644 index 00000000..12ba7e81 --- /dev/null +++ b/ramanchada2/io/simulated.html @@ -0,0 +1,269 @@ + + + + + + + ramanchada2.io.simulated API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.io.simulated

+ + + + + + +
1#!/usr/bin/env python3
+2
+3from .read_simulated_lines import read_simulated_lines
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/io/simulated/crystal.html b/ramanchada2/io/simulated/crystal.html new file mode 100644 index 00000000..0f49d364 --- /dev/null +++ b/ramanchada2/io/simulated/crystal.html @@ -0,0 +1,265 @@ + + + + + + + ramanchada2.io.simulated.crystal API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.io.simulated.crystal

+ + + + + + +
1#!/usr/bin/env python3
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/io/simulated/crystal/discrete_lines_dat.html b/ramanchada2/io/simulated/crystal/discrete_lines_dat.html new file mode 100644 index 00000000..678a3fa6 --- /dev/null +++ b/ramanchada2/io/simulated/crystal/discrete_lines_dat.html @@ -0,0 +1,318 @@ + + + + + + + ramanchada2.io.simulated.crystal.discrete_lines_dat API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.io.simulated.crystal.discrete_lines_dat

+ + + + + + +
 1#!/usr/bin/env python3
+ 2
+ 3from io import TextIOBase
+ 4
+ 5import pandas as pd
+ 6from pydantic import validate_call
+ 7
+ 8
+ 9@validate_call(config=dict(arbitrary_types_allowed=True))
+10def lines_from_crystal_dat(data_in: TextIOBase) -> pd.DataFrame:
+11    return pd.DataFrame(
+12        data=[
+13            lin.split()
+14            for lin in data_in.readlines()
+15            if not lin.startswith('#')
+16        ],
+17        columns=[
+18            'Frequencies', 'I_tot', 'I_par', 'I_perp',
+19            'I_xx', 'I_xy', 'I_xz', 'I_yy', 'I_yz', 'I_zz'
+20        ],
+21        dtype=float)
+
+ + +
+
+ +
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + lines_from_crystal_dat(data_in: io.TextIOBase) -> pandas.core.frame.DataFrame: + + + +
+ +
10@validate_call(config=dict(arbitrary_types_allowed=True))
+11def lines_from_crystal_dat(data_in: TextIOBase) -> pd.DataFrame:
+12    return pd.DataFrame(
+13        data=[
+14            lin.split()
+15            for lin in data_in.readlines()
+16            if not lin.startswith('#')
+17        ],
+18        columns=[
+19            'Frequencies', 'I_tot', 'I_par', 'I_perp',
+20            'I_xx', 'I_xy', 'I_xz', 'I_yy', 'I_yz', 'I_zz'
+21        ],
+22        dtype=float)
+
+ + + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/io/simulated/crystal/discrete_lines_out.html b/ramanchada2/io/simulated/crystal/discrete_lines_out.html new file mode 100644 index 00000000..faa734f4 --- /dev/null +++ b/ramanchada2/io/simulated/crystal/discrete_lines_out.html @@ -0,0 +1,402 @@ + + + + + + + ramanchada2.io.simulated.crystal.discrete_lines_out API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.io.simulated.crystal.discrete_lines_out

+ + + + + + +
 1import re
+ 2from io import TextIOBase
+ 3from typing import List
+ 4
+ 5import pandas as pd
+ 6from pydantic import validate_call
+ 7
+ 8from ramanchada2.misc.exceptions import InputParserError
+ 9
+10
+11@validate_call(config=dict(arbitrary_types_allowed=True))
+12def lines_from_crystal_out(data_in: TextIOBase) -> pd.DataFrame:
+13    def advance_to(content: str) -> None:
+14        while content not in data_in.readline():
+15            continue
+16
+17    def read_paragraph() -> List[str]:
+18        ret = list()
+19        while True:
+20            line = data_in.readline().rstrip()
+21            if line == '':
+22                break
+23            ret.append(line)
+24        return ret
+25
+26    def parse(regex, lines: List[str]) -> List[List[str]]:
+27        ret = list()
+28        if len(lines) < 2:
+29            raise InputParserError()
+30        for match in [regex.match(line) for line in lines[2:]]:
+31            if match:
+32                ret.append(match.groups())
+33            else:
+34                raise InputParserError()
+35        return ret
+36
+37    def skip_line():
+38        data_in.readline()
+39
+40    advance_to('POLYCRYSTALLINE ISOTROPIC INTENSITIES (ARBITRARY UNITS)')
+41    skip_line()  # empty line
+42    polyXtal_lines = read_paragraph()
+43    advance_to('SINGLE CRYSTAL DIRECTIONAL INTENSITIES (ARBITRARY UNITS)')
+44    skip_line()  # empty line
+45    monoXtal_lines = read_paragraph()
+46    # data_in is processed
+47
+48    polyXtal_regex = re.compile(r'\s*(\d+)-\s*(\d+)\s*([\d.]+)\s*\((\w+)\s*\)' + r'\s*([\d.]+)'*3)
+49    polyXtal_parsed = parse(polyXtal_regex, polyXtal_lines)
+50    polyXtal_df = pd.DataFrame.from_records(
+51        polyXtal_parsed,
+52        columns=['ModeL', 'ModeU', 'Frequencies', 'Origin', 'I_tot', 'I_par', 'I_perp'])
+53    polyXtal_df = polyXtal_df.astype(
+54        dict(zip(polyXtal_df.keys(), [*[int]*2, float, str, *[float]*3])))
+55
+56    monoXtal_regex = re.compile(r'\s*(\d+)-\s*(\d+)\s*([\d.]+)\s*\((\w+)\s*\)' + r'\s*([\d.]+)'*6)
+57    monoXtal_parsed = parse(monoXtal_regex, monoXtal_lines)
+58    monoXtal_df = pd.DataFrame.from_records(
+59        monoXtal_parsed,
+60        columns=['ModeL', 'ModeU', 'Frequencies', 'Origin', 'I_xx', 'I_xy', 'I_xz', 'I_yy', 'I_yz', 'I_zz'])
+61    monoXtal_df = monoXtal_df.astype(
+62        dict(zip(monoXtal_df.keys(), [*[int]*2, float, str, *[float]*6])))
+63    merge = pd.merge(polyXtal_df, monoXtal_df)
+64    return merge
+
+ + +
+
+ +
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + lines_from_crystal_out(data_in: io.TextIOBase) -> pandas.core.frame.DataFrame: + + + +
+ +
12@validate_call(config=dict(arbitrary_types_allowed=True))
+13def lines_from_crystal_out(data_in: TextIOBase) -> pd.DataFrame:
+14    def advance_to(content: str) -> None:
+15        while content not in data_in.readline():
+16            continue
+17
+18    def read_paragraph() -> List[str]:
+19        ret = list()
+20        while True:
+21            line = data_in.readline().rstrip()
+22            if line == '':
+23                break
+24            ret.append(line)
+25        return ret
+26
+27    def parse(regex, lines: List[str]) -> List[List[str]]:
+28        ret = list()
+29        if len(lines) < 2:
+30            raise InputParserError()
+31        for match in [regex.match(line) for line in lines[2:]]:
+32            if match:
+33                ret.append(match.groups())
+34            else:
+35                raise InputParserError()
+36        return ret
+37
+38    def skip_line():
+39        data_in.readline()
+40
+41    advance_to('POLYCRYSTALLINE ISOTROPIC INTENSITIES (ARBITRARY UNITS)')
+42    skip_line()  # empty line
+43    polyXtal_lines = read_paragraph()
+44    advance_to('SINGLE CRYSTAL DIRECTIONAL INTENSITIES (ARBITRARY UNITS)')
+45    skip_line()  # empty line
+46    monoXtal_lines = read_paragraph()
+47    # data_in is processed
+48
+49    polyXtal_regex = re.compile(r'\s*(\d+)-\s*(\d+)\s*([\d.]+)\s*\((\w+)\s*\)' + r'\s*([\d.]+)'*3)
+50    polyXtal_parsed = parse(polyXtal_regex, polyXtal_lines)
+51    polyXtal_df = pd.DataFrame.from_records(
+52        polyXtal_parsed,
+53        columns=['ModeL', 'ModeU', 'Frequencies', 'Origin', 'I_tot', 'I_par', 'I_perp'])
+54    polyXtal_df = polyXtal_df.astype(
+55        dict(zip(polyXtal_df.keys(), [*[int]*2, float, str, *[float]*3])))
+56
+57    monoXtal_regex = re.compile(r'\s*(\d+)-\s*(\d+)\s*([\d.]+)\s*\((\w+)\s*\)' + r'\s*([\d.]+)'*6)
+58    monoXtal_parsed = parse(monoXtal_regex, monoXtal_lines)
+59    monoXtal_df = pd.DataFrame.from_records(
+60        monoXtal_parsed,
+61        columns=['ModeL', 'ModeU', 'Frequencies', 'Origin', 'I_xx', 'I_xy', 'I_xz', 'I_yy', 'I_yz', 'I_zz'])
+62    monoXtal_df = monoXtal_df.astype(
+63        dict(zip(monoXtal_df.keys(), [*[int]*2, float, str, *[float]*6])))
+64    merge = pd.merge(polyXtal_df, monoXtal_df)
+65    return merge
+
+ + + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/io/simulated/lines_from_raw_dat.html b/ramanchada2/io/simulated/lines_from_raw_dat.html new file mode 100644 index 00000000..9398062b --- /dev/null +++ b/ramanchada2/io/simulated/lines_from_raw_dat.html @@ -0,0 +1,300 @@ + + + + + + + ramanchada2.io.simulated.lines_from_raw_dat API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.io.simulated.lines_from_raw_dat

+ + + + + + +
 1from io import TextIOBase
+ 2
+ 3import pandas as pd
+ 4from pydantic import validate_call
+ 5
+ 6
+ 7@validate_call(config=dict(arbitrary_types_allowed=True))
+ 8def lines_from_raw_dat(data_in: TextIOBase) -> pd.DataFrame:
+ 9    df = pd.read_table(data_in, sep=r'\s+', dtype=float)
+10    df.rename(columns={'#FREQUENCIES': 'Frequencies'}, inplace=True)
+11    return df
+
+ + +
+
+ +
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + lines_from_raw_dat(data_in: io.TextIOBase) -> pandas.core.frame.DataFrame: + + + +
+ +
 8@validate_call(config=dict(arbitrary_types_allowed=True))
+ 9def lines_from_raw_dat(data_in: TextIOBase) -> pd.DataFrame:
+10    df = pd.read_table(data_in, sep=r'\s+', dtype=float)
+11    df.rename(columns={'#FREQUENCIES': 'Frequencies'}, inplace=True)
+12    return df
+
+ + + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/io/simulated/read_simulated_lines.html b/ramanchada2/io/simulated/read_simulated_lines.html new file mode 100644 index 00000000..90f512c1 --- /dev/null +++ b/ramanchada2/io/simulated/read_simulated_lines.html @@ -0,0 +1,381 @@ + + + + + + + ramanchada2.io.simulated.read_simulated_lines API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.io.simulated.read_simulated_lines

+ + + + + + +
 1from io import TextIOBase
+ 2from typing import Dict, List, Literal, Set, Tuple
+ 3
+ 4from pydantic import validate_call
+ 5
+ 6from .crystal.discrete_lines_dat import lines_from_crystal_dat
+ 7from .crystal.discrete_lines_out import lines_from_crystal_out
+ 8from .lines_from_raw_dat import lines_from_raw_dat
+ 9from .vasp.vasp_simulation_dat import lines_from_vasp_dat
+10
+11
+12@validate_call(config=dict(arbitrary_types_allowed=True))
+13def read_simulated_lines(data_in: TextIOBase,
+14                         sim_type: Literal['vasp', 'crystal_out', 'crystal_dat', 'raw_dat'],
+15                         use: Set[Literal[
+16                             'I_tot', 'I_perp', 'I_par',
+17                             'I_xx', 'I_xy', 'I_xz', 'I_yy', 'I_yz', 'I_zz'
+18                             ]] = {'I_tot'}
+19                         ) -> Tuple[List[str], List[float], Dict[str, List[float]]]:
+20    positions: List[float]
+21    intensities: Dict[str, List[float]] = dict()
+22    if sim_type.startswith('crystal'):
+23        if sim_type.endswith('out'):
+24            tbl = lines_from_crystal_out(data_in)
+25        elif sim_type.endswith('dat'):
+26            tbl = lines_from_crystal_dat(data_in)
+27        else:
+28            raise Exception('This should never happen')
+29        names = [f'_{i}' for i in range(len(tbl['I_tot']))]
+30        for key in use:
+31            intensities.update({key: tbl[key].to_list()})
+32        positions = tbl['Frequencies'].to_list()
+33
+34    elif sim_type == 'vasp':
+35        tbl = lines_from_vasp_dat(data_in)
+36        names = [f'_{mode}'.replace('.', '_') for mode in tbl['mode']]
+37        for key in use:
+38            if key in {'I_xx', 'I_xy', 'I_xz', 'I_yy', 'I_yz', 'I_zz'}:
+39                raise ValueError('vasp simulation does not support monocrystal intensities')
+40            if key == 'I_tot':
+41                intensities.update({key: tbl['activity'].to_list()})
+42            else:
+43                intensities.update({key: tbl[key].to_list()})
+44        positions = tbl['freq(cm-1)'].to_list()
+45
+46    elif sim_type == 'raw_dat':
+47        tbl = lines_from_raw_dat(data_in)
+48        names = [''] * len(tbl['I_tot'])
+49        for key in use:
+50            intensities.update({key: tbl[key].to_list()})
+51        positions = tbl['Frequencies'].to_list()
+52    else:
+53        raise Exception('This should never happen')
+54    return names, positions, intensities
+
+ + +
+
+ +
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + read_simulated_lines( data_in: io.TextIOBase, sim_type: Literal['vasp', 'crystal_out', 'crystal_dat', 'raw_dat'], use: Set[Literal['I_tot', 'I_perp', 'I_par', 'I_xx', 'I_xy', 'I_xz', 'I_yy', 'I_yz', 'I_zz']] = {'I_tot'}) -> Tuple[List[str], List[float], Dict[str, List[float]]]: + + + +
+ +
13@validate_call(config=dict(arbitrary_types_allowed=True))
+14def read_simulated_lines(data_in: TextIOBase,
+15                         sim_type: Literal['vasp', 'crystal_out', 'crystal_dat', 'raw_dat'],
+16                         use: Set[Literal[
+17                             'I_tot', 'I_perp', 'I_par',
+18                             'I_xx', 'I_xy', 'I_xz', 'I_yy', 'I_yz', 'I_zz'
+19                             ]] = {'I_tot'}
+20                         ) -> Tuple[List[str], List[float], Dict[str, List[float]]]:
+21    positions: List[float]
+22    intensities: Dict[str, List[float]] = dict()
+23    if sim_type.startswith('crystal'):
+24        if sim_type.endswith('out'):
+25            tbl = lines_from_crystal_out(data_in)
+26        elif sim_type.endswith('dat'):
+27            tbl = lines_from_crystal_dat(data_in)
+28        else:
+29            raise Exception('This should never happen')
+30        names = [f'_{i}' for i in range(len(tbl['I_tot']))]
+31        for key in use:
+32            intensities.update({key: tbl[key].to_list()})
+33        positions = tbl['Frequencies'].to_list()
+34
+35    elif sim_type == 'vasp':
+36        tbl = lines_from_vasp_dat(data_in)
+37        names = [f'_{mode}'.replace('.', '_') for mode in tbl['mode']]
+38        for key in use:
+39            if key in {'I_xx', 'I_xy', 'I_xz', 'I_yy', 'I_yz', 'I_zz'}:
+40                raise ValueError('vasp simulation does not support monocrystal intensities')
+41            if key == 'I_tot':
+42                intensities.update({key: tbl['activity'].to_list()})
+43            else:
+44                intensities.update({key: tbl[key].to_list()})
+45        positions = tbl['freq(cm-1)'].to_list()
+46
+47    elif sim_type == 'raw_dat':
+48        tbl = lines_from_raw_dat(data_in)
+49        names = [''] * len(tbl['I_tot'])
+50        for key in use:
+51            intensities.update({key: tbl[key].to_list()})
+52        positions = tbl['Frequencies'].to_list()
+53    else:
+54        raise Exception('This should never happen')
+55    return names, positions, intensities
+
+ + + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/io/simulated/vasp.html b/ramanchada2/io/simulated/vasp.html new file mode 100644 index 00000000..3235bc1e --- /dev/null +++ b/ramanchada2/io/simulated/vasp.html @@ -0,0 +1,264 @@ + + + + + + + ramanchada2.io.simulated.vasp API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.io.simulated.vasp

+ + + + + + +
1#!/usr/bin/env python3
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/io/simulated/vasp/vasp_simulation_dat.html b/ramanchada2/io/simulated/vasp/vasp_simulation_dat.html new file mode 100644 index 00000000..f3aec214 --- /dev/null +++ b/ramanchada2/io/simulated/vasp/vasp_simulation_dat.html @@ -0,0 +1,337 @@ + + + + + + + ramanchada2.io.simulated.vasp.vasp_simulation_dat API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.io.simulated.vasp.vasp_simulation_dat

+ + + + + + +
 1from io import TextIOBase
+ 2
+ 3import pandas
+ 4from pydantic import validate_call
+ 5
+ 6
+ 7@validate_call(config=dict(arbitrary_types_allowed=True))
+ 8def lines_from_vasp_dat(data_in: TextIOBase) -> pandas.DataFrame:
+ 9    """
+10    calculates perpendicular and parallel intensities using
+11    https://doi.org/10.1103/PhysRevB.54.7830
+12    """
+13    lines = data_in.readlines()
+14    lines_split = [ll.strip(' \r\n#').split() for ll in lines]
+15    df = pandas.DataFrame.from_records(data=lines_split[1:], columns=lines_split[0])
+16    df = df.apply(pandas.to_numeric)
+17
+18    alpha = df['alpha']
+19    beta2 = df['beta2']
+20    perp_par_ratio = 3*beta2/(45*alpha**2 + 4*beta2)
+21    perp_par_ratio = perp_par_ratio.fillna(0)
+22
+23    i_tot = df['activity']
+24    i_perp = i_tot * perp_par_ratio
+25    i_par = i_tot * (1 - perp_par_ratio)
+26    df = df.merge(i_par.to_frame(name='I_par'), left_index=True, right_index=True)
+27    df = df.merge(i_perp.to_frame(name='I_perp'), left_index=True, right_index=True)
+28    return df
+
+ + +
+
+ +
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + lines_from_vasp_dat(data_in: io.TextIOBase) -> pandas.core.frame.DataFrame: + + + +
+ +
 8@validate_call(config=dict(arbitrary_types_allowed=True))
+ 9def lines_from_vasp_dat(data_in: TextIOBase) -> pandas.DataFrame:
+10    """
+11    calculates perpendicular and parallel intensities using
+12    https://doi.org/10.1103/PhysRevB.54.7830
+13    """
+14    lines = data_in.readlines()
+15    lines_split = [ll.strip(' \r\n#').split() for ll in lines]
+16    df = pandas.DataFrame.from_records(data=lines_split[1:], columns=lines_split[0])
+17    df = df.apply(pandas.to_numeric)
+18
+19    alpha = df['alpha']
+20    beta2 = df['beta2']
+21    perp_par_ratio = 3*beta2/(45*alpha**2 + 4*beta2)
+22    perp_par_ratio = perp_par_ratio.fillna(0)
+23
+24    i_tot = df['activity']
+25    i_perp = i_tot * perp_par_ratio
+26    i_par = i_tot * (1 - perp_par_ratio)
+27    df = df.merge(i_par.to_frame(name='I_par'), left_index=True, right_index=True)
+28    df = df.merge(i_perp.to_frame(name='I_perp'), left_index=True, right_index=True)
+29    return df
+
+ + +

calculates perpendicular and parallel intensities using +https://doi.org/10.1103/PhysRevB.54.7830

+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/misc.html b/ramanchada2/misc.html new file mode 100644 index 00000000..aac15f87 --- /dev/null +++ b/ramanchada2/misc.html @@ -0,0 +1,270 @@ + + + + + + + ramanchada2.misc API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.misc

+ + + + + + +
1#!/usr/bin/env python3
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/misc/base_class.html b/ramanchada2/misc/base_class.html new file mode 100644 index 00000000..5762694a --- /dev/null +++ b/ramanchada2/misc/base_class.html @@ -0,0 +1,386 @@ + + + + + + + ramanchada2.misc.base_class API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.misc.base_class

+ + + + + + +
 1class BaseClass(object):
+ 2    def __init__(self):
+ 3        self._origin = []
+ 4
+ 5    def __repr__(self):
+ 6        return '/'.join(
+ 7            [i.replace('/', '_') for i in self.origin_list_str]
+ 8            ).replace(' ', '')
+ 9
+10    @property
+11    def origin(self):
+12        return self._origin
+13
+14    @origin.setter
+15    def origin(self, value):
+16        self._origin = list(value)
+17
+18    @property
+19    def origin_list_str(self):
+20        ret = list()
+21        for name, args, kwargs in self.origin:
+22            str_args = [str(i) for i in args]
+23            str_kwargs = [f'{k}={repr(v)}' for k, v in kwargs.items()]
+24            sss = f'{name}({", ".join(str_args + str_kwargs)})'
+25            ret.append(sss)
+26        return ret
+
+ + +
+
+ +
+ + class + BaseClass: + + + +
+ +
 2class BaseClass(object):
+ 3    def __init__(self):
+ 4        self._origin = []
+ 5
+ 6    def __repr__(self):
+ 7        return '/'.join(
+ 8            [i.replace('/', '_') for i in self.origin_list_str]
+ 9            ).replace(' ', '')
+10
+11    @property
+12    def origin(self):
+13        return self._origin
+14
+15    @origin.setter
+16    def origin(self, value):
+17        self._origin = list(value)
+18
+19    @property
+20    def origin_list_str(self):
+21        ret = list()
+22        for name, args, kwargs in self.origin:
+23            str_args = [str(i) for i in args]
+24            str_kwargs = [f'{k}={repr(v)}' for k, v in kwargs.items()]
+25            sss = f'{name}({", ".join(str_args + str_kwargs)})'
+26            ret.append(sss)
+27        return ret
+
+ + + + +
+ +
+ origin + + + +
+ +
11    @property
+12    def origin(self):
+13        return self._origin
+
+ + + + +
+
+ +
+ origin_list_str + + + +
+ +
19    @property
+20    def origin_list_str(self):
+21        ret = list()
+22        for name, args, kwargs in self.origin:
+23            str_args = [str(i) for i in args]
+24            str_kwargs = [f'{k}={repr(v)}' for k, v in kwargs.items()]
+25            sss = f'{name}({", ".join(str_args + str_kwargs)})'
+26            ret.append(sss)
+27        return ret
+
+ + + + +
+
+
+ + \ No newline at end of file diff --git a/ramanchada2/misc/constants.html b/ramanchada2/misc/constants.html new file mode 100644 index 00000000..19ea6960 --- /dev/null +++ b/ramanchada2/misc/constants.html @@ -0,0 +1,1068 @@ + + + + + + + ramanchada2.misc.constants API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.misc.constants

+ + + + + + +
  1from .. import spectrum as rc2spectrum
+  2
+  3from .utils.ramanshift_to_wavelength import (abs_nm_to_shift_cm_1_dict,
+  4                                             shift_cm_1_to_abs_nm_dict)
+  5
+  6from typing import Final
+  7
+  8PST_RS_dict = {620.9: 16, 795.8: 10, 1001.4: 100, 1031.8: 27, 1155.3: 13, 1450.5: 8,
+  9               1583.1: 12, 1602.3: 28, 2852.4: 9, 2904.5: 13, 3054.3: 32}
+ 10
+ 11
+ 12neon_nist_wl_nm = {200.7009: 80,
+ 13                   202.55599999999998: 80,
+ 14                   208.54659999999998: 150,
+ 15                   209.61060000000003: 200,
+ 16                   209.6248: 120,
+ 17                   256.2123: 80,
+ 18                   256.7121: 90,
+ 19                   262.3107: 80,
+ 20                   262.98850000000004: 80,
+ 21                   263.6069: 90,
+ 22                   263.82890000000003: 80,
+ 23                   264.40970000000004: 80,
+ 24                   276.2921: 80,
+ 25                   279.20189999999997: 90,
+ 26                   279.4221: 80,
+ 27                   280.9485: 100,
+ 28                   290.6592: 80,
+ 29                   290.6816: 80,
+ 30                   291.0061: 90,
+ 31                   291.0408: 90,
+ 32                   291.11379999999997: 80,
+ 33                   291.5122: 80,
+ 34                   292.5618: 80,
+ 35                   293.2103: 80,
+ 36                   294.0653: 80,
+ 37                   294.6044: 90,
+ 38                   295.5725: 150,
+ 39                   296.3236: 150,
+ 40                   296.71840000000003: 150,
+ 41                   297.2997: 100,
+ 42                   297.47189: 30,
+ 43                   297.9461: 100,
+ 44                   298.26696000000004: 30,
+ 45                   300.1668: 150,
+ 46                   301.7311: 120,
+ 47                   302.7016: 300,
+ 48                   302.8864: 300,
+ 49                   303.07869999999997: 100,
+ 50                   303.4461: 120,
+ 51                   303.59229999999997: 100,
+ 52                   303.772: 100,
+ 53                   303.9586: 100,
+ 54                   304.40880000000004: 100,
+ 55                   304.5556: 100,
+ 56                   304.7556: 120,
+ 57                   305.43449999999996: 100,
+ 58                   305.46770000000004: 100,
+ 59                   305.73906999999997: 30,
+ 60                   305.91060000000004: 100,
+ 61                   306.2491: 100,
+ 62                   306.3301: 100,
+ 63                   307.0887: 100,
+ 64                   307.1529: 100,
+ 65                   307.5731: 100,
+ 66                   308.8166: 120,
+ 67                   309.2092: 100,
+ 68                   309.2901: 120,
+ 69                   309.4006: 100,
+ 70                   309.51030000000003: 100,
+ 71                   309.7131: 100,
+ 72                   311.798: 100,
+ 73                   311.816: 120,
+ 74                   314.1332: 300,
+ 75                   314.3721: 100,
+ 76                   314.8681: 100,
+ 77                   316.4429: 100,
+ 78                   316.5648: 100,
+ 79                   318.8743: 100,
+ 80                   319.4579: 120,
+ 81                   319.85859999999997: 500,
+ 82                   320.8965: 60,
+ 83                   320.9356: 120,
+ 84                   321.37350000000004: 120,
+ 85                   321.4329: 150,
+ 86                   321.8193: 150,
+ 87                   322.4818: 120,
+ 88                   322.9573: 120,
+ 89                   323.007: 200,
+ 90                   323.0419: 120,
+ 91                   323.2022: 120,
+ 92                   323.2372: 150,
+ 93                   324.3396: 100,
+ 94                   324.4095: 100,
+ 95                   324.8345: 100,
+ 96                   325.0355: 100,
+ 97                   329.7726: 150,
+ 98                   330.974: 150,
+ 99                   331.97220000000004: 300,
+100                   332.3745: 1000,
+101                   332.71529999999996: 150,
+102                   332.9158: 100,
+103                   333.48359999999997: 200,
+104                   334.4395: 150,
+105                   334.5453: 300,
+106                   334.5829: 150,
+107                   335.5016: 200,
+108                   335.78200000000004: 120,
+109                   336.0597: 200,
+110                   336.2161: 120,
+111                   336.2707: 100,
+112                   336.7218: 120,
+113                   336.98076000000003: 50,
+114                   336.99072: 70,
+115                   337.1799: 100,
+116                   337.8216: 500,
+117                   338.8417: 150,
+118                   338.8945: 120,
+119                   339.27979999999997: 300,
+120                   340.48220000000003: 100,
+121                   340.6947: 120,
+122                   341.3148: 100,
+123                   341.69140000000004: 120,
+124                   341.7688: 120,
+125                   341.79031: 50,
+126                   341.80055000000004: 5,
+127                   342.8687: 120,
+128                   344.77024: 20,
+129                   345.41944: 10,
+130                   345.661: 100,
+131                   345.9321: 100,
+132                   346.05237: 10,
+133                   346.43382: 10,
+134                   346.65781000000004: 20,
+135                   347.25706: 50,
+136                   347.95189999999997: 150,
+137                   348.0718: 200,
+138                   348.1933: 200,
+139                   349.80636: 10,
+140                   350.12159: 20,
+141                   351.51902: 20,
+142                   352.04711000000003: 100,
+143                   354.28470000000004: 120,
+144                   355.78049999999996: 120,
+145                   356.1198: 100,
+146                   356.8502: 250,
+147                   357.4181: 100,
+148                   357.4612: 200,
+149                   359.35257: 50,
+150                   359.36388999999997: 30,
+151                   360.01685000000003: 10,
+152                   363.3664: 10,
+153                   364.3927: 150,
+154                   366.40729999999996: 200,
+155                   368.22420999999997: 10,
+156                   368.57352000000003: 10,
+157                   369.42130000000003: 200,
+158                   370.12244: 4,
+159                   370.9622: 150,
+160                   371.3079: 250,
+161                   372.7107: 250,
+162                   376.6259: 800,
+163                   377.7133: 1000,
+164                   381.84270000000004: 100,
+165                   382.9749: 120,
+166                   421.9745: 150,
+167                   423.38500000000005: 100,
+168                   425.0649: 120,
+169                   436.9862: 120,
+170                   437.93999999999994: 70,
+171                   437.95500000000004: 150,
+172                   438.5059: 100,
+173                   439.1991: 200,
+174                   439.799: 150,
+175                   440.9299: 150,
+176                   441.3215: 100,
+177                   442.13890000000004: 100,
+178                   442.85159999999996: 100,
+179                   442.8634: 100,
+180                   443.09040000000005: 150,
+181                   443.0942: 150,
+182                   445.7049: 120,
+183                   452.27200000000005: 100,
+184                   453.77545: 100,
+185                   456.90569999999997: 100,
+186                   470.43949000000003: 150,
+187                   470.88594: 120,
+188                   471.00649999999996: 100,
+189                   471.20633: 150,
+190                   471.5344: 150,
+191                   475.2732: 50,
+192                   478.89258: 100,
+193                   479.02195: 50,
+194                   482.7338: 100,
+195                   488.49170000000004: 100,
+196                   500.51587: 50,
+197                   503.77511999999996: 50,
+198                   514.49384: 50,
+199                   533.07775: 60,
+200                   534.10938: 100,
+201                   534.32834: 60,
+202                   540.05618: 200,
+203                   556.27662: 50,
+204                   565.66588: 50,
+205                   571.92248: 50,
+206                   574.82985: 50,
+207                   576.4418800000001: 70,
+208                   580.44496: 50,
+209                   582.01558: 50,
+210                   585.24879: 200,
+211                   587.2827500000001: 50,
+212                   588.18952: 100,
+213                   590.24623: 5,
+214                   590.64294: 5,
+215                   594.48342: 50,
+216                   596.5471: 50,
+217                   597.46273: 50,
+218                   597.5534: 60,
+219                   598.79074: 15,
+220                   602.99969: 100,
+221                   607.43377: 100,
+222                   609.61631: 30,
+223                   612.8449899999999: 10,
+224                   614.3062600000001: 100,
+225                   616.35939: 100,
+226                   618.2146: 15,
+227                   621.72812: 100,
+228                   626.6495: 100,
+229                   630.47889: 10,
+230                   632.81646: 30,
+231                   633.4427800000001: 100,
+232                   638.29917: 100,
+233                   640.2248: 200,
+234                   650.65281: 150,
+235                   653.28822: 10,
+236                   659.89529: 100,
+237                   665.2092700000001: 15,
+238                   667.82762: 50,
+239                   671.7043: 7,
+240                   692.94673: 1000,
+241                   702.40504: 300,
+242                   703.24131: 800,
+243                   705.12923: 20,
+244                   705.91074: 100,
+245                   717.39381: 800,
+246                   721.3199999999999: 150,
+247                   723.5188: 150,
+248                   724.51666: 800,
+249                   734.3945: 150,
+250                   747.24386: 30,
+251                   748.88712: 300,
+252                   749.2102: 100,
+253                   752.2818: 150,
+254                   753.57741: 300,
+255                   754.4044299999999: 130,
+256                   772.4623300000001: 1,
+257                   774.0738: 120,
+258                   783.9052899999999: 2,
+259                   792.6201: 120,
+260                   792.71177: 3,
+261                   793.69961: 13,
+262                   794.3181400000001: 80,
+263                   808.2457999999999: 60,
+264                   808.4345000000001: 100,
+265                   811.85492: 40,
+266                   812.89108: 12,
+267                   813.64054: 170,
+268                   825.9379000000001: 30,
+269                   826.4807000000001: 100,
+270                   826.60772: 70,
+271                   826.71162: 10,
+272                   830.03258: 300,
+273                   831.4995000000001: 100,
+274                   836.57466: 50,
+275                   837.2106: 100,
+276                   837.7608: 800,
+277                   841.71606: 30,
+278                   841.84274: 250,
+279                   846.33575: 40,
+280                   848.44435: 13,
+281                   849.53598: 700,
+282                   854.46958: 15,
+283                   857.13524: 30,
+284                   859.12584: 400,
+285                   863.4647000000001: 350,
+286                   864.70411: 60,
+287                   865.4383099999999: 600,
+288                   865.5522000000001: 80,
+289                   866.8255999999999: 100,
+290                   867.94925: 130,
+291                   868.19211: 150,
+292                   870.41116: 30,
+293                   877.1656300000001: 100,
+294                   878.06226: 600,
+295                   878.3753300000001: 400,
+296                   883.0907199999999: 6,
+297                   885.38668: 300,
+298                   886.53063: 20,
+299                   886.57552: 150,
+300                   891.9500599999999: 60,
+301                   898.85564: 20,
+302                   907.9462: 100,
+303                   914.86716: 120,
+304                   920.1759099999999: 90,
+305                   922.0060100000001: 60,
+306                   922.1580099999999: 20,
+307                   922.66903: 20,
+308                   927.55196: 9,
+309                   928.7563: 200,
+310                   930.0852699999999: 80,
+311                   931.0583899999999: 8,
+312                   931.39726: 30,
+313                   932.65068: 70,
+314                   937.33078: 15,
+315                   942.5378800000001: 50,
+316                   945.9209500000001: 30,
+317                   948.66818: 50,
+318                   953.4162899999999: 60,
+319                   954.7404899999999: 30,
+320                   957.7013000000001: 120,
+321                   966.54197: 180,
+322                   980.8860000000001: 100,
+323                   1029.5417400000001: 4,
+324                   1056.24075: 80,
+325                   1079.80429: 60,
+326                   1084.44772: 90,
+327                   1114.3020000000001: 300,
+328                   1117.7523999999999: 500,
+329                   1139.04339: 150,
+330                   1140.91343: 90,
+331                   1152.27459: 300,
+332                   1152.5019399999999: 150,
+333                   1153.63445: 90,
+334                   1160.15366: 30,
+335                   1161.40807: 130,
+336                   1168.80017: 30,
+337                   1176.67924: 150,
+338                   1178.90435: 130,
+339                   1178.98891: 30,
+340                   1198.4912: 70,
+341                   1206.6334000000002: 200,
+342                   1245.9388999999999: 40,
+343                   1268.9200999999998: 60,
+344                   1291.2014: 80,
+345                   1321.9241: 40,
+346                   1523.0714: 50,
+347                   1716.1929: 20,
+348                   1803.5812: 20,
+349                   1808.3181: 40,
+350                   1808.3263: 9,
+351                   1822.1087: 15,
+352                   1822.7015999999999: 13,
+353                   1827.6642: 140,
+354                   1828.2614: 100,
+355                   1830.3967: 70,
+356                   1835.9094: 20,
+357                   1838.4826: 60,
+358                   1838.9937000000002: 90,
+359                   1840.2836: 40,
+360                   1842.2401999999997: 60,
+361                   1845.864: 13,
+362                   1847.58: 40,
+363                   1859.1541000000002: 70,
+364                   1859.7698: 100,
+365                   1861.8908: 16,
+366                   1862.5158999999999: 20,
+367                   2104.127: 30,
+368                   2170.811: 30,
+369                   2224.736: 13,
+370                   2242.814: 13,
+371                   2253.038: 80,
+372                   2266.179: 13,
+373                   2310.048: 25,
+374                   2326.027: 40,
+375                   2337.296: 50,
+376                   2356.5330000000004: 30,
+377                   2363.648: 170,
+378                   2370.166: 12,
+379                   2370.913: 60,
+380                   2395.1400000000003: 110,
+381                   2395.643: 50,
+382                   2397.816: 60,
+383                   2409.857: 11,
+384                   2416.143: 20,
+385                   2424.9610000000002: 30,
+386                   2436.5009999999997: 70,
+387                   2437.161: 40,
+388                   2444.786: 20,
+389                   2445.939: 30,
+390                   2477.6490000000003: 17,
+391                   2492.889: 30,
+392                   2516.17: 13,
+393                   2552.433: 50,
+394                   2838.62: 6,
+395                   3020.049: 6,
+396                   3317.3089999999997: 8,
+397                   3335.238: 17,
+398                   3389.9809999999998: 5,
+399                   3390.3019999999997: 4,
+400                   3391.31: 12,
+401                   3413.1339999999996: 4,
+402                   3447.143: 6,
+403                   3583.4809999999998: 8}
+404
+405
+406polystyrene_rs = {620.9: 16, 795.8: 10, 1001.4: 100, 1031.8: 27, 1155.3: 13, 1450.5: 8,
+407                  1583.1: 12, 1602.3: 28, 2852.4: 9, 2904.5: 13, 3054.3: 32}
+408
+409
+410neon_rs_dict = {
+411    785: {k: v for k, v in abs_nm_to_shift_cm_1_dict(neon_nist_wl_nm, 785).items() if 100 < k < 3000},
+412    633: {k: v for k, v in abs_nm_to_shift_cm_1_dict(neon_nist_wl_nm, 633).items() if 100 < k < 4500},
+413    532: {k: v for k, v in abs_nm_to_shift_cm_1_dict(neon_nist_wl_nm, 532).items() if 100 < k < 4000},
+414}
+415
+416neon_wl_dict = {
+417    785: {k: v for k, v in shift_cm_1_to_abs_nm_dict(neon_rs_dict[785], 785).items()},
+418    633: {k: v for k, v in shift_cm_1_to_abs_nm_dict(neon_rs_dict[633], 633).items()},
+419    532: {k: v for k, v in shift_cm_1_to_abs_nm_dict(neon_rs_dict[532], 532).items()},
+420}
+421
+422
+423neon_rs_spe = {
+424    785: rc2spectrum.from_delta_lines(neon_rs_dict[785], xcal=lambda x: x, nbins=4500).convolve('gaussian', sigma=1),
+425    633: rc2spectrum.from_delta_lines(neon_rs_dict[633], xcal=lambda x: x, nbins=4500).convolve('gaussian', sigma=2),
+426    532: rc2spectrum.from_delta_lines(neon_rs_dict[532], xcal=lambda x: x, nbins=4500).convolve('gaussian', sigma=3),
+427}
+428
+429neon_wl_spe = {
+430    785: rc2spectrum.from_delta_lines(neon_wl_dict[785], xcal=lambda x: x/22.85 + 788, nbins=4500
+431                                      ).convolve('gaussian', sigma=1.5),
+432    633: rc2spectrum.from_delta_lines(neon_wl_dict[633], xcal=lambda x: x/17.64 + 633, nbins=4500
+433                                      ).convolve('gaussian', sigma=1.5),
+434    532: rc2spectrum.from_delta_lines(neon_wl_dict[532], xcal=lambda x: x/31.69 + 535, nbins=4500
+435                                      ).convolve('gaussian', sigma=1.5),
+436}
+437
+438
+439neon_wl_785_nist_dict = {
+440    792.6841221569385: 5.37437266023976, 793.7330415754924: 0.5689277951354417,
+441    794.3457330415755: 3.501094091821991, 808.4285595693893: 7.202537154952434,
+442    811.8949671772428: 1.7505470455873593, 812.945295404814: 0.5251641209139684,
+443    813.6892778993436: 7.439824945294173, 825.9868433097755: 1.3120972814694163,
+444    826.5665828089599: 7.94695465954125, 830.0568927789934: 13.129102844632756,
+445    831.5448577680525: 4.3763676148399115, 836.6214442013129: 2.1881838071971296,
+446    837.234135667396: 4.376367614845547, 837.8030634573304: 35.010940919002735,
+447    841.8664541909187: 12.03028296382178, 846.3807439824946: 1.750547045586516,
+448    848.4814004376367: 0.568927789934395, 849.5754923413567: 30.634573304125958,
+449    854.5207877461706: 0.6564551422317848, 857.1903719912473: 1.3129102839767155,
+450    859.1597374179431: 17.50547045950853, 863.4923413566739: 15.317286652068542,
+451    865.469184130712: 29.20051773802159, 866.8621444201312: 4.376367614840063,
+452    868.0: 5.689277899344474, 868.218818380744: 6.564551422319682,
+453    870.4507658643327: 1.3129102839772355, 877.190371991244: 4.376367613743546,
+454    878.1094091903724: 26.2582056879645, 878.4157549234137: 17.505470458778227,
+455    883.1422319474835: 0.262582056892803, 885.4179431072209: 13.129102844635762,
+456    886.5947874281137: 7.437997551100201, 891.9824945295405: 2.6258205687594547,
+457    898.8971553610503: 0.8752735229757134, 908.0: 4.376367614838839,
+458    914.9146608315099: 5.251641137834712, 920.2100656455142: 3.9387308533338343,
+459    922.0688951698448: 3.3797527091026245, 927.6061269146609: 0.39387308533920273,
+460    928.7877461706784: 8.752735229757006, 930.144420131291: 3.5010940918132034,
+461    931.1072210065647: 0.35010940916879774, 931.4573304157549: 1.3129102844605525,
+462    932.6827133479212: 3.0634573302989097, 937.3654266958424: 0.6564551422320757,
+463    942.5733041575493: 2.188183807192464, 945.9431072210066: 1.3129102839781117,
+464    948.7002188183808: 2.188183807191779, 953.4704595185996: 2.6258205687594476,
+465    954.7833698030635: 1.3129102839777373, 957.7592997811817: 5.2516411378370345,
+466    966.5995623632385: 7.877461706780519, 980.910284463895: 4.376367614839546
+467}
+468
+469neon_wl_633_nist_dict = {
+470    638.3287981859411: 5.6689342403499765, 640.2562358276643: 11.337868480727586,
+471    650.6870748299319: 8.503401360545043, 653.3514739229025: 0.566893424036351,
+472    659.9274376417234: 5.668934240348053, 665.2562358276643: 0.8503401360546983,
+473    667.8639455782313: 2.8344671200402334, 671.7755102040816: 0.39682539682552465,
+474    692.9773242630386: 56.68934240353873, 702.4444444444445: 17.006802721074873,
+475    703.2947845804988: 45.351473922858105, 705.1655328798186: 1.1337868476493322,
+476    705.9591836734694: 5.668934240348062, 717.4671201814059: 45.351473922836774,
+477    721.3786848072563: 8.503401360545148, 723.5895691609977: 8.50340136054297,
+478    724.5532879818594: 45.351473922833904, 734.4739229024943: 8.503401360542986,
+479    747.2857142857143: 1.7006802717293952, 748.9297052154195: 17.00680272108454,
+480    749.2698412698412: 5.6689342403646865, 752.3310657596371: 8.503401360527796,
+481    753.6349206349206: 17.006802721048707, 754.4852607709751: 7.369614512457517,
+482    772.5124716553288: 0.05668934240365808, 774.156462585034: 6.802721088429488,
+483    783.9637188208617: 0.11337868480724644, 792.6951245635115: 6.971961625854252,
+484    793.77097505694: 0.7369614305162637, 794.3945578231699: 4.535147381418968,
+485    808.4417565814348: 9.329816961551543, 811.9115646254535: 2.2675736482945825,
+486    812.9319727898597: 0.6802720427342306, 813.6689342404153: 9.63718817885658,
+487    825.9704271162868: 1.6978631010464373, 826.5881899888147: 10.231887665802304,
+488    830.1088435374149: 17.00680272107302, 831.5827664399093: 5.668934240348589,
+489    836.6281179138335: 2.8344671202589966, 837.2517006802728: 5.6689342195710095,
+490    837.8185941043079: 45.351473923298364, 841.8913979246645: 15.8101670633123,
+491    846.3786848072561: 2.26757369591529, 848.4761904759695: 0.7369614416713715,
+492    849.6099773242671: 39.68253967290885, 854.5419501133787: 0.8503401360543106,
+493    857.2063492063492: 1.7006802717279004, 859.1904761904761: 22.67573696142483,
+494    863.4988662131518: 19.841269841214043, 864.7460316744742: 3.401354571136033,
+495    865.4928040619619: 38.396369552201875, 866.9002267573604: 5.668934237269633,
+496    868.034013605442: 7.369614508413964, 868.26077097504: 8.503401360112813,
+497    870.4716553287982: 1.7006802717287801, 877.2176870748299: 5.668934240361571,
+498    878.1247165532881: 34.01360544219461, 878.4081632653063: 22.675736961434616,
+499    883.1700680272108: 0.3401360544216929
+500}
+501
+502neon_wl_532_nist_dict = {
+503    540.0804670242978: 6.311139160610751, 556.3000946670874: 1.5777847897339283,
+504    565.7036920164089: 1.5777847897345527, 571.9517197854212: 1.5777847897346757,
+505    574.8548437993057: 1.5777847897345527, 576.4641842852635: 2.2088987059726164,
+506    580.4717576522562: 1.5777847897345527, 582.0495424424108: 1.5777847897345523,
+507    585.2682234143263: 6.311139160610822, 587.3193436415273: 1.5777847897341903,
+508    588.234458819817: 3.1555695802011297, 590.285579047018: 0.15777847901546926,
+509    590.6642473966551: 0.15777847901546949, 594.5140422846324: 1.5777847897344977,
+510    596.5651625118334: 1.5777847897347166, 597.5336867539808: 3.5612432617200778,
+511    598.837172609656: 0.4733354370464895, 603.0340801514673: 3.155569580200976,
+512    607.4518775639002: 3.155569580201294, 609.6607762701167: 0.9466708739111769,
+513    612.8794572420321: 0.31555695803092476, 614.3310192489744: 3.1555695802009724,
+514    616.3821394761754: 3.1555695802010364, 618.2439255285578: 0.4733354370463865,
+515    621.7466077627012: 3.1555695802013357, 626.6692963079836: 3.1555695802012638,
+516    630.5190911959609: 0.31555695803092476, 632.8542126853799: 0.9466708729394551,
+517    633.4853266014544: 3.1555695792292964, 638.3449037551278: 3.1555695802011074,
+518    640.2698011991164: 6.31113916061083, 650.6831808141369: 4.733354370433662,
+519    653.3338592615967: 0.3155569580309239, 659.928999684443: 3.155569580201134,
+520    665.2303565793626: 0.4733354370463867, 667.8494793310192: 1.5777847897339252,
+521    671.7308299147995: 0.22088987062164733
+522}
+523
+524
+525neon_rs_532_nist_dict = abs_nm_to_shift_cm_1_dict(neon_wl_532_nist_dict, 532)
+526neon_rs_633_nist_dict = abs_nm_to_shift_cm_1_dict(neon_wl_633_nist_dict, 633)
+527neon_rs_785_nist_dict = abs_nm_to_shift_cm_1_dict(neon_wl_785_nist_dict, 785)
+528
+529neon_wl_D3_3 = [
+530    533.07775, 540.05616, 556.27662, 565.66588, 571.92248, 574.82985, 576.44188,
+531    580.44496, 580.44496, 582.01558, 585.24878, 587.28275, 588.1895, 590.24623,
+532    594.4834, 596.5471, 598.79074, 602.99968, 607.43376, 609.6163, 612.84498,
+533    614.30627, 616.35937, 618.2146, 621.72812, 626.64952, 630.47893, 633.44276,
+534    638.29914, 640.2248, 650.65277, 653.28824, 659.89528, 667.82766, 671.7043,
+535    692.94672, 702.405, 703.24128, 705.91079, 717.3938, 724.51665, 748.88712,
+536    753.57739, 754.40439, 794.31805, 808.24576, 811.85495, 813.64061, 830.03248,
+537    836.57464, 837.7607, 846.33569, 849.53591, 854.46952, 857.13535, 859.12583,
+538    863.46472, 870.41122, 877.16575, 878.37539, 885.38669, 891.95007, 898.85564,
+539    898.85564, 914.8672, 920.17588, 927.55191, 930.08532, 932.65072, 937.33079,
+540    942.53797, 945.9211, 948.66825, 953.4164, 954.74052, 966.542
+541]
+542
+543neon_wl_D3_3_dict = dict(zip(neon_wl_D3_3, [1]*len(neon_wl_D3_3)))
+544
+545NEON_WL: Final = {
+546    785: neon_wl_785_nist_dict,
+547    633: neon_wl_633_nist_dict,
+548    532: neon_wl_532_nist_dict
+549}
+
+ + +
+
+
+ PST_RS_dict = + + {620.9: 16, 795.8: 10, 1001.4: 100, 1031.8: 27, 1155.3: 13, 1450.5: 8, 1583.1: 12, 1602.3: 28, 2852.4: 9, 2904.5: 13, 3054.3: 32} + + +
+ + + + +
+
+
+ neon_nist_wl_nm = + + {200.7009: 80, 202.55599999999998: 80, 208.54659999999998: 150, 209.61060000000003: 200, 209.6248: 120, 256.2123: 80, 256.7121: 90, 262.3107: 80, 262.98850000000004: 80, 263.6069: 90, 263.82890000000003: 80, 264.40970000000004: 80, 276.2921: 80, 279.20189999999997: 90, 279.4221: 80, 280.9485: 100, 290.6592: 80, 290.6816: 80, 291.0061: 90, 291.0408: 90, 291.11379999999997: 80, 291.5122: 80, 292.5618: 80, 293.2103: 80, 294.0653: 80, 294.6044: 90, 295.5725: 150, 296.3236: 150, 296.71840000000003: 150, 297.2997: 100, 297.47189: 30, 297.9461: 100, 298.26696000000004: 30, 300.1668: 150, 301.7311: 120, 302.7016: 300, 302.8864: 300, 303.07869999999997: 100, 303.4461: 120, 303.59229999999997: 100, 303.772: 100, 303.9586: 100, 304.40880000000004: 100, 304.5556: 100, 304.7556: 120, 305.43449999999996: 100, 305.46770000000004: 100, 305.73906999999997: 30, 305.91060000000004: 100, 306.2491: 100, 306.3301: 100, 307.0887: 100, 307.1529: 100, 307.5731: 100, 308.8166: 120, 309.2092: 100, 309.2901: 120, 309.4006: 100, 309.51030000000003: 100, 309.7131: 100, 311.798: 100, 311.816: 120, 314.1332: 300, 314.3721: 100, 314.8681: 100, 316.4429: 100, 316.5648: 100, 318.8743: 100, 319.4579: 120, 319.85859999999997: 500, 320.8965: 60, 320.9356: 120, 321.37350000000004: 120, 321.4329: 150, 321.8193: 150, 322.4818: 120, 322.9573: 120, 323.007: 200, 323.0419: 120, 323.2022: 120, 323.2372: 150, 324.3396: 100, 324.4095: 100, 324.8345: 100, 325.0355: 100, 329.7726: 150, 330.974: 150, 331.97220000000004: 300, 332.3745: 1000, 332.71529999999996: 150, 332.9158: 100, 333.48359999999997: 200, 334.4395: 150, 334.5453: 300, 334.5829: 150, 335.5016: 200, 335.78200000000004: 120, 336.0597: 200, 336.2161: 120, 336.2707: 100, 336.7218: 120, 336.98076000000003: 50, 336.99072: 70, 337.1799: 100, 337.8216: 500, 338.8417: 150, 338.8945: 120, 339.27979999999997: 300, 340.48220000000003: 100, 340.6947: 120, 341.3148: 100, 341.69140000000004: 120, 341.7688: 120, 341.79031: 50, 341.80055000000004: 5, 342.8687: 120, 344.77024: 20, 345.41944: 10, 345.661: 100, 345.9321: 100, 346.05237: 10, 346.43382: 10, 346.65781000000004: 20, 347.25706: 50, 347.95189999999997: 150, 348.0718: 200, 348.1933: 200, 349.80636: 10, 350.12159: 20, 351.51902: 20, 352.04711000000003: 100, 354.28470000000004: 120, 355.78049999999996: 120, 356.1198: 100, 356.8502: 250, 357.4181: 100, 357.4612: 200, 359.35257: 50, 359.36388999999997: 30, 360.01685000000003: 10, 363.3664: 10, 364.3927: 150, 366.40729999999996: 200, 368.22420999999997: 10, 368.57352000000003: 10, 369.42130000000003: 200, 370.12244: 4, 370.9622: 150, 371.3079: 250, 372.7107: 250, 376.6259: 800, 377.7133: 1000, 381.84270000000004: 100, 382.9749: 120, 421.9745: 150, 423.38500000000005: 100, 425.0649: 120, 436.9862: 120, 437.93999999999994: 70, 437.95500000000004: 150, 438.5059: 100, 439.1991: 200, 439.799: 150, 440.9299: 150, 441.3215: 100, 442.13890000000004: 100, 442.85159999999996: 100, 442.8634: 100, 443.09040000000005: 150, 443.0942: 150, 445.7049: 120, 452.27200000000005: 100, 453.77545: 100, 456.90569999999997: 100, 470.43949000000003: 150, 470.88594: 120, 471.00649999999996: 100, 471.20633: 150, 471.5344: 150, 475.2732: 50, 478.89258: 100, 479.02195: 50, 482.7338: 100, 488.49170000000004: 100, 500.51587: 50, 503.77511999999996: 50, 514.49384: 50, 533.07775: 60, 534.10938: 100, 534.32834: 60, 540.05618: 200, 556.27662: 50, 565.66588: 50, 571.92248: 50, 574.82985: 50, 576.4418800000001: 70, 580.44496: 50, 582.01558: 50, 585.24879: 200, 587.2827500000001: 50, 588.18952: 100, 590.24623: 5, 590.64294: 5, 594.48342: 50, 596.5471: 50, 597.46273: 50, 597.5534: 60, 598.79074: 15, 602.99969: 100, 607.43377: 100, 609.61631: 30, 612.8449899999999: 10, 614.3062600000001: 100, 616.35939: 100, 618.2146: 15, 621.72812: 100, 626.6495: 100, 630.47889: 10, 632.81646: 30, 633.4427800000001: 100, 638.29917: 100, 640.2248: 200, 650.65281: 150, 653.28822: 10, 659.89529: 100, 665.2092700000001: 15, 667.82762: 50, 671.7043: 7, 692.94673: 1000, 702.40504: 300, 703.24131: 800, 705.12923: 20, 705.91074: 100, 717.39381: 800, 721.3199999999999: 150, 723.5188: 150, 724.51666: 800, 734.3945: 150, 747.24386: 30, 748.88712: 300, 749.2102: 100, 752.2818: 150, 753.57741: 300, 754.4044299999999: 130, 772.4623300000001: 1, 774.0738: 120, 783.9052899999999: 2, 792.6201: 120, 792.71177: 3, 793.69961: 13, 794.3181400000001: 80, 808.2457999999999: 60, 808.4345000000001: 100, 811.85492: 40, 812.89108: 12, 813.64054: 170, 825.9379000000001: 30, 826.4807000000001: 100, 826.60772: 70, 826.71162: 10, 830.03258: 300, 831.4995000000001: 100, 836.57466: 50, 837.2106: 100, 837.7608: 800, 841.71606: 30, 841.84274: 250, 846.33575: 40, 848.44435: 13, 849.53598: 700, 854.46958: 15, 857.13524: 30, 859.12584: 400, 863.4647000000001: 350, 864.70411: 60, 865.4383099999999: 600, 865.5522000000001: 80, 866.8255999999999: 100, 867.94925: 130, 868.19211: 150, 870.41116: 30, 877.1656300000001: 100, 878.06226: 600, 878.3753300000001: 400, 883.0907199999999: 6, 885.38668: 300, 886.53063: 20, 886.57552: 150, 891.9500599999999: 60, 898.85564: 20, 907.9462: 100, 914.86716: 120, 920.1759099999999: 90, 922.0060100000001: 60, 922.1580099999999: 20, 922.66903: 20, 927.55196: 9, 928.7563: 200, 930.0852699999999: 80, 931.0583899999999: 8, 931.39726: 30, 932.65068: 70, 937.33078: 15, 942.5378800000001: 50, 945.9209500000001: 30, 948.66818: 50, 953.4162899999999: 60, 954.7404899999999: 30, 957.7013000000001: 120, 966.54197: 180, 980.8860000000001: 100, 1029.5417400000001: 4, 1056.24075: 80, 1079.80429: 60, 1084.44772: 90, 1114.3020000000001: 300, 1117.7523999999999: 500, 1139.04339: 150, 1140.91343: 90, 1152.27459: 300, 1152.5019399999999: 150, 1153.63445: 90, 1160.15366: 30, 1161.40807: 130, 1168.80017: 30, 1176.67924: 150, 1178.90435: 130, 1178.98891: 30, 1198.4912: 70, 1206.6334000000002: 200, 1245.9388999999999: 40, 1268.9200999999998: 60, 1291.2014: 80, 1321.9241: 40, 1523.0714: 50, 1716.1929: 20, 1803.5812: 20, 1808.3181: 40, 1808.3263: 9, 1822.1087: 15, 1822.7015999999999: 13, 1827.6642: 140, 1828.2614: 100, 1830.3967: 70, 1835.9094: 20, 1838.4826: 60, 1838.9937000000002: 90, 1840.2836: 40, 1842.2401999999997: 60, 1845.864: 13, 1847.58: 40, 1859.1541000000002: 70, 1859.7698: 100, 1861.8908: 16, 1862.5158999999999: 20, 2104.127: 30, 2170.811: 30, 2224.736: 13, 2242.814: 13, 2253.038: 80, 2266.179: 13, 2310.048: 25, 2326.027: 40, 2337.296: 50, 2356.5330000000004: 30, 2363.648: 170, 2370.166: 12, 2370.913: 60, 2395.1400000000003: 110, 2395.643: 50, 2397.816: 60, 2409.857: 11, 2416.143: 20, 2424.9610000000002: 30, 2436.5009999999997: 70, 2437.161: 40, 2444.786: 20, 2445.939: 30, 2477.6490000000003: 17, 2492.889: 30, 2516.17: 13, 2552.433: 50, 2838.62: 6, 3020.049: 6, 3317.3089999999997: 8, 3335.238: 17, 3389.9809999999998: 5, 3390.3019999999997: 4, 3391.31: 12, 3413.1339999999996: 4, 3447.143: 6, 3583.4809999999998: 8} + + +
+ + + + +
+
+
+ polystyrene_rs = + + {620.9: 16, 795.8: 10, 1001.4: 100, 1031.8: 27, 1155.3: 13, 1450.5: 8, 1583.1: 12, 1602.3: 28, 2852.4: 9, 2904.5: 13, 3054.3: 32} + + +
+ + + + +
+
+
+ neon_rs_dict = + + {785: {np.float64(122.46893256885171): np.float64(120.0), np.float64(123.92790418673181): np.float64(3.0), np.float64(139.62846387796614): np.float64(13.0), np.float64(149.43939261183922): np.float64(80.0), np.float64(366.3796839579363): np.float64(60.0), np.float64(369.2675936274158): np.float64(100.0), np.float64(421.38180516260735): np.float64(40.0), np.float64(437.0823975157964): np.float64(12.0), np.float64(448.4137962350071): np.float64(170.0), np.float64(631.4057156452395): np.float64(30.0), np.float64(639.3574108984682): np.float64(100.0), np.float64(641.2166700808558): np.float64(70.0), np.float64(642.737084741243): np.float64(10.0), np.float64(691.1336413932653): np.float64(300.0), np.float64(712.3880633377877): np.float64(100.0), np.float64(785.3477634818161): np.float64(50.0), np.float64(794.42757260046): np.float64(100.0), np.float64(802.2720828079191): np.float64(800.0), np.float64(858.3625927463404): np.float64(30.0), np.float64(860.1503620255945): np.float64(250.0), np.float64(923.2117794361885): np.float64(40.0), np.float64(952.5766542670426): np.float64(13.0), np.float64(967.7216907334014): np.float64(700.0), np.float64(1035.6867269022846): np.float64(15.0), np.float64(1072.08315781891): np.float64(30.0), np.float64(1099.115138430138): np.float64(400.0), np.float64(1157.604148115537): np.float64(350.0), np.float64(1174.2039492465462): np.float64(60.0), np.float64(1184.0148919843368): np.float64(600.0), np.float64(1185.5352862129364): np.float64(80.0), np.float64(1202.5075530881757): np.float64(100.0), np.float64(1217.4425451131438): np.float64(130.0), np.float64(1220.665437642399): np.float64(150.0), np.float64(1250.0302210935215): np.float64(30.0), np.float64(1338.4980195800945): np.float64(100.0), np.float64(1350.1394500377296): np.float64(600.0), np.float64(1354.1986085623885): np.float64(400.0), np.float64(1414.9886119309567): np.float64(6.0), np.float64(1444.3533419670161): np.float64(300.0), np.float64(1458.9273939198806): np.float64(20.0), np.float64(1459.498530694608): np.float64(150.0), np.float64(1527.4634843309643): np.float64(60.0), np.float64(1613.5965041854067): np.float64(20.0), np.float64(1724.9850603188252): np.float64(100.0), np.float64(1808.3048539141466): np.float64(120.0), np.float64(1871.3662202368241): np.float64(90.0), np.float64(1892.9372168038894): np.float64(60.0), np.float64(1894.7249573620707): np.float64(20.0), np.float64(1900.7309751098303): np.float64(20.0), np.float64(1957.786316393365): np.float64(9.0), np.float64(1971.7663781767853): np.float64(200.0), np.float64(1987.151135078183): np.float64(80.0), np.float64(1998.388557694021): np.float64(8.0), np.float64(2002.2962579980554): np.float64(30.0), np.float64(2016.7254712832068): np.float64(70.0), np.float64(2070.2611413719483): np.float64(15.0), np.float64(2129.200339961183): np.float64(50.0), np.float64(2167.1455819255425): np.float64(30.0), np.float64(2197.759988274157): np.float64(50.0), np.float64(2250.2557050497553): np.float64(60.0), np.float64(2264.8031148954296): np.float64(30.0), np.float64(2297.184477570986): np.float64(120.0), np.float64(2392.6912977297347): np.float64(180.0), np.float64(2543.988860402575): np.float64(100.0)}, 633: {np.float64(131.15349323856475): np.float64(100.0), np.float64(178.27466380474812): np.float64(200.0), np.float64(428.6085469303318): np.float64(150.0), np.float64(490.60888429816987): np.float64(10.0), np.float64(643.8689658571262): np.float64(100.0), np.float64(764.9250424124886): np.float64(15.0), np.float64(823.8643500376157): np.float64(50.0), np.float64(910.2849841405953): np.float64(7.0), np.float64(1366.664578090937): np.float64(1000.0), np.float64(1560.9884142372662): np.float64(300.0), np.float64(1577.918319348396): np.float64(800.0), np.float64(1615.9907404166095): np.float64(20.0), np.float64(1631.6913325599187): np.float64(100.0), np.float64(1858.4430565740402): np.float64(800.0), np.float64(1934.3157870391897): np.float64(150.0), np.float64(1976.4473852543142): np.float64(150.0), np.float64(1995.483197701751): np.float64(800.0), np.float64(2181.1285988136524): np.float64(150.0), np.float64(2415.276207094919): np.float64(30.0), np.float64(2444.6410422620947): np.float64(300.0), np.float64(2450.3992858353195): np.float64(100.0), np.float64(2504.8972680083675): np.float64(150.0), np.float64(2527.75145967322): np.float64(300.0), np.float64(2542.2988104564824): np.float64(130.0), np.float64(2852.1732140759405): np.float64(1.0), np.float64(2879.1234484825845): np.float64(120.0), np.float64(3041.1452207757484): np.float64(2.0), np.float64(3181.4037390207895): np.float64(120.0), np.float64(3182.86271063867): np.float64(3.0), np.float64(3198.563270329904): np.float64(13.0), np.float64(3208.3741990637773): np.float64(80.0), np.float64(3425.314490409874): np.float64(60.0), np.float64(3428.2024000793535): np.float64(100.0), np.float64(3480.3166116145453): np.float64(40.0), np.float64(3496.0172039677345): np.float64(12.0), np.float64(3507.348602686945): np.float64(170.0), np.float64(3690.340522097177): np.float64(30.0), np.float64(3698.292217350406): np.float64(100.0), np.float64(3700.151476532794): np.float64(70.0), np.float64(3701.671891193181): np.float64(10.0), np.float64(3750.068447845203): np.float64(300.0), np.float64(3771.3228697897257): np.float64(100.0), np.float64(3844.282569933754): np.float64(50.0), np.float64(3853.362379052398): np.float64(100.0), np.float64(3861.206889259857): np.float64(800.0), np.float64(3917.2973991982785): np.float64(30.0), np.float64(3919.0851684775325): np.float64(250.0), np.float64(3982.1465858881265): np.float64(40.0), np.float64(4011.5114607189803): np.float64(13.0), np.float64(4026.6564971853395): np.float64(700.0), np.float64(4094.6215333542223): np.float64(15.0), np.float64(4131.017964270848): np.float64(30.0), np.float64(4158.049944882076): np.float64(400.0), np.float64(4216.538954567475): np.float64(350.0), np.float64(4233.138755698485): np.float64(60.0), np.float64(4242.949698436275): np.float64(600.0), np.float64(4244.470092664874): np.float64(80.0), np.float64(4261.442359540114): np.float64(100.0), np.float64(4276.377351565082): np.float64(130.0), np.float64(4279.600244094337): np.float64(150.0), np.float64(4308.96502754546): np.float64(30.0), np.float64(4397.432826032033): np.float64(100.0), np.float64(4409.074256489667): np.float64(600.0), np.float64(4413.133415014327): np.float64(400.0), np.float64(4473.923418382895): np.float64(6.0)}, 532: {np.float64(280.400374063339): np.float64(200.0), np.float64(820.3246859611342): np.float64(50.0), np.float64(1118.7121507719057): np.float64(50.0), np.float64(1312.1053685299726): np.float64(50.0), np.float64(1400.5402962651492): np.float64(50.0), np.float64(1449.1897851185397): np.float64(70.0), np.float64(1568.8301417453613): np.float64(50.0), np.float64(1615.3218462004172): np.float64(50.0), np.float64(1710.2420754482148): np.float64(200.0), np.float64(1769.419306271512): np.float64(50.0), np.float64(1795.6695062543874): np.float64(100.0), np.float64(1854.9105300823699): np.float64(5.0), np.float64(1866.2898133610774): np.float64(5.0), np.float64(1975.6654877605317): np.float64(50.0), np.float64(2033.8567623301808): np.float64(50.0), np.float64(2059.546783125738): np.float64(50.0), np.float64(2062.0864460269026): np.float64(60.0), np.float64(2096.667422736005): np.float64(15.0), np.float64(2213.236028525559): np.float64(100.0), np.float64(2334.292358356692): np.float64(100.0), np.float64(2393.2318928421078): np.float64(30.0), np.float64(2479.652593999227): np.float64(10.0), np.float64(2518.4671736471323): np.float64(100.0), np.float64(2572.691915262086): np.float64(100.0), np.float64(2621.3796761996955): np.float64(15.0), np.float64(2712.79156071062): np.float64(100.0), np.float64(2839.1085285308986): np.float64(100.0), np.float64(2936.033203089824): np.float64(10.0), np.float64(2994.6222331219114): np.float64(30.0), np.float64(3010.246912802971): np.float64(100.0), np.float64(3130.3576648049207): np.float64(100.0), np.float64(3177.4788353711037): np.float64(200.0), np.float64(3427.8127184966875): np.float64(150.0), np.float64(3489.8130558645257): np.float64(10.0), np.float64(3643.073137423482): np.float64(100.0), np.float64(3764.1292139788443): np.float64(15.0), np.float64(3823.0685216039715): np.float64(50.0), np.float64(3909.4891557069514): np.float64(7.0)}} + + +
+ + + + +
+
+
+ neon_wl_dict = + + {785: {np.float64(792.6201): np.float64(120.0), np.float64(792.71177): np.float64(3.0), np.float64(793.69961): np.float64(13.0), np.float64(794.3181400000001): np.float64(80.0), np.float64(808.2457999999999): np.float64(60.0), np.float64(808.4345000000001): np.float64(100.0), np.float64(811.85492): np.float64(40.0), np.float64(812.89108): np.float64(12.0), np.float64(813.64054): np.float64(170.0), np.float64(825.9379000000001): np.float64(30.0), np.float64(826.4807): np.float64(100.0), np.float64(826.60772): np.float64(70.0), np.float64(826.7116200000002): np.float64(10.0), np.float64(830.0325800000002): np.float64(300.0), np.float64(831.4995000000001): np.float64(100.0), np.float64(836.5746600000001): np.float64(50.0), np.float64(837.2106): np.float64(100.0), np.float64(837.7608000000001): np.float64(800.0), np.float64(841.7160600000001): np.float64(30.0), np.float64(841.84274): np.float64(250.0), np.float64(846.33575): np.float64(40.0), np.float64(848.4443499999999): np.float64(13.0), np.float64(849.5359799999999): np.float64(700.0), np.float64(854.46958): np.float64(15.0), np.float64(857.13524): np.float64(30.0), np.float64(859.1258399999999): np.float64(400.0), np.float64(863.4647000000001): np.float64(350.0), np.float64(864.7041100000001): np.float64(60.0), np.float64(865.43831): np.float64(600.0), np.float64(865.5522000000001): np.float64(80.0), np.float64(866.8255999999999): np.float64(100.0), np.float64(867.94925): np.float64(130.0), np.float64(868.1921100000001): np.float64(150.0), np.float64(870.4111599999999): np.float64(30.0), np.float64(877.1656300000001): np.float64(100.0), np.float64(878.06226): np.float64(600.0), np.float64(878.3753300000001): np.float64(400.0), np.float64(883.0907199999999): np.float64(6.0), np.float64(885.3866799999998): np.float64(300.0), np.float64(886.53063): np.float64(20.0), np.float64(886.57552): np.float64(150.0), np.float64(891.9500599999998): np.float64(60.0), np.float64(898.85564): np.float64(20.0), np.float64(907.9462): np.float64(100.0), np.float64(914.8671600000001): np.float64(120.0), np.float64(920.1759099999999): np.float64(90.0), np.float64(922.00601): np.float64(60.0), np.float64(922.1580099999999): np.float64(20.0), np.float64(922.66903): np.float64(20.0), np.float64(927.5519599999999): np.float64(9.0), np.float64(928.7563): np.float64(200.0), np.float64(930.0852699999999): np.float64(80.0), np.float64(931.0583899999999): np.float64(8.0), np.float64(931.39726): np.float64(30.0), np.float64(932.6506799999999): np.float64(70.0), np.float64(937.3307799999999): np.float64(15.0), np.float64(942.5378800000001): np.float64(50.0), np.float64(945.9209500000001): np.float64(30.0), np.float64(948.66818): np.float64(50.0), np.float64(953.41629): np.float64(60.0), np.float64(954.74049): np.float64(30.0), np.float64(957.7013000000001): np.float64(120.0), np.float64(966.5419700000001): np.float64(180.0), np.float64(980.8860000000001): np.float64(100.0)}, 633: {np.float64(638.29917): np.float64(100.0), np.float64(640.2248): np.float64(200.0), np.float64(650.65281): np.float64(150.0), np.float64(653.28822): np.float64(10.0), np.float64(659.89529): np.float64(100.0), np.float64(665.2092700000001): np.float64(15.0), np.float64(667.82762): np.float64(50.0), np.float64(671.7043): np.float64(7.0), np.float64(692.94673): np.float64(1000.0), np.float64(702.40504): np.float64(300.0), np.float64(703.24131): np.float64(800.0), np.float64(705.12923): np.float64(20.0), np.float64(705.91074): np.float64(100.0), np.float64(717.39381): np.float64(800.0), np.float64(721.3199999999999): np.float64(150.0), np.float64(723.5188): np.float64(150.0), np.float64(724.51666): np.float64(800.0), np.float64(734.3945): np.float64(150.0), np.float64(747.24386): np.float64(30.0), np.float64(748.8871199999999): np.float64(300.0), np.float64(749.2102): np.float64(100.0), np.float64(752.2818): np.float64(150.0), np.float64(753.57741): np.float64(300.0), np.float64(754.4044299999999): np.float64(130.0), np.float64(772.4623300000001): np.float64(1.0), np.float64(774.0738): np.float64(120.0), np.float64(783.9052899999999): np.float64(2.0), np.float64(792.6201): np.float64(120.0), np.float64(792.71177): np.float64(3.0), np.float64(793.69961): np.float64(13.0), np.float64(794.3181400000001): np.float64(80.0), np.float64(808.2457999999999): np.float64(60.0), np.float64(808.4345000000001): np.float64(100.0), np.float64(811.85492): np.float64(40.0), np.float64(812.89108): np.float64(12.0), np.float64(813.64054): np.float64(170.0), np.float64(825.9379000000001): np.float64(30.0), np.float64(826.4807): np.float64(100.0), np.float64(826.60772): np.float64(70.0), np.float64(826.7116200000002): np.float64(10.0), np.float64(830.0325800000002): np.float64(300.0), np.float64(831.4995000000001): np.float64(100.0), np.float64(836.5746600000001): np.float64(50.0), np.float64(837.2106): np.float64(100.0), np.float64(837.7608000000001): np.float64(800.0), np.float64(841.7160600000001): np.float64(30.0), np.float64(841.84274): np.float64(250.0), np.float64(846.33575): np.float64(40.0), np.float64(848.4443499999999): np.float64(13.0), np.float64(849.5359799999999): np.float64(700.0), np.float64(854.46958): np.float64(15.0), np.float64(857.13524): np.float64(30.0), np.float64(859.1258399999999): np.float64(400.0), np.float64(863.4647000000001): np.float64(350.0), np.float64(864.7041100000001): np.float64(60.0), np.float64(865.43831): np.float64(600.0), np.float64(865.5522000000001): np.float64(80.0), np.float64(866.8255999999999): np.float64(100.0), np.float64(867.94925): np.float64(130.0), np.float64(868.1921100000001): np.float64(150.0), np.float64(870.4111599999999): np.float64(30.0), np.float64(877.1656300000001): np.float64(100.0), np.float64(878.06226): np.float64(600.0), np.float64(878.3753300000001): np.float64(400.0), np.float64(883.0907199999999): np.float64(6.0)}, 532: {np.float64(540.05618): np.float64(200.0), np.float64(556.27662): np.float64(50.0), np.float64(565.66588): np.float64(50.0), np.float64(571.92248): np.float64(50.0), np.float64(574.82985): np.float64(50.0), np.float64(576.4418800000001): np.float64(70.0), np.float64(580.44496): np.float64(50.0), np.float64(582.01558): np.float64(50.0), np.float64(585.24879): np.float64(200.0), np.float64(587.2827500000001): np.float64(50.0), np.float64(588.18952): np.float64(100.0), np.float64(590.24623): np.float64(5.0), np.float64(590.64294): np.float64(5.0), np.float64(594.48342): np.float64(50.0), np.float64(596.5471): np.float64(50.0), np.float64(597.46273): np.float64(50.0), np.float64(597.5534): np.float64(60.0), np.float64(598.79074): np.float64(15.0), np.float64(602.99969): np.float64(100.0), np.float64(607.43377): np.float64(100.0), np.float64(609.61631): np.float64(30.0), np.float64(612.8449899999999): np.float64(10.0), np.float64(614.3062600000001): np.float64(100.0), np.float64(616.35939): np.float64(100.0), np.float64(618.2146): np.float64(15.0), np.float64(621.72812): np.float64(100.0), np.float64(626.6495): np.float64(100.0), np.float64(630.47889): np.float64(10.0), np.float64(632.81646): np.float64(30.0), np.float64(633.4427800000001): np.float64(100.0), np.float64(638.29917): np.float64(100.0), np.float64(640.2248): np.float64(200.0), np.float64(650.65281): np.float64(150.0), np.float64(653.28822): np.float64(10.0), np.float64(659.89529): np.float64(100.0), np.float64(665.2092700000001): np.float64(15.0), np.float64(667.82762): np.float64(50.0), np.float64(671.7043): np.float64(7.0)}} + + +
+ + + + +
+
+
+ neon_rs_spe = + + {785: from_delta_lines({np.float64(122.46893256885171): np.float64(120.0), np.float64(123.92790418673181): np.float64(3.0), np.float64(139.62846387796614): np.float64(13.0), np.float64(149.43939261183922): np.float64(80.0), np.float64(366.3796839579363): np.float64(60.0), np.float64(369.2675936274158): np.float64(100.0), np.float64(421.38180516260735): np.float64(40.0), np.float64(437.0823975157964): np.float64(12.0), np.float64(448.4137962350071): np.float64(170.0), np.float64(631.4057156452395): np.float64(30.0), np.float64(639.3574108984682): np.float64(100.0), np.float64(641.2166700808558): np.float64(70.0), np.float64(642.737084741243): np.float64(10.0), np.float64(691.1336413932653): np.float64(300.0), np.float64(712.3880633377877): np.float64(100.0), np.float64(785.3477634818161): np.float64(50.0), np.float64(794.42757260046): np.float64(100.0), np.float64(802.2720828079191): np.float64(800.0), np.float64(858.3625927463404): np.float64(30.0), np.float64(860.1503620255945): np.float64(250.0), np.float64(923.2117794361885): np.float64(40.0), np.float64(952.5766542670426): np.float64(13.0), np.float64(967.7216907334014): np.float64(700.0), np.float64(1035.6867269022846): np.float64(15.0), np.float64(1072.08315781891): np.float64(30.0), np.float64(1099.115138430138): np.float64(400.0), np.float64(1157.604148115537): np.float64(350.0), np.float64(1174.2039492465462): np.float64(60.0), np.float64(1184.0148919843368): np.float64(600.0), np.float64(1185.5352862129364): np.float64(80.0), np.float64(1202.5075530881757): np.float64(100.0), np.float64(1217.4425451131438): np.float64(130.0), np.float64(1220.665437642399): np.float64(150.0), np.float64(1250.0302210935215): np.float64(30.0), np.float64(1338.4980195800945): np.float64(100.0), np.float64(1350.1394500377296): np.float64(600.0), np.float64(1354.1986085623885): np.float64(400.0), np.float64(1414.9886119309567): np.float64(6.0), np.float64(1444.3533419670161): np.float64(300.0), np.float64(1458.9273939198806): np.float64(20.0), np.float64(1459.498530694608): np.float64(150.0), np.float64(1527.4634843309643): np.float64(60.0), np.float64(1613.5965041854067): np.float64(20.0), np.float64(1724.9850603188252): np.float64(100.0), np.float64(1808.3048539141466): np.float64(120.0), np.float64(1871.3662202368241): np.float64(90.0), np.float64(1892.9372168038894): np.float64(60.0), np.float64(1894.7249573620707): np.float64(20.0), np.float64(1900.7309751098303): np.float64(20.0), np.float64(1957.786316393365): np.float64(9.0), np.float64(1971.7663781767853): np.float64(200.0), np.float64(1987.151135078183): np.float64(80.0), np.float64(1998.388557694021): np.float64(8.0), np.float64(2002.2962579980554): np.float64(30.0), np.float64(2016.7254712832068): np.float64(70.0), np.float64(2070.2611413719483): np.float64(15.0), np.float64(2129.200339961183): np.float64(50.0), np.float64(2167.1455819255425): np.float64(30.0), np.float64(2197.759988274157): np.float64(50.0), np.float64(2250.2557050497553): np.float64(60.0), np.float64(2264.8031148954296): np.float64(30.0), np.float64(2297.184477570986): np.float64(120.0), np.float64(2392.6912977297347): np.float64(180.0), np.float64(2543.988860402575): np.float64(100.0)}, xcal=<function <lambda>>, nbins=4500).convolve('gaussian', sigma=1), 633: from_delta_lines({np.float64(131.15349323856475): np.float64(100.0), np.float64(178.27466380474812): np.float64(200.0), np.float64(428.6085469303318): np.float64(150.0), np.float64(490.60888429816987): np.float64(10.0), np.float64(643.8689658571262): np.float64(100.0), np.float64(764.9250424124886): np.float64(15.0), np.float64(823.8643500376157): np.float64(50.0), np.float64(910.2849841405953): np.float64(7.0), np.float64(1366.664578090937): np.float64(1000.0), np.float64(1560.9884142372662): np.float64(300.0), np.float64(1577.918319348396): np.float64(800.0), np.float64(1615.9907404166095): np.float64(20.0), np.float64(1631.6913325599187): np.float64(100.0), np.float64(1858.4430565740402): np.float64(800.0), np.float64(1934.3157870391897): np.float64(150.0), np.float64(1976.4473852543142): np.float64(150.0), np.float64(1995.483197701751): np.float64(800.0), np.float64(2181.1285988136524): np.float64(150.0), np.float64(2415.276207094919): np.float64(30.0), np.float64(2444.6410422620947): np.float64(300.0), np.float64(2450.3992858353195): np.float64(100.0), np.float64(2504.8972680083675): np.float64(150.0), np.float64(2527.75145967322): np.float64(300.0), np.float64(2542.2988104564824): np.float64(130.0), np.float64(2852.1732140759405): np.float64(1.0), np.float64(2879.1234484825845): np.float64(120.0), np.float64(3041.1452207757484): np.float64(2.0), np.float64(3181.4037390207895): np.float64(120.0), np.float64(3182.86271063867): np.float64(3.0), np.float64(3198.563270329904): np.float64(13.0), np.float64(3208.3741990637773): np.float64(80.0), np.float64(3425.314490409874): np.float64(60.0), np.float64(3428.2024000793535): np.float64(100.0), np.float64(3480.3166116145453): np.float64(40.0), np.float64(3496.0172039677345): np.float64(12.0), np.float64(3507.348602686945): np.float64(170.0), np.float64(3690.340522097177): np.float64(30.0), np.float64(3698.292217350406): np.float64(100.0), np.float64(3700.151476532794): np.float64(70.0), np.float64(3701.671891193181): np.float64(10.0), np.float64(3750.068447845203): np.float64(300.0), np.float64(3771.3228697897257): np.float64(100.0), np.float64(3844.282569933754): np.float64(50.0), np.float64(3853.362379052398): np.float64(100.0), np.float64(3861.206889259857): np.float64(800.0), np.float64(3917.2973991982785): np.float64(30.0), np.float64(3919.0851684775325): np.float64(250.0), np.float64(3982.1465858881265): np.float64(40.0), np.float64(4011.5114607189803): np.float64(13.0), np.float64(4026.6564971853395): np.float64(700.0), np.float64(4094.6215333542223): np.float64(15.0), np.float64(4131.017964270848): np.float64(30.0), np.float64(4158.049944882076): np.float64(400.0), np.float64(4216.538954567475): np.float64(350.0), np.float64(4233.138755698485): np.float64(60.0), np.float64(4242.949698436275): np.float64(600.0), np.float64(4244.470092664874): np.float64(80.0), np.float64(4261.442359540114): np.float64(100.0), np.float64(4276.377351565082): np.float64(130.0), np.float64(4279.600244094337): np.float64(150.0), np.float64(4308.96502754546): np.float64(30.0), np.float64(4397.432826032033): np.float64(100.0), np.float64(4409.074256489667): np.float64(600.0), np.float64(4413.133415014327): np.float64(400.0), np.float64(4473.923418382895): np.float64(6.0)}, xcal=<function <lambda>>, nbins=4500).convolve('gaussian', sigma=2), 532: from_delta_lines({np.float64(280.400374063339): np.float64(200.0), np.float64(820.3246859611342): np.float64(50.0), np.float64(1118.7121507719057): np.float64(50.0), np.float64(1312.1053685299726): np.float64(50.0), np.float64(1400.5402962651492): np.float64(50.0), np.float64(1449.1897851185397): np.float64(70.0), np.float64(1568.8301417453613): np.float64(50.0), np.float64(1615.3218462004172): np.float64(50.0), np.float64(1710.2420754482148): np.float64(200.0), np.float64(1769.419306271512): np.float64(50.0), np.float64(1795.6695062543874): np.float64(100.0), np.float64(1854.9105300823699): np.float64(5.0), np.float64(1866.2898133610774): np.float64(5.0), np.float64(1975.6654877605317): np.float64(50.0), np.float64(2033.8567623301808): np.float64(50.0), np.float64(2059.546783125738): np.float64(50.0), np.float64(2062.0864460269026): np.float64(60.0), np.float64(2096.667422736005): np.float64(15.0), np.float64(2213.236028525559): np.float64(100.0), np.float64(2334.292358356692): np.float64(100.0), np.float64(2393.2318928421078): np.float64(30.0), np.float64(2479.652593999227): np.float64(10.0), np.float64(2518.4671736471323): np.float64(100.0), np.float64(2572.691915262086): np.float64(100.0), np.float64(2621.3796761996955): np.float64(15.0), np.float64(2712.79156071062): np.float64(100.0), np.float64(2839.1085285308986): np.float64(100.0), np.float64(2936.033203089824): np.float64(10.0), np.float64(2994.6222331219114): np.float64(30.0), np.float64(3010.246912802971): np.float64(100.0), np.float64(3130.3576648049207): np.float64(100.0), np.float64(3177.4788353711037): np.float64(200.0), np.float64(3427.8127184966875): np.float64(150.0), np.float64(3489.8130558645257): np.float64(10.0), np.float64(3643.073137423482): np.float64(100.0), np.float64(3764.1292139788443): np.float64(15.0), np.float64(3823.0685216039715): np.float64(50.0), np.float64(3909.4891557069514): np.float64(7.0)}, xcal=<function <lambda>>, nbins=4500).convolve('gaussian', sigma=3)} + + +
+ + + + +
+
+
+ neon_wl_spe = + + {785: from_delta_lines({np.float64(792.6201): np.float64(120.0), np.float64(792.71177): np.float64(3.0), np.float64(793.69961): np.float64(13.0), np.float64(794.3181400000001): np.float64(80.0), np.float64(808.2457999999999): np.float64(60.0), np.float64(808.4345000000001): np.float64(100.0), np.float64(811.85492): np.float64(40.0), np.float64(812.89108): np.float64(12.0), np.float64(813.64054): np.float64(170.0), np.float64(825.9379000000001): np.float64(30.0), np.float64(826.4807): np.float64(100.0), np.float64(826.60772): np.float64(70.0), np.float64(826.7116200000002): np.float64(10.0), np.float64(830.0325800000002): np.float64(300.0), np.float64(831.4995000000001): np.float64(100.0), np.float64(836.5746600000001): np.float64(50.0), np.float64(837.2106): np.float64(100.0), np.float64(837.7608000000001): np.float64(800.0), np.float64(841.7160600000001): np.float64(30.0), np.float64(841.84274): np.float64(250.0), np.float64(846.33575): np.float64(40.0), np.float64(848.4443499999999): np.float64(13.0), np.float64(849.5359799999999): np.float64(700.0), np.float64(854.46958): np.float64(15.0), np.float64(857.13524): np.float64(30.0), np.float64(859.1258399999999): np.float64(400.0), np.float64(863.4647000000001): np.float64(350.0), np.float64(864.7041100000001): np.float64(60.0), np.float64(865.43831): np.float64(600.0), np.float64(865.5522000000001): np.float64(80.0), np.float64(866.8255999999999): np.float64(100.0), np.float64(867.94925): np.float64(130.0), np.float64(868.1921100000001): np.float64(150.0), np.float64(870.4111599999999): np.float64(30.0), np.float64(877.1656300000001): np.float64(100.0), np.float64(878.06226): np.float64(600.0), np.float64(878.3753300000001): np.float64(400.0), np.float64(883.0907199999999): np.float64(6.0), np.float64(885.3866799999998): np.float64(300.0), np.float64(886.53063): np.float64(20.0), np.float64(886.57552): np.float64(150.0), np.float64(891.9500599999998): np.float64(60.0), np.float64(898.85564): np.float64(20.0), np.float64(907.9462): np.float64(100.0), np.float64(914.8671600000001): np.float64(120.0), np.float64(920.1759099999999): np.float64(90.0), np.float64(922.00601): np.float64(60.0), np.float64(922.1580099999999): np.float64(20.0), np.float64(922.66903): np.float64(20.0), np.float64(927.5519599999999): np.float64(9.0), np.float64(928.7563): np.float64(200.0), np.float64(930.0852699999999): np.float64(80.0), np.float64(931.0583899999999): np.float64(8.0), np.float64(931.39726): np.float64(30.0), np.float64(932.6506799999999): np.float64(70.0), np.float64(937.3307799999999): np.float64(15.0), np.float64(942.5378800000001): np.float64(50.0), np.float64(945.9209500000001): np.float64(30.0), np.float64(948.66818): np.float64(50.0), np.float64(953.41629): np.float64(60.0), np.float64(954.74049): np.float64(30.0), np.float64(957.7013000000001): np.float64(120.0), np.float64(966.5419700000001): np.float64(180.0), np.float64(980.8860000000001): np.float64(100.0)}, xcal=<function <lambda>>, nbins=4500).convolve('gaussian', sigma=1.5), 633: from_delta_lines({np.float64(638.29917): np.float64(100.0), np.float64(640.2248): np.float64(200.0), np.float64(650.65281): np.float64(150.0), np.float64(653.28822): np.float64(10.0), np.float64(659.89529): np.float64(100.0), np.float64(665.2092700000001): np.float64(15.0), np.float64(667.82762): np.float64(50.0), np.float64(671.7043): np.float64(7.0), np.float64(692.94673): np.float64(1000.0), np.float64(702.40504): np.float64(300.0), np.float64(703.24131): np.float64(800.0), np.float64(705.12923): np.float64(20.0), np.float64(705.91074): np.float64(100.0), np.float64(717.39381): np.float64(800.0), np.float64(721.3199999999999): np.float64(150.0), np.float64(723.5188): np.float64(150.0), np.float64(724.51666): np.float64(800.0), np.float64(734.3945): np.float64(150.0), np.float64(747.24386): np.float64(30.0), np.float64(748.8871199999999): np.float64(300.0), np.float64(749.2102): np.float64(100.0), np.float64(752.2818): np.float64(150.0), np.float64(753.57741): np.float64(300.0), np.float64(754.4044299999999): np.float64(130.0), np.float64(772.4623300000001): np.float64(1.0), np.float64(774.0738): np.float64(120.0), np.float64(783.9052899999999): np.float64(2.0), np.float64(792.6201): np.float64(120.0), np.float64(792.71177): np.float64(3.0), np.float64(793.69961): np.float64(13.0), np.float64(794.3181400000001): np.float64(80.0), np.float64(808.2457999999999): np.float64(60.0), np.float64(808.4345000000001): np.float64(100.0), np.float64(811.85492): np.float64(40.0), np.float64(812.89108): np.float64(12.0), np.float64(813.64054): np.float64(170.0), np.float64(825.9379000000001): np.float64(30.0), np.float64(826.4807): np.float64(100.0), np.float64(826.60772): np.float64(70.0), np.float64(826.7116200000002): np.float64(10.0), np.float64(830.0325800000002): np.float64(300.0), np.float64(831.4995000000001): np.float64(100.0), np.float64(836.5746600000001): np.float64(50.0), np.float64(837.2106): np.float64(100.0), np.float64(837.7608000000001): np.float64(800.0), np.float64(841.7160600000001): np.float64(30.0), np.float64(841.84274): np.float64(250.0), np.float64(846.33575): np.float64(40.0), np.float64(848.4443499999999): np.float64(13.0), np.float64(849.5359799999999): np.float64(700.0), np.float64(854.46958): np.float64(15.0), np.float64(857.13524): np.float64(30.0), np.float64(859.1258399999999): np.float64(400.0), np.float64(863.4647000000001): np.float64(350.0), np.float64(864.7041100000001): np.float64(60.0), np.float64(865.43831): np.float64(600.0), np.float64(865.5522000000001): np.float64(80.0), np.float64(866.8255999999999): np.float64(100.0), np.float64(867.94925): np.float64(130.0), np.float64(868.1921100000001): np.float64(150.0), np.float64(870.4111599999999): np.float64(30.0), np.float64(877.1656300000001): np.float64(100.0), np.float64(878.06226): np.float64(600.0), np.float64(878.3753300000001): np.float64(400.0), np.float64(883.0907199999999): np.float64(6.0)}, xcal=<function <lambda>>, nbins=4500).convolve('gaussian', sigma=1.5), 532: from_delta_lines({np.float64(540.05618): np.float64(200.0), np.float64(556.27662): np.float64(50.0), np.float64(565.66588): np.float64(50.0), np.float64(571.92248): np.float64(50.0), np.float64(574.82985): np.float64(50.0), np.float64(576.4418800000001): np.float64(70.0), np.float64(580.44496): np.float64(50.0), np.float64(582.01558): np.float64(50.0), np.float64(585.24879): np.float64(200.0), np.float64(587.2827500000001): np.float64(50.0), np.float64(588.18952): np.float64(100.0), np.float64(590.24623): np.float64(5.0), np.float64(590.64294): np.float64(5.0), np.float64(594.48342): np.float64(50.0), np.float64(596.5471): np.float64(50.0), np.float64(597.46273): np.float64(50.0), np.float64(597.5534): np.float64(60.0), np.float64(598.79074): np.float64(15.0), np.float64(602.99969): np.float64(100.0), np.float64(607.43377): np.float64(100.0), np.float64(609.61631): np.float64(30.0), np.float64(612.8449899999999): np.float64(10.0), np.float64(614.3062600000001): np.float64(100.0), np.float64(616.35939): np.float64(100.0), np.float64(618.2146): np.float64(15.0), np.float64(621.72812): np.float64(100.0), np.float64(626.6495): np.float64(100.0), np.float64(630.47889): np.float64(10.0), np.float64(632.81646): np.float64(30.0), np.float64(633.4427800000001): np.float64(100.0), np.float64(638.29917): np.float64(100.0), np.float64(640.2248): np.float64(200.0), np.float64(650.65281): np.float64(150.0), np.float64(653.28822): np.float64(10.0), np.float64(659.89529): np.float64(100.0), np.float64(665.2092700000001): np.float64(15.0), np.float64(667.82762): np.float64(50.0), np.float64(671.7043): np.float64(7.0)}, xcal=<function <lambda>>, nbins=4500).convolve('gaussian', sigma=1.5)} + + +
+ + + + +
+
+
+ neon_wl_785_nist_dict = + + {792.6841221569385: 5.37437266023976, 793.7330415754924: 0.5689277951354417, 794.3457330415755: 3.501094091821991, 808.4285595693893: 7.202537154952434, 811.8949671772428: 1.7505470455873593, 812.945295404814: 0.5251641209139684, 813.6892778993436: 7.439824945294173, 825.9868433097755: 1.3120972814694163, 826.5665828089599: 7.94695465954125, 830.0568927789934: 13.129102844632756, 831.5448577680525: 4.3763676148399115, 836.6214442013129: 2.1881838071971296, 837.234135667396: 4.376367614845547, 837.8030634573304: 35.010940919002735, 841.8664541909187: 12.03028296382178, 846.3807439824946: 1.750547045586516, 848.4814004376367: 0.568927789934395, 849.5754923413567: 30.634573304125958, 854.5207877461706: 0.6564551422317848, 857.1903719912473: 1.3129102839767155, 859.1597374179431: 17.50547045950853, 863.4923413566739: 15.317286652068542, 865.469184130712: 29.20051773802159, 866.8621444201312: 4.376367614840063, 868.0: 5.689277899344474, 868.218818380744: 6.564551422319682, 870.4507658643327: 1.3129102839772355, 877.190371991244: 4.376367613743546, 878.1094091903724: 26.2582056879645, 878.4157549234137: 17.505470458778227, 883.1422319474835: 0.262582056892803, 885.4179431072209: 13.129102844635762, 886.5947874281137: 7.437997551100201, 891.9824945295405: 2.6258205687594547, 898.8971553610503: 0.8752735229757134, 908.0: 4.376367614838839, 914.9146608315099: 5.251641137834712, 920.2100656455142: 3.9387308533338343, 922.0688951698448: 3.3797527091026245, 927.6061269146609: 0.39387308533920273, 928.7877461706784: 8.752735229757006, 930.144420131291: 3.5010940918132034, 931.1072210065647: 0.35010940916879774, 931.4573304157549: 1.3129102844605525, 932.6827133479212: 3.0634573302989097, 937.3654266958424: 0.6564551422320757, 942.5733041575493: 2.188183807192464, 945.9431072210066: 1.3129102839781117, 948.7002188183808: 2.188183807191779, 953.4704595185996: 2.6258205687594476, 954.7833698030635: 1.3129102839777373, 957.7592997811817: 5.2516411378370345, 966.5995623632385: 7.877461706780519, 980.910284463895: 4.376367614839546} + + +
+ + + + +
+
+
+ neon_wl_633_nist_dict = + + {638.3287981859411: 5.6689342403499765, 640.2562358276643: 11.337868480727586, 650.6870748299319: 8.503401360545043, 653.3514739229025: 0.566893424036351, 659.9274376417234: 5.668934240348053, 665.2562358276643: 0.8503401360546983, 667.8639455782313: 2.8344671200402334, 671.7755102040816: 0.39682539682552465, 692.9773242630386: 56.68934240353873, 702.4444444444445: 17.006802721074873, 703.2947845804988: 45.351473922858105, 705.1655328798186: 1.1337868476493322, 705.9591836734694: 5.668934240348062, 717.4671201814059: 45.351473922836774, 721.3786848072563: 8.503401360545148, 723.5895691609977: 8.50340136054297, 724.5532879818594: 45.351473922833904, 734.4739229024943: 8.503401360542986, 747.2857142857143: 1.7006802717293952, 748.9297052154195: 17.00680272108454, 749.2698412698412: 5.6689342403646865, 752.3310657596371: 8.503401360527796, 753.6349206349206: 17.006802721048707, 754.4852607709751: 7.369614512457517, 772.5124716553288: 0.05668934240365808, 774.156462585034: 6.802721088429488, 783.9637188208617: 0.11337868480724644, 792.6951245635115: 6.971961625854252, 793.77097505694: 0.7369614305162637, 794.3945578231699: 4.535147381418968, 808.4417565814348: 9.329816961551543, 811.9115646254535: 2.2675736482945825, 812.9319727898597: 0.6802720427342306, 813.6689342404153: 9.63718817885658, 825.9704271162868: 1.6978631010464373, 826.5881899888147: 10.231887665802304, 830.1088435374149: 17.00680272107302, 831.5827664399093: 5.668934240348589, 836.6281179138335: 2.8344671202589966, 837.2517006802728: 5.6689342195710095, 837.8185941043079: 45.351473923298364, 841.8913979246645: 15.8101670633123, 846.3786848072561: 2.26757369591529, 848.4761904759695: 0.7369614416713715, 849.6099773242671: 39.68253967290885, 854.5419501133787: 0.8503401360543106, 857.2063492063492: 1.7006802717279004, 859.1904761904761: 22.67573696142483, 863.4988662131518: 19.841269841214043, 864.7460316744742: 3.401354571136033, 865.4928040619619: 38.396369552201875, 866.9002267573604: 5.668934237269633, 868.034013605442: 7.369614508413964, 868.26077097504: 8.503401360112813, 870.4716553287982: 1.7006802717287801, 877.2176870748299: 5.668934240361571, 878.1247165532881: 34.01360544219461, 878.4081632653063: 22.675736961434616, 883.1700680272108: 0.3401360544216929} + + +
+ + + + +
+
+
+ neon_wl_532_nist_dict = + + {540.0804670242978: 6.311139160610751, 556.3000946670874: 1.5777847897339283, 565.7036920164089: 1.5777847897345527, 571.9517197854212: 1.5777847897346757, 574.8548437993057: 1.5777847897345527, 576.4641842852635: 2.2088987059726164, 580.4717576522562: 1.5777847897345527, 582.0495424424108: 1.5777847897345523, 585.2682234143263: 6.311139160610822, 587.3193436415273: 1.5777847897341903, 588.234458819817: 3.1555695802011297, 590.285579047018: 0.15777847901546926, 590.6642473966551: 0.15777847901546949, 594.5140422846324: 1.5777847897344977, 596.5651625118334: 1.5777847897347166, 597.5336867539808: 3.5612432617200778, 598.837172609656: 0.4733354370464895, 603.0340801514673: 3.155569580200976, 607.4518775639002: 3.155569580201294, 609.6607762701167: 0.9466708739111769, 612.8794572420321: 0.31555695803092476, 614.3310192489744: 3.1555695802009724, 616.3821394761754: 3.1555695802010364, 618.2439255285578: 0.4733354370463865, 621.7466077627012: 3.1555695802013357, 626.6692963079836: 3.1555695802012638, 630.5190911959609: 0.31555695803092476, 632.8542126853799: 0.9466708729394551, 633.4853266014544: 3.1555695792292964, 638.3449037551278: 3.1555695802011074, 640.2698011991164: 6.31113916061083, 650.6831808141369: 4.733354370433662, 653.3338592615967: 0.3155569580309239, 659.928999684443: 3.155569580201134, 665.2303565793626: 0.4733354370463867, 667.8494793310192: 1.5777847897339252, 671.7308299147995: 0.22088987062164733} + + +
+ + + + +
+
+
+ neon_rs_532_nist_dict = + + {np.float64(281.2330516917239): np.float64(6.311139160610751), np.float64(821.0832626643922): np.float64(1.5777847897339283), np.float64(1119.893778955298): np.float64(1.5777847897345527), np.float64(1312.9992452849574): np.float64(1.5777847897346757), np.float64(1401.2966670937728): np.float64(1.5777847897345527), np.float64(1449.8609982668593): np.float64(2.2088987059726164), np.float64(1569.6254850110745): np.float64(1.5777847897345527), np.float64(1616.3243923015864): np.float64(1.5777847897345523), np.float64(1710.8094288202951): np.float64(6.311139160610822), np.float64(1770.4802297973397): np.float64(1.5777847897341903), np.float64(1796.9683410614377): np.float64(3.1555695802011297), np.float64(1856.0399067822946): np.float64(0.15777847901546926), np.float64(1866.9005650681333): np.float64(0.15777847901546949), np.float64(1976.5319222371818): np.float64(1.5777847897344977), np.float64(2034.3643084564255): np.float64(1.5777847897347166), np.float64(2061.5343444013483): np.float64(3.5612432617200778), np.float64(2097.962331786471): np.float64(0.4733354370464895), np.float64(2214.1817758971847): np.float64(3.155569580200976), np.float64(2334.7830958215923): np.float64(3.155569580201294), np.float64(2394.428318916479): np.float64(0.9466708739111769), np.float64(2480.5702519441434): np.float64(0.31555695803092476), np.float64(2519.123243499371): np.float64(3.1555695802009724), np.float64(2573.290722910054): np.float64(3.1555695802010364), np.float64(2622.1469435769654): np.float64(0.4733354370463865), np.float64(2713.269827718664): np.float64(3.1555695802013357), np.float64(2839.6126336264497): np.float64(3.1555695802012638), np.float64(2937.0444802120724): np.float64(0.31555695803092476), np.float64(2995.564917709097): np.float64(0.9466708729394551), np.float64(3011.3071936709794): np.float64(3.1555695792292964), np.float64(3131.480089431727): np.float64(3.1555695802011074), np.float64(3178.576648890281): np.float64(6.31113916061083), np.float64(3428.5300791351247): np.float64(4.733354370433662), np.float64(3490.88235352329): np.float64(0.3155569580309239), np.float64(3643.8472113608263): np.float64(3.155569580201134), np.float64(3764.6057281084186): np.float64(0.4733354370463867), np.float64(3823.558631981562): np.float64(1.5777847897339252), np.float64(3910.0771355602096): np.float64(0.22088987062164733)} + + +
+ + + + +
+
+
+ neon_rs_633_nist_dict = + + {np.float64(131.88066389220208): np.float64(5.6689342403499765), np.float64(179.04156354222116): np.float64(11.337868480727586), np.float64(429.41787963591844): np.float64(8.503401360545043), np.float64(492.0908418445599): np.float64(0.566893424036351), np.float64(644.6071724264865): np.float64(5.668934240348053), np.float64(765.9863340283906): np.float64(0.8503401360546983), np.float64(824.6787920356078): np.float64(2.8344671200402334), np.float64(911.8631038159482): np.float64(0.39682539682552465), np.float64(1367.3016979214524): np.float64(56.68934240353873), np.float64(1561.7870442143164): np.float64(17.006802721074873), np.float64(1578.9995182981806): np.float64(45.351473922858105), np.float64(1616.7208386258383): np.float64(1.1337868476493322), np.float64(1632.6634252703236): np.float64(5.668934240348062), np.float64(1859.8673670412886): np.float64(45.351473922836774), np.float64(1935.4435930445873): np.float64(8.503401360545148), np.float64(1977.799152530638): np.float64(8.50340136054297), np.float64(1996.1809387646144): np.float64(45.351473922833904), np.float64(2182.601046783266): np.float64(8.503401360542986), np.float64(2416.025740338238): np.float64(1.7006802717293952), np.float64(2445.4003213358865): np.float64(17.00680272108454), np.float64(2451.46172714364): np.float64(5.6689342403646865), np.float64(2505.7677416665): np.float64(8.503401360527796), np.float64(2528.764109463943): np.float64(17.006802721048707), np.float64(2543.718919624388): np.float64(7.369614512457517), np.float64(2853.013478270963): np.float64(0.05668934240365808), np.float64(2880.502872777571): np.float64(6.802721088429488), np.float64(3042.0959734648623): np.float64(0.11337868480724644), np.float64(3182.5978156792344): np.float64(6.971961625854252), np.float64(3199.69602075866): np.float64(0.7369614305162637), np.float64(3209.585254214946): np.float64(4.535147381418968), np.float64(3428.313429608364): np.float64(9.329816961551543), np.float64(3481.175964530883): np.float64(2.2675736482945825), np.float64(3496.636018035287): np.float64(0.6802720427342306), np.float64(3507.7774966574075): np.float64(9.63718817885658), np.float64(3690.8173192671397): np.float64(1.6978631010464373), np.float64(3699.8656425642857): np.float64(10.231887665802304), np.float64(3751.175292738612): np.float64(17.00680272107302), np.float64(3772.5270806058697): np.float64(5.668934240348589), np.float64(3845.04636147525): np.float64(2.8344671202589966), np.float64(3853.948730839821): np.float64(5.6689342195710095), np.float64(3862.03029427443): np.float64(45.351473923298364), np.float64(3919.7717095729495): np.float64(15.8101670633123), np.float64(3982.7459657037134): np.float64(2.26757369591529), np.float64(4011.9537603014455): np.float64(0.7369614416713715), np.float64(4027.681711437721): np.float64(39.68253967290885), np.float64(4095.6126602455083): np.float64(0.8503401360543106), np.float64(4131.985776490957): np.float64(1.7006802717279004), np.float64(4158.925592793552): np.float64(22.67573696142483), np.float64(4216.997191919614): np.float64(19.841269841214043), np.float64(4233.699393684956): np.float64(3.401354571136033), np.float64(4243.677226254282): np.float64(38.396369552201875), np.float64(4262.435461241407): np.float64(5.668934237269633), np.float64(4277.502418460247): np.float64(7.369614508413964), np.float64(4280.511087990217): np.float64(8.503401360112813), np.float64(4309.7634684110535): np.float64(1.7006802717287801), np.float64(4398.109361819262): np.float64(5.668934240361571), np.float64(4409.8842779054585): np.float64(34.01360544219461), np.float64(4413.558952264782): np.float64(22.675736961434616), np.float64(4474.940806054933): np.float64(0.3401360544216929)} + + +
+ + + + +
+
+
+ neon_rs_785_nist_dict = + + {np.float64(123.48791116373066): np.float64(5.37437266023976), np.float64(140.15913593139325): np.float64(0.5689277951354417), np.float64(149.87670877344723): np.float64(3.501094091821991), np.float64(369.17670041748454): np.float64(7.202537154952434), np.float64(421.9893714023522): np.float64(1.7505470455873593), np.float64(437.9028038877788): np.float64(0.5251641209139684), np.float64(449.1499620289975): np.float64(7.439824945294173), np.float64(632.1231345393229): np.float64(1.3120972814694163), np.float64(640.6145857383626): np.float64(7.94695465954125), np.float64(691.4865250966848): np.float64(13.129102844632756), np.float64(713.0440635821694): np.float64(4.3763676148399115), np.float64(786.0162082399527): np.float64(2.1881838071971296), np.float64(794.7633449059146): np.float64(4.376367614845547), np.float64(802.8742305220228): np.float64(35.010940919002735), np.float64(860.4849683432024): np.float64(12.03028296382178), np.float64(923.8399042850345): np.float64(1.750547045586516), np.float64(953.0913228444969): np.float64(0.568927789934395), np.float64(968.2691464716178): np.float64(30.634573304125958), np.float64(1036.3880472238798): np.float64(0.6564551422317848), np.float64(1072.833530550081): np.float64(1.3129102839767155), np.float64(1099.5743744242316): np.float64(17.50547045950853), np.float64(1157.9748768745785): np.float64(15.317286652068542), np.float64(1184.4270910599143): np.float64(29.20051773802159), np.float64(1202.993892324344): np.float64(4.376367614840063), np.float64(1218.1161759957727): np.float64(5.689277899344474), np.float64(1221.0197632407637): np.float64(6.564551422319682), np.float64(1250.5529672316122): np.float64(1.3129102839772355), np.float64(1338.8195774819583): np.float64(4.376367613743546), np.float64(1350.7509554394137): np.float64(26.2582056879645), np.float64(1354.7225333663616): np.float64(17.505470458778227), np.float64(1415.6491106733881): np.float64(0.262582056892803), np.float64(1444.7521380071198): np.float64(13.129102844635762), np.float64(1459.7436530032244): np.float64(7.437997551100201), np.float64(1527.8711561888636): np.float64(2.6258205687594547), np.float64(1614.11032165422): np.float64(0.8752735229757134), np.float64(1725.6376441538746): np.float64(4.376367614838839), np.float64(1808.8723496292414): np.float64(5.251641137834712), np.float64(1871.7695912247377): np.float64(3.9387308533338343), np.float64(1893.6769091320486): np.float64(3.3797527091026245), np.float64(1958.415869313852): np.float64(0.39387308533920273), np.float64(1972.1309218099645): np.float64(8.752735229757006), np.float64(1987.834861812345): np.float64(3.5010940918132034), np.float64(1998.9518308621705): np.float64(0.35010940916879774), np.float64(2002.9886670182382): np.float64(1.3129102844605525), np.float64(2017.093726910536): np.float64(3.0634573302989097), np.float64(2070.6554715489538): np.float64(0.6564551422320757), np.float64(2129.599076084452): np.float64(2.188183807192464), np.float64(2167.393207461413): np.float64(1.3129102839781117), np.float64(2198.1159744687006): np.float64(2.188183807191779), np.float64(2250.851593771674): np.float64(2.6258205687594476), np.float64(2265.27350978513): np.float64(1.3129102839777373), np.float64(2297.8168019125974): np.float64(5.2516411378370345), np.float64(2393.3077473486487): np.float64(7.877461706780519), np.float64(2544.241255373098): np.float64(4.376367614839546)} + + +
+ + + + +
+
+
+ neon_wl_D3_3 = + + [533.07775, 540.05616, 556.27662, 565.66588, 571.92248, 574.82985, 576.44188, 580.44496, 580.44496, 582.01558, 585.24878, 587.28275, 588.1895, 590.24623, 594.4834, 596.5471, 598.79074, 602.99968, 607.43376, 609.6163, 612.84498, 614.30627, 616.35937, 618.2146, 621.72812, 626.64952, 630.47893, 633.44276, 638.29914, 640.2248, 650.65277, 653.28824, 659.89528, 667.82766, 671.7043, 692.94672, 702.405, 703.24128, 705.91079, 717.3938, 724.51665, 748.88712, 753.57739, 754.40439, 794.31805, 808.24576, 811.85495, 813.64061, 830.03248, 836.57464, 837.7607, 846.33569, 849.53591, 854.46952, 857.13535, 859.12583, 863.46472, 870.41122, 877.16575, 878.37539, 885.38669, 891.95007, 898.85564, 898.85564, 914.8672, 920.17588, 927.55191, 930.08532, 932.65072, 937.33079, 942.53797, 945.9211, 948.66825, 953.4164, 954.74052, 966.542] + + +
+ + + + +
+
+
+ neon_wl_D3_3_dict = + + {533.07775: 1, 540.05616: 1, 556.27662: 1, 565.66588: 1, 571.92248: 1, 574.82985: 1, 576.44188: 1, 580.44496: 1, 582.01558: 1, 585.24878: 1, 587.28275: 1, 588.1895: 1, 590.24623: 1, 594.4834: 1, 596.5471: 1, 598.79074: 1, 602.99968: 1, 607.43376: 1, 609.6163: 1, 612.84498: 1, 614.30627: 1, 616.35937: 1, 618.2146: 1, 621.72812: 1, 626.64952: 1, 630.47893: 1, 633.44276: 1, 638.29914: 1, 640.2248: 1, 650.65277: 1, 653.28824: 1, 659.89528: 1, 667.82766: 1, 671.7043: 1, 692.94672: 1, 702.405: 1, 703.24128: 1, 705.91079: 1, 717.3938: 1, 724.51665: 1, 748.88712: 1, 753.57739: 1, 754.40439: 1, 794.31805: 1, 808.24576: 1, 811.85495: 1, 813.64061: 1, 830.03248: 1, 836.57464: 1, 837.7607: 1, 846.33569: 1, 849.53591: 1, 854.46952: 1, 857.13535: 1, 859.12583: 1, 863.46472: 1, 870.41122: 1, 877.16575: 1, 878.37539: 1, 885.38669: 1, 891.95007: 1, 898.85564: 1, 914.8672: 1, 920.17588: 1, 927.55191: 1, 930.08532: 1, 932.65072: 1, 937.33079: 1, 942.53797: 1, 945.9211: 1, 948.66825: 1, 953.4164: 1, 954.74052: 1, 966.542: 1} + + +
+ + + + +
+
+
+ NEON_WL: Final = + + {785: {792.6841221569385: 5.37437266023976, 793.7330415754924: 0.5689277951354417, 794.3457330415755: 3.501094091821991, 808.4285595693893: 7.202537154952434, 811.8949671772428: 1.7505470455873593, 812.945295404814: 0.5251641209139684, 813.6892778993436: 7.439824945294173, 825.9868433097755: 1.3120972814694163, 826.5665828089599: 7.94695465954125, 830.0568927789934: 13.129102844632756, 831.5448577680525: 4.3763676148399115, 836.6214442013129: 2.1881838071971296, 837.234135667396: 4.376367614845547, 837.8030634573304: 35.010940919002735, 841.8664541909187: 12.03028296382178, 846.3807439824946: 1.750547045586516, 848.4814004376367: 0.568927789934395, 849.5754923413567: 30.634573304125958, 854.5207877461706: 0.6564551422317848, 857.1903719912473: 1.3129102839767155, 859.1597374179431: 17.50547045950853, 863.4923413566739: 15.317286652068542, 865.469184130712: 29.20051773802159, 866.8621444201312: 4.376367614840063, 868.0: 5.689277899344474, 868.218818380744: 6.564551422319682, 870.4507658643327: 1.3129102839772355, 877.190371991244: 4.376367613743546, 878.1094091903724: 26.2582056879645, 878.4157549234137: 17.505470458778227, 883.1422319474835: 0.262582056892803, 885.4179431072209: 13.129102844635762, 886.5947874281137: 7.437997551100201, 891.9824945295405: 2.6258205687594547, 898.8971553610503: 0.8752735229757134, 908.0: 4.376367614838839, 914.9146608315099: 5.251641137834712, 920.2100656455142: 3.9387308533338343, 922.0688951698448: 3.3797527091026245, 927.6061269146609: 0.39387308533920273, 928.7877461706784: 8.752735229757006, 930.144420131291: 3.5010940918132034, 931.1072210065647: 0.35010940916879774, 931.4573304157549: 1.3129102844605525, 932.6827133479212: 3.0634573302989097, 937.3654266958424: 0.6564551422320757, 942.5733041575493: 2.188183807192464, 945.9431072210066: 1.3129102839781117, 948.7002188183808: 2.188183807191779, 953.4704595185996: 2.6258205687594476, 954.7833698030635: 1.3129102839777373, 957.7592997811817: 5.2516411378370345, 966.5995623632385: 7.877461706780519, 980.910284463895: 4.376367614839546}, 633: {638.3287981859411: 5.6689342403499765, 640.2562358276643: 11.337868480727586, 650.6870748299319: 8.503401360545043, 653.3514739229025: 0.566893424036351, 659.9274376417234: 5.668934240348053, 665.2562358276643: 0.8503401360546983, 667.8639455782313: 2.8344671200402334, 671.7755102040816: 0.39682539682552465, 692.9773242630386: 56.68934240353873, 702.4444444444445: 17.006802721074873, 703.2947845804988: 45.351473922858105, 705.1655328798186: 1.1337868476493322, 705.9591836734694: 5.668934240348062, 717.4671201814059: 45.351473922836774, 721.3786848072563: 8.503401360545148, 723.5895691609977: 8.50340136054297, 724.5532879818594: 45.351473922833904, 734.4739229024943: 8.503401360542986, 747.2857142857143: 1.7006802717293952, 748.9297052154195: 17.00680272108454, 749.2698412698412: 5.6689342403646865, 752.3310657596371: 8.503401360527796, 753.6349206349206: 17.006802721048707, 754.4852607709751: 7.369614512457517, 772.5124716553288: 0.05668934240365808, 774.156462585034: 6.802721088429488, 783.9637188208617: 0.11337868480724644, 792.6951245635115: 6.971961625854252, 793.77097505694: 0.7369614305162637, 794.3945578231699: 4.535147381418968, 808.4417565814348: 9.329816961551543, 811.9115646254535: 2.2675736482945825, 812.9319727898597: 0.6802720427342306, 813.6689342404153: 9.63718817885658, 825.9704271162868: 1.6978631010464373, 826.5881899888147: 10.231887665802304, 830.1088435374149: 17.00680272107302, 831.5827664399093: 5.668934240348589, 836.6281179138335: 2.8344671202589966, 837.2517006802728: 5.6689342195710095, 837.8185941043079: 45.351473923298364, 841.8913979246645: 15.8101670633123, 846.3786848072561: 2.26757369591529, 848.4761904759695: 0.7369614416713715, 849.6099773242671: 39.68253967290885, 854.5419501133787: 0.8503401360543106, 857.2063492063492: 1.7006802717279004, 859.1904761904761: 22.67573696142483, 863.4988662131518: 19.841269841214043, 864.7460316744742: 3.401354571136033, 865.4928040619619: 38.396369552201875, 866.9002267573604: 5.668934237269633, 868.034013605442: 7.369614508413964, 868.26077097504: 8.503401360112813, 870.4716553287982: 1.7006802717287801, 877.2176870748299: 5.668934240361571, 878.1247165532881: 34.01360544219461, 878.4081632653063: 22.675736961434616, 883.1700680272108: 0.3401360544216929}, 532: {540.0804670242978: 6.311139160610751, 556.3000946670874: 1.5777847897339283, 565.7036920164089: 1.5777847897345527, 571.9517197854212: 1.5777847897346757, 574.8548437993057: 1.5777847897345527, 576.4641842852635: 2.2088987059726164, 580.4717576522562: 1.5777847897345527, 582.0495424424108: 1.5777847897345523, 585.2682234143263: 6.311139160610822, 587.3193436415273: 1.5777847897341903, 588.234458819817: 3.1555695802011297, 590.285579047018: 0.15777847901546926, 590.6642473966551: 0.15777847901546949, 594.5140422846324: 1.5777847897344977, 596.5651625118334: 1.5777847897347166, 597.5336867539808: 3.5612432617200778, 598.837172609656: 0.4733354370464895, 603.0340801514673: 3.155569580200976, 607.4518775639002: 3.155569580201294, 609.6607762701167: 0.9466708739111769, 612.8794572420321: 0.31555695803092476, 614.3310192489744: 3.1555695802009724, 616.3821394761754: 3.1555695802010364, 618.2439255285578: 0.4733354370463865, 621.7466077627012: 3.1555695802013357, 626.6692963079836: 3.1555695802012638, 630.5190911959609: 0.31555695803092476, 632.8542126853799: 0.9466708729394551, 633.4853266014544: 3.1555695792292964, 638.3449037551278: 3.1555695802011074, 640.2698011991164: 6.31113916061083, 650.6831808141369: 4.733354370433662, 653.3338592615967: 0.3155569580309239, 659.928999684443: 3.155569580201134, 665.2303565793626: 0.4733354370463867, 667.8494793310192: 1.5777847897339252, 671.7308299147995: 0.22088987062164733}} + + +
+ + + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/misc/exceptions.html b/ramanchada2/misc/exceptions.html new file mode 100644 index 00000000..37e2ae3f --- /dev/null +++ b/ramanchada2/misc/exceptions.html @@ -0,0 +1,402 @@ + + + + + + + ramanchada2.misc.exceptions API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.misc.exceptions

+ + + + + + +
 1#!/usr/bin/env python3
+ 2
+ 3
+ 4class ApplicationException(Exception):
+ 5    pass
+ 6
+ 7
+ 8class InputParserError(ApplicationException):
+ 9    pass
+10
+11
+12class ChadaReadNotFoundError(ApplicationException):
+13    pass
+
+ + +
+
+ +
+ + class + ApplicationException(builtins.Exception): + + + +
+ +
5class ApplicationException(Exception):
+6    pass
+
+ + +

Common base class for all non-exit exceptions.

+
+ + +
+
Inherited Members
+
+
builtins.Exception
+
Exception
+ +
+
builtins.BaseException
+
with_traceback
+
add_note
+
args
+ +
+
+
+
+
+ +
+ + class + InputParserError(ApplicationException): + + + +
+ +
 9class InputParserError(ApplicationException):
+10    pass
+
+ + +

Common base class for all non-exit exceptions.

+
+ + +
+
Inherited Members
+
+
builtins.Exception
+
Exception
+ +
+
builtins.BaseException
+
with_traceback
+
add_note
+
args
+ +
+
+
+
+
+ +
+ + class + ChadaReadNotFoundError(ApplicationException): + + + +
+ +
13class ChadaReadNotFoundError(ApplicationException):
+14    pass
+
+ + +

Common base class for all non-exit exceptions.

+
+ + +
+
Inherited Members
+
+
builtins.Exception
+
Exception
+ +
+
builtins.BaseException
+
with_traceback
+
add_note
+
args
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/ramanchada2/misc/plottable.html b/ramanchada2/misc/plottable.html new file mode 100644 index 00000000..3b13fcb0 --- /dev/null +++ b/ramanchada2/misc/plottable.html @@ -0,0 +1,343 @@ + + + + + + + ramanchada2.misc.plottable API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.misc.plottable

+ + + + + + +
 1from __future__ import annotations
+ 2from abc import ABC, abstractmethod
+ 3from matplotlib.axes import Axes
+ 4import matplotlib.pyplot as plt
+ 5
+ 6
+ 7class Plottable(ABC):
+ 8    def plot(self, ax=None, label=' ', **kwargs) -> Axes:
+ 9        if ax is None:
+10            fig, ax = plt.subplots(1)
+11        self._plot(ax, label=label, **kwargs)
+12        ax.legend()
+13        return ax
+14
+15    @abstractmethod
+16    def _plot(self, ax, **kwargs):
+17        pass
+
+ + +
+
+ +
+ + class + Plottable(abc.ABC): + + + +
+ +
 8class Plottable(ABC):
+ 9    def plot(self, ax=None, label=' ', **kwargs) -> Axes:
+10        if ax is None:
+11            fig, ax = plt.subplots(1)
+12        self._plot(ax, label=label, **kwargs)
+13        ax.legend()
+14        return ax
+15
+16    @abstractmethod
+17    def _plot(self, ax, **kwargs):
+18        pass
+
+ + +

Helper class that provides a standard way to create an ABC using +inheritance.

+
+ + +
+ +
+ + def + plot(self, ax=None, label=' ', **kwargs) -> matplotlib.axes._axes.Axes: + + + +
+ +
 9    def plot(self, ax=None, label=' ', **kwargs) -> Axes:
+10        if ax is None:
+11            fig, ax = plt.subplots(1)
+12        self._plot(ax, label=label, **kwargs)
+13        ax.legend()
+14        return ax
+
+ + + + +
+
+
+ + \ No newline at end of file diff --git a/ramanchada2/misc/spectrum_deco.html b/ramanchada2/misc/spectrum_deco.html new file mode 100644 index 00000000..d7bd4c0e --- /dev/null +++ b/ramanchada2/misc/spectrum_deco.html @@ -0,0 +1,273 @@ + + + + + + + ramanchada2.misc.spectrum_deco API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.misc.spectrum_deco

+ + + + + + +
1#!/usr/bin/env python3
+2
+3from .spectrum_filter import add_spectrum_filter
+4from .spectrum_constructor import add_spectrum_constructor
+5from .spectrum_method import add_spectrum_method
+6from .dynamically_added import dynamically_added_filters
+7from .dynamically_added import dynamically_added_constructors
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/misc/spectrum_deco/dynamically_added.html b/ramanchada2/misc/spectrum_deco/dynamically_added.html new file mode 100644 index 00000000..7b060f0c --- /dev/null +++ b/ramanchada2/misc/spectrum_deco/dynamically_added.html @@ -0,0 +1,301 @@ + + + + + + + ramanchada2.misc.spectrum_deco.dynamically_added API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.misc.spectrum_deco.dynamically_added

+ + + + + + +
1#!/usr/bin/env python3
+2
+3from typing import Set
+4
+5dynamically_added_filters: Set[str] = set()
+6dynamically_added_constructors: Set[str] = set()
+
+ + +
+
+
+ dynamically_added_filters: Set[str] = + + {'trim_axes', 'convolve', 'fit_peaks_filter', 'add_poisson_noise', 'drop_spikes', 'smoothing_RC1', '__sub__', 'moving_minimum', 'set_new_xaxis', 'hht_sharpening', 'hht_sharpening_chain', 'recover_spikes', 'xcal_fine_RBF', 'scale_yaxis_linear', 'add_gaussian_noise', 'normalize', 'calibrate_by_deltas_filter', '__add__', '__truediv__', 'add_baseline', 'derivative_sharpening', 'subtract_moving_median', 'subtract_baseline_rc1_als', 'abs_nm_to_shift_cm_1_filter', 'scale_xaxis_linear', 'moving_median', 'add_gaussian_noise_drift', 'moving_average', 'subtract_moving_minimum', 'moving_average_convolve', 'get_spikes', 'shift_cm_1_to_abs_nm_filter', 'resample_NUDFT_filter', '__mul__', 'subtract_baseline_rc1_snip', 'pad_zeros', 'xcal_fine', 'scale_xaxis_fun', 'resample_spline_filter', 'find_peak_multipeak_filter'} + + +
+ + + + +
+
+
+ dynamically_added_constructors: Set[str] = + + {'from_chada', 'from_cache_or_calc', 'from_test_spe', 'from_simulation', 'hdr_from_multi_exposure', 'from_spectral_component_collection', 'from_theoretical_lines', 'from_local_file', 'from_delta_lines'} + + +
+ + + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/misc/spectrum_deco/spectrum_constructor.html b/ramanchada2/misc/spectrum_deco/spectrum_constructor.html new file mode 100644 index 00000000..856026b9 --- /dev/null +++ b/ramanchada2/misc/spectrum_deco/spectrum_constructor.html @@ -0,0 +1,366 @@ + + + + + + + ramanchada2.misc.spectrum_deco.spectrum_constructor API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.misc.spectrum_deco.spectrum_constructor

+ + + + + + +
 1#!/usr/bin/env python3
+ 2
+ 3from functools import wraps
+ 4from ramanchada2.spectrum.spectrum import Spectrum
+ 5from .dynamically_added import dynamically_added_constructors
+ 6
+ 7
+ 8class add_spectrum_constructor:
+ 9    def __init__(self, set_applied_processing=True):
+10        self.set_proc = set_applied_processing
+11
+12    def __call__(self, fun):
+13        @wraps(fun)
+14        def retf(*args, cachefile_=None, **kwargs) -> Spectrum:
+15            spe = fun(*args, **kwargs)
+16            if self.set_proc:
+17                spe._applied_processings.assign(proc=fun.__name__, args=args, kwargs=kwargs)
+18                if cachefile_:
+19                    spe._cachefile = cachefile_
+20                spe.write_cache()
+21            return spe
+22        if hasattr(Spectrum, fun.__name__):
+23            raise ValueError(f'redefining {fun.__name__}')
+24        setattr(Spectrum, fun.__name__, retf)
+25        dynamically_added_constructors.add(fun.__name__)
+26        return retf
+
+ + +
+
+ +
+ + class + add_spectrum_constructor: + + + +
+ +
 9class add_spectrum_constructor:
+10    def __init__(self, set_applied_processing=True):
+11        self.set_proc = set_applied_processing
+12
+13    def __call__(self, fun):
+14        @wraps(fun)
+15        def retf(*args, cachefile_=None, **kwargs) -> Spectrum:
+16            spe = fun(*args, **kwargs)
+17            if self.set_proc:
+18                spe._applied_processings.assign(proc=fun.__name__, args=args, kwargs=kwargs)
+19                if cachefile_:
+20                    spe._cachefile = cachefile_
+21                spe.write_cache()
+22            return spe
+23        if hasattr(Spectrum, fun.__name__):
+24            raise ValueError(f'redefining {fun.__name__}')
+25        setattr(Spectrum, fun.__name__, retf)
+26        dynamically_added_constructors.add(fun.__name__)
+27        return retf
+
+ + + + +
+ +
+ + add_spectrum_constructor(set_applied_processing=True) + + + +
+ +
10    def __init__(self, set_applied_processing=True):
+11        self.set_proc = set_applied_processing
+
+ + + + +
+
+
+ set_proc + + +
+ + + + +
+
+
+ + \ No newline at end of file diff --git a/ramanchada2/misc/spectrum_deco/spectrum_filter.html b/ramanchada2/misc/spectrum_deco/spectrum_filter.html new file mode 100644 index 00000000..b1bcdbe1 --- /dev/null +++ b/ramanchada2/misc/spectrum_deco/spectrum_filter.html @@ -0,0 +1,341 @@ + + + + + + + ramanchada2.misc.spectrum_deco.spectrum_filter API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.misc.spectrum_deco.spectrum_filter

+ + + + + + +
 1#!/usr/bin/env python3
+ 2
+ 3from functools import wraps
+ 4from copy import copy, deepcopy
+ 5from ramanchada2.spectrum.spectrum import Spectrum
+ 6from .dynamically_added import dynamically_added_filters
+ 7import logging
+ 8
+ 9logger = logging.getLogger(__name__)
+10
+11
+12def add_spectrum_filter(fun):
+13    @wraps(fun)
+14    def retf(old_spe: Spectrum, *args, **kwargs) -> Spectrum:
+15        new_spe = copy(old_spe)
+16        new_spe._applied_processings.append(proc=fun.__name__,
+17                                            args=deepcopy(args),
+18                                            kwargs=deepcopy(kwargs))
+19        fun(old_spe, new_spe, *args, **kwargs)
+20        new_spe.write_cache()
+21        return new_spe
+22    if hasattr(Spectrum, fun.__name__):
+23        raise ValueError(f'redefining {fun.__name__}')
+24    Spectrum._available_processings.add(fun.__name__)
+25    setattr(Spectrum, fun.__name__, retf)
+26    dynamically_added_filters.add(fun.__name__)
+27    return retf
+
+ + +
+
+
+ logger = +<Logger ramanchada2.misc.spectrum_deco.spectrum_filter (WARNING)> + + +
+ + + + +
+
+ +
+ + def + add_spectrum_filter(fun): + + + +
+ +
13def add_spectrum_filter(fun):
+14    @wraps(fun)
+15    def retf(old_spe: Spectrum, *args, **kwargs) -> Spectrum:
+16        new_spe = copy(old_spe)
+17        new_spe._applied_processings.append(proc=fun.__name__,
+18                                            args=deepcopy(args),
+19                                            kwargs=deepcopy(kwargs))
+20        fun(old_spe, new_spe, *args, **kwargs)
+21        new_spe.write_cache()
+22        return new_spe
+23    if hasattr(Spectrum, fun.__name__):
+24        raise ValueError(f'redefining {fun.__name__}')
+25    Spectrum._available_processings.add(fun.__name__)
+26    setattr(Spectrum, fun.__name__, retf)
+27    dynamically_added_filters.add(fun.__name__)
+28    return retf
+
+ + + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/misc/spectrum_deco/spectrum_method.html b/ramanchada2/misc/spectrum_deco/spectrum_method.html new file mode 100644 index 00000000..3c9779fb --- /dev/null +++ b/ramanchada2/misc/spectrum_deco/spectrum_method.html @@ -0,0 +1,307 @@ + + + + + + + ramanchada2.misc.spectrum_deco.spectrum_method API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.misc.spectrum_deco.spectrum_method

+ + + + + + +
 1#!/usr/bin/env python
+ 2
+ 3from functools import wraps
+ 4from ramanchada2.spectrum.spectrum import Spectrum
+ 5
+ 6
+ 7def add_spectrum_method(fun):
+ 8    @wraps(fun)
+ 9    def retf(spe: Spectrum, *args, **kwargs):
+10        ret = fun(spe, *args, **kwargs)
+11        return ret
+12    if hasattr(Spectrum, fun.__name__):
+13        raise ValueError(f'redefining {fun.__name__}')
+14    setattr(Spectrum, fun.__name__, retf)
+15    return retf
+
+ + +
+
+ +
+ + def + add_spectrum_method(fun): + + + +
+ +
 8def add_spectrum_method(fun):
+ 9    @wraps(fun)
+10    def retf(spe: Spectrum, *args, **kwargs):
+11        ret = fun(spe, *args, **kwargs)
+12        return ret
+13    if hasattr(Spectrum, fun.__name__):
+14        raise ValueError(f'redefining {fun.__name__}')
+15    setattr(Spectrum, fun.__name__, retf)
+16    return retf
+
+ + + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/misc/types.html b/ramanchada2/misc/types.html new file mode 100644 index 00000000..ac14d7fc --- /dev/null +++ b/ramanchada2/misc/types.html @@ -0,0 +1,273 @@ + + + + + + + ramanchada2.misc.types API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.misc.types

+ + + + + + +
1#!/usr/bin/env python3
+2
+3from .peak_candidates import (ListPeakCandidateMultiModel,
+4                              PeakCandidateMultiModel, PeakModel)
+5from .positive_not_multiple import PositiveOddInt
+6from .spectrum import *  # noqa
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/misc/types/fit_peaks_result.html b/ramanchada2/misc/types/fit_peaks_result.html new file mode 100644 index 00000000..d7297c49 --- /dev/null +++ b/ramanchada2/misc/types/fit_peaks_result.html @@ -0,0 +1,977 @@ + + + + + + + ramanchada2.misc.types.fit_peaks_result API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.misc.types.fit_peaks_result

+ + + + + + +
  1import re
+  2from collections import UserList, defaultdict
+  3from typing import List
+  4
+  5import numpy as np
+  6import pandas as pd
+  7from lmfit.model import Model, ModelResult, Parameters
+  8
+  9from ..plottable import Plottable
+ 10from .peak_candidates import ListPeakCandidateMultiModel
+ 11from ramanchada2.spectrum.spectrum import Spectrum
+ 12
+ 13
+ 14class FitPeaksResult(UserList, Plottable):
+ 15    def valuesdict(self):
+ 16        ret = dict()
+ 17        for i in self:
+ 18            ret.update(i.params.valuesdict())
+ 19        return ret
+ 20
+ 21    @property
+ 22    def locations(self):
+ 23        return np.array([v for peak in self for k, v in peak.values.items() if k.endswith('center')])
+ 24
+ 25    @property
+ 26    def centers(self):
+ 27        return np.array([v for peak in self for k, v in peak.values.items() if k.endswith('center')])
+ 28
+ 29    @property
+ 30    def fwhm(self):
+ 31        return np.array([v for peak in self for k, v in peak.values.items() if k.endswith('fwhm')])
+ 32
+ 33    def boundaries(self, n_sigma=5):
+ 34        bounds = list()
+ 35        for group in self:
+ 36            pos = np.array([v for k, v in group.values.items() if k.endswith('center')])
+ 37            sig = np.array([v for k, v in group.values.items() if k.endswith('fwhm')])
+ 38            sig /= 2.35
+ 39            sig *= n_sigma
+ 40            bounds.append((np.min(pos - sig), np.max(pos+sig)))
+ 41        return bounds
+ 42
+ 43    def center_amplitude(self, threshold):
+ 44        return np.array([
+ 45            (v.value, peak.params[k[:-6] + 'amplitude'].value)
+ 46            for peak in self
+ 47            for k, v in peak.params.items()
+ 48            if k.endswith('center')
+ 49            if hasattr(v, 'stderr') and v.stderr is not None and v.stderr < threshold
+ 50        ]).T
+ 51
+ 52    @property
+ 53    def centers_err(self):
+ 54        return np.array([
+ 55            (v.value, v.stderr)
+ 56            for peak in self
+ 57            for k, v in peak.params.items()
+ 58            if k.endswith('center')
+ 59            if hasattr(v, 'stderr') and v.stderr is not None
+ 60            ])
+ 61
+ 62    @property
+ 63    def fwhms(self):
+ 64        return np.array([v for peak in self for k, v in peak.values.items() if k.endswith('fwhm')])
+ 65
+ 66    @property
+ 67    def amplitudes(self):
+ 68        return np.array([v for peak in self for k, v in peak.values.items() if k.endswith('amplitude')])
+ 69
+ 70    def dumps(self):
+ 71        return [peak.dumps() for peak in self]
+ 72
+ 73    @classmethod
+ 74    def loads(cls, json_str: List[str]):
+ 75        self = cls()
+ 76        for p in json_str:
+ 77            params = Parameters()
+ 78            modres = ModelResult(Model(lambda x: x, None), params)
+ 79            self.append(modres.loads(p))
+ 80        return self
+ 81
+ 82    def _plot(self, ax, peak_candidate_groups=None, individual_peaks=False, xarr=None,
+ 83              label=None,  # ignore label from kwargs
+ 84              **kwargs):
+ 85        def group_plot(x, fitres, label=''):
+ 86            if individual_peaks:
+ 87                color = None
+ 88                for component in fitres.eval_components(x=x).values():
+ 89                    line, = ax.plot(x, component, color=color,
+ 90                                    label=(label if color is None else None),
+ 91                                    **kwargs)
+ 92                    color = line.get_c()
+ 93            else:
+ 94                ax.plot(x, fitres.eval(x=x), **kwargs)
+ 95
+ 96        if peak_candidate_groups is None:
+ 97            for group_i, (bound, fitres) in enumerate(zip(self.boundaries(), self)):
+ 98                x = np.linspace(*bound, 200)
+ 99                group_plot(x, fitres, label=f'group {group_i}')
+100        elif isinstance(peak_candidate_groups, ListPeakCandidateMultiModel):
+101            for group_i, (cand, fitres) in enumerate(zip(peak_candidate_groups, self)):
+102                x = np.linspace(*cand.boundaries, 2000)
+103                group_plot(x, fitres, label=f'group {group_i}')
+104        else:
+105            for group_i, fitres in enumerate(self):
+106                left, right = peak_candidate_groups[group_i].boundaries(n_sigma=3)
+107                x = np.linspace(left, right, 100)
+108                group_plot(x, fitres, label=f'group {group_i}')
+109
+110    def to_dataframe(self):
+111        return pd.DataFrame(
+112            [
+113                dict(name=f'g{group:02d}_{key}', value=val.value, stderr=val.stderr)
+114                for group, res in enumerate(self)
+115                for key, val in res.params.items()
+116            ]
+117        ).sort_values('name')
+118
+119    def to_dataframe_peaks(self):
+120        regex = re.compile(r'p([0-9]+)_(.*)')
+121        ret = defaultdict(dict)
+122        for group_i, group in enumerate(self):
+123            for par in group.params:
+124                m = regex.match(par)
+125                if m is None:
+126                    continue
+127                peak_i, par_name = m.groups()
+128                ret[f'g{group_i:02d}_p{peak_i}'][par_name] = group.params[par].value
+129                ret[f'g{group_i:02d}_p{peak_i}'][f'{par_name}_stderr'] = group.params[par].stderr
+130        return pd.DataFrame.from_dict(ret, orient='index')
+131
+132    def to_csv(self, path_or_buf=None, sep=',', **kwargs):
+133        return self.to_dataframe_peaks().to_csv(path_or_buf=path_or_buf, sep=sep, **kwargs)
+134
+135    def gen_fake_spectrum(self, xarr):
+136        summ = np.zeros_like(xarr)
+137        last_i = 0
+138        last_y = 0
+139        for m in self:
+140            mx = m.userkws['x']
+141            xi = np.searchsorted(xarr, mx)
+142            evalm = m.eval()
+143            summ[xi] = evalm
+144            summ[np.arange(last_i, xi[0])] = np.interp(np.arange(last_i, xi[0]), [last_i, xi[0]], [last_y, evalm[0]])
+145            last_i = xi[-1]
+146            last_y = evalm[-1]
+147        fake_spe = Spectrum(x=xarr, y=summ)
+148        return fake_spe
+
+ + +
+
+ +
+ + class + FitPeaksResult(collections.UserList, ramanchada2.misc.plottable.Plottable): + + + +
+ +
 15class FitPeaksResult(UserList, Plottable):
+ 16    def valuesdict(self):
+ 17        ret = dict()
+ 18        for i in self:
+ 19            ret.update(i.params.valuesdict())
+ 20        return ret
+ 21
+ 22    @property
+ 23    def locations(self):
+ 24        return np.array([v for peak in self for k, v in peak.values.items() if k.endswith('center')])
+ 25
+ 26    @property
+ 27    def centers(self):
+ 28        return np.array([v for peak in self for k, v in peak.values.items() if k.endswith('center')])
+ 29
+ 30    @property
+ 31    def fwhm(self):
+ 32        return np.array([v for peak in self for k, v in peak.values.items() if k.endswith('fwhm')])
+ 33
+ 34    def boundaries(self, n_sigma=5):
+ 35        bounds = list()
+ 36        for group in self:
+ 37            pos = np.array([v for k, v in group.values.items() if k.endswith('center')])
+ 38            sig = np.array([v for k, v in group.values.items() if k.endswith('fwhm')])
+ 39            sig /= 2.35
+ 40            sig *= n_sigma
+ 41            bounds.append((np.min(pos - sig), np.max(pos+sig)))
+ 42        return bounds
+ 43
+ 44    def center_amplitude(self, threshold):
+ 45        return np.array([
+ 46            (v.value, peak.params[k[:-6] + 'amplitude'].value)
+ 47            for peak in self
+ 48            for k, v in peak.params.items()
+ 49            if k.endswith('center')
+ 50            if hasattr(v, 'stderr') and v.stderr is not None and v.stderr < threshold
+ 51        ]).T
+ 52
+ 53    @property
+ 54    def centers_err(self):
+ 55        return np.array([
+ 56            (v.value, v.stderr)
+ 57            for peak in self
+ 58            for k, v in peak.params.items()
+ 59            if k.endswith('center')
+ 60            if hasattr(v, 'stderr') and v.stderr is not None
+ 61            ])
+ 62
+ 63    @property
+ 64    def fwhms(self):
+ 65        return np.array([v for peak in self for k, v in peak.values.items() if k.endswith('fwhm')])
+ 66
+ 67    @property
+ 68    def amplitudes(self):
+ 69        return np.array([v for peak in self for k, v in peak.values.items() if k.endswith('amplitude')])
+ 70
+ 71    def dumps(self):
+ 72        return [peak.dumps() for peak in self]
+ 73
+ 74    @classmethod
+ 75    def loads(cls, json_str: List[str]):
+ 76        self = cls()
+ 77        for p in json_str:
+ 78            params = Parameters()
+ 79            modres = ModelResult(Model(lambda x: x, None), params)
+ 80            self.append(modres.loads(p))
+ 81        return self
+ 82
+ 83    def _plot(self, ax, peak_candidate_groups=None, individual_peaks=False, xarr=None,
+ 84              label=None,  # ignore label from kwargs
+ 85              **kwargs):
+ 86        def group_plot(x, fitres, label=''):
+ 87            if individual_peaks:
+ 88                color = None
+ 89                for component in fitres.eval_components(x=x).values():
+ 90                    line, = ax.plot(x, component, color=color,
+ 91                                    label=(label if color is None else None),
+ 92                                    **kwargs)
+ 93                    color = line.get_c()
+ 94            else:
+ 95                ax.plot(x, fitres.eval(x=x), **kwargs)
+ 96
+ 97        if peak_candidate_groups is None:
+ 98            for group_i, (bound, fitres) in enumerate(zip(self.boundaries(), self)):
+ 99                x = np.linspace(*bound, 200)
+100                group_plot(x, fitres, label=f'group {group_i}')
+101        elif isinstance(peak_candidate_groups, ListPeakCandidateMultiModel):
+102            for group_i, (cand, fitres) in enumerate(zip(peak_candidate_groups, self)):
+103                x = np.linspace(*cand.boundaries, 2000)
+104                group_plot(x, fitres, label=f'group {group_i}')
+105        else:
+106            for group_i, fitres in enumerate(self):
+107                left, right = peak_candidate_groups[group_i].boundaries(n_sigma=3)
+108                x = np.linspace(left, right, 100)
+109                group_plot(x, fitres, label=f'group {group_i}')
+110
+111    def to_dataframe(self):
+112        return pd.DataFrame(
+113            [
+114                dict(name=f'g{group:02d}_{key}', value=val.value, stderr=val.stderr)
+115                for group, res in enumerate(self)
+116                for key, val in res.params.items()
+117            ]
+118        ).sort_values('name')
+119
+120    def to_dataframe_peaks(self):
+121        regex = re.compile(r'p([0-9]+)_(.*)')
+122        ret = defaultdict(dict)
+123        for group_i, group in enumerate(self):
+124            for par in group.params:
+125                m = regex.match(par)
+126                if m is None:
+127                    continue
+128                peak_i, par_name = m.groups()
+129                ret[f'g{group_i:02d}_p{peak_i}'][par_name] = group.params[par].value
+130                ret[f'g{group_i:02d}_p{peak_i}'][f'{par_name}_stderr'] = group.params[par].stderr
+131        return pd.DataFrame.from_dict(ret, orient='index')
+132
+133    def to_csv(self, path_or_buf=None, sep=',', **kwargs):
+134        return self.to_dataframe_peaks().to_csv(path_or_buf=path_or_buf, sep=sep, **kwargs)
+135
+136    def gen_fake_spectrum(self, xarr):
+137        summ = np.zeros_like(xarr)
+138        last_i = 0
+139        last_y = 0
+140        for m in self:
+141            mx = m.userkws['x']
+142            xi = np.searchsorted(xarr, mx)
+143            evalm = m.eval()
+144            summ[xi] = evalm
+145            summ[np.arange(last_i, xi[0])] = np.interp(np.arange(last_i, xi[0]), [last_i, xi[0]], [last_y, evalm[0]])
+146            last_i = xi[-1]
+147            last_y = evalm[-1]
+148        fake_spe = Spectrum(x=xarr, y=summ)
+149        return fake_spe
+
+ + +

A more or less complete user-defined wrapper around list objects.

+
+ + +
+ +
+ + def + valuesdict(self): + + + +
+ +
16    def valuesdict(self):
+17        ret = dict()
+18        for i in self:
+19            ret.update(i.params.valuesdict())
+20        return ret
+
+ + + + +
+
+ +
+ locations + + + +
+ +
22    @property
+23    def locations(self):
+24        return np.array([v for peak in self for k, v in peak.values.items() if k.endswith('center')])
+
+ + + + +
+
+ +
+ centers + + + +
+ +
26    @property
+27    def centers(self):
+28        return np.array([v for peak in self for k, v in peak.values.items() if k.endswith('center')])
+
+ + + + +
+
+ +
+ fwhm + + + +
+ +
30    @property
+31    def fwhm(self):
+32        return np.array([v for peak in self for k, v in peak.values.items() if k.endswith('fwhm')])
+
+ + + + +
+
+ +
+ + def + boundaries(self, n_sigma=5): + + + +
+ +
34    def boundaries(self, n_sigma=5):
+35        bounds = list()
+36        for group in self:
+37            pos = np.array([v for k, v in group.values.items() if k.endswith('center')])
+38            sig = np.array([v for k, v in group.values.items() if k.endswith('fwhm')])
+39            sig /= 2.35
+40            sig *= n_sigma
+41            bounds.append((np.min(pos - sig), np.max(pos+sig)))
+42        return bounds
+
+ + + + +
+
+ +
+ + def + center_amplitude(self, threshold): + + + +
+ +
44    def center_amplitude(self, threshold):
+45        return np.array([
+46            (v.value, peak.params[k[:-6] + 'amplitude'].value)
+47            for peak in self
+48            for k, v in peak.params.items()
+49            if k.endswith('center')
+50            if hasattr(v, 'stderr') and v.stderr is not None and v.stderr < threshold
+51        ]).T
+
+ + + + +
+
+ +
+ centers_err + + + +
+ +
53    @property
+54    def centers_err(self):
+55        return np.array([
+56            (v.value, v.stderr)
+57            for peak in self
+58            for k, v in peak.params.items()
+59            if k.endswith('center')
+60            if hasattr(v, 'stderr') and v.stderr is not None
+61            ])
+
+ + + + +
+
+ +
+ fwhms + + + +
+ +
63    @property
+64    def fwhms(self):
+65        return np.array([v for peak in self for k, v in peak.values.items() if k.endswith('fwhm')])
+
+ + + + +
+
+ +
+ amplitudes + + + +
+ +
67    @property
+68    def amplitudes(self):
+69        return np.array([v for peak in self for k, v in peak.values.items() if k.endswith('amplitude')])
+
+ + + + +
+
+ +
+ + def + dumps(self): + + + +
+ +
71    def dumps(self):
+72        return [peak.dumps() for peak in self]
+
+ + + + +
+
+ +
+
@classmethod
+ + def + loads(cls, json_str: List[str]): + + + +
+ +
74    @classmethod
+75    def loads(cls, json_str: List[str]):
+76        self = cls()
+77        for p in json_str:
+78            params = Parameters()
+79            modres = ModelResult(Model(lambda x: x, None), params)
+80            self.append(modres.loads(p))
+81        return self
+
+ + + + +
+
+ +
+ + def + to_dataframe(self): + + + +
+ +
111    def to_dataframe(self):
+112        return pd.DataFrame(
+113            [
+114                dict(name=f'g{group:02d}_{key}', value=val.value, stderr=val.stderr)
+115                for group, res in enumerate(self)
+116                for key, val in res.params.items()
+117            ]
+118        ).sort_values('name')
+
+ + + + +
+
+ +
+ + def + to_dataframe_peaks(self): + + + +
+ +
120    def to_dataframe_peaks(self):
+121        regex = re.compile(r'p([0-9]+)_(.*)')
+122        ret = defaultdict(dict)
+123        for group_i, group in enumerate(self):
+124            for par in group.params:
+125                m = regex.match(par)
+126                if m is None:
+127                    continue
+128                peak_i, par_name = m.groups()
+129                ret[f'g{group_i:02d}_p{peak_i}'][par_name] = group.params[par].value
+130                ret[f'g{group_i:02d}_p{peak_i}'][f'{par_name}_stderr'] = group.params[par].stderr
+131        return pd.DataFrame.from_dict(ret, orient='index')
+
+ + + + +
+
+ +
+ + def + to_csv(self, path_or_buf=None, sep=',', **kwargs): + + + +
+ +
133    def to_csv(self, path_or_buf=None, sep=',', **kwargs):
+134        return self.to_dataframe_peaks().to_csv(path_or_buf=path_or_buf, sep=sep, **kwargs)
+
+ + + + +
+
+ +
+ + def + gen_fake_spectrum(self, xarr): + + + +
+ +
136    def gen_fake_spectrum(self, xarr):
+137        summ = np.zeros_like(xarr)
+138        last_i = 0
+139        last_y = 0
+140        for m in self:
+141            mx = m.userkws['x']
+142            xi = np.searchsorted(xarr, mx)
+143            evalm = m.eval()
+144            summ[xi] = evalm
+145            summ[np.arange(last_i, xi[0])] = np.interp(np.arange(last_i, xi[0]), [last_i, xi[0]], [last_y, evalm[0]])
+146            last_i = xi[-1]
+147            last_y = evalm[-1]
+148        fake_spe = Spectrum(x=xarr, y=summ)
+149        return fake_spe
+
+ + + + +
+
+
Inherited Members
+
+
collections.UserList
+
UserList
+
data
+
append
+
insert
+
pop
+
remove
+
clear
+
copy
+
count
+
index
+
reverse
+
sort
+
extend
+ +
+
ramanchada2.misc.plottable.Plottable
+
plot
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/ramanchada2/misc/types/peak_candidates.html b/ramanchada2/misc/types/peak_candidates.html new file mode 100644 index 00000000..f8ace330 --- /dev/null +++ b/ramanchada2/misc/types/peak_candidates.html @@ -0,0 +1,1472 @@ + + + + + + + ramanchada2.misc.types.peak_candidates API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.misc.types.peak_candidates

+ + + + + + +
  1from __future__ import annotations
+  2
+  3from typing import List, Tuple
+  4
+  5import numpy as np
+  6from pydantic import PositiveFloat
+  7
+  8from ..plottable import Plottable
+  9from .pydantic_base_model import PydBaseModel, PydRootModel
+ 10
+ 11
+ 12class PeakModel(PydBaseModel):
+ 13    amplitude: PositiveFloat
+ 14    position: float
+ 15    sigma: PositiveFloat
+ 16    skew: float = 0
+ 17
+ 18    @property
+ 19    def fwhm(self) -> float:
+ 20        return self.sigma * 2.355
+ 21
+ 22    @property
+ 23    def lwhm(self) -> float:
+ 24        """
+ 25        Left width at half maximum.
+ 26        """
+ 27        return self.fwhm*(1-self.skew)/2
+ 28
+ 29    @property
+ 30    def rwhm(self) -> float:
+ 31        """
+ 32        Right width at half maximum.
+ 33        """
+ 34        return self.fwhm*(1+self.skew)/2
+ 35
+ 36    def serialize(self):
+ 37        return self.model_dump_json()
+ 38
+ 39
+ 40class PeakCandidateMultiModel(PydBaseModel, Plottable):
+ 41    peaks: List[PeakModel]
+ 42    base_slope: float = 0
+ 43    base_intercept: float = 0
+ 44    boundaries: Tuple[float, float]
+ 45
+ 46    def plot_params_baseline(self):
+ 47        x = np.array(self.boundaries)
+ 48        return (x, self.base_slope*x + self.base_intercept)
+ 49
+ 50    def plot_params_errorbar(self):
+ 51        x = self.positions
+ 52        xleft = self.lwhms
+ 53        xright = self.rwhms
+ 54        y_err = (self.amplitudes/2)
+ 55        y = y_err + self.peak_bases
+ 56        return x, y, y_err, (xleft, xright)
+ 57
+ 58    @property
+ 59    def positions(self):
+ 60        return np.array([p.position for p in self.peaks])
+ 61
+ 62    @property
+ 63    def sigmas(self):
+ 64        return np.array([p.sigma for p in self.peaks])
+ 65
+ 66    @property
+ 67    def fwhms(self):
+ 68        return np.array([p.fwhm for p in self.peaks])
+ 69
+ 70    @property
+ 71    def lwhms(self):
+ 72        return np.array([p.lwhm for p in self.peaks])
+ 73
+ 74    @property
+ 75    def rwhms(self):
+ 76        return np.array([p.rwhm for p in self.peaks])
+ 77
+ 78    @property
+ 79    def skews(self):
+ 80        return np.array([p.skew for p in self.peaks])
+ 81
+ 82    @property
+ 83    def amplitudes(self):
+ 84        return np.array([p.amplitude for p in self.peaks])
+ 85
+ 86    @property
+ 87    def bases(self):
+ 88        return self.positions * self.base_slope + self.base_intercept
+ 89
+ 90    def get_pos_ampl_dict(self):
+ 91        return dict(zip(self.positions, self.amplitudes))
+ 92
+ 93    def get_ampl_pos_fwhm(self):
+ 94        return np.array([
+ 95            self.amplitudes,
+ 96            self.positions,
+ 97            self.fwhms]).T
+ 98
+ 99    @property
+100    def peak_bases(self):
+101        return self.positions * self.base_slope + self.base_intercept
+102
+103    def _plot(self, ax, *args, label=" ", **kwargs):
+104        ax.errorbar(*self.plot_params_errorbar(), label=label)
+105        ax.plot(*self.plot_params_baseline())
+106
+107    def serialize(self):
+108        return self.model_dump_json()
+109
+110
+111class ListPeakCandidateMultiModel(PydRootModel, Plottable):
+112    root: List[PeakCandidateMultiModel]
+113
+114    def get_ampl_pos_fwhm(self):
+115        return np.concatenate([cands.get_ampl_pos_fwhm() for cands in self.root])
+116
+117    def get_pos_ampl_dict(self):
+118        return {k: v for cands in self.root for k, v in cands.get_pos_ampl_dict().items()}
+119
+120    def _plot(self, ax, *args, label=" ", **kwargs):
+121        for i, gr in enumerate(self.root):
+122            gr.plot(ax=ax, *args, label=f'{label}_{i}', **kwargs)
+123
+124    def __getitem__(self, key) -> PeakCandidateMultiModel:
+125        return self.root[key]
+126
+127    def __iter__(self):
+128        return iter(self.root)
+129
+130    def __len__(self):
+131        return len(self.root)
+132
+133    def serialize(self):
+134        return self.model_dump_json()
+
+ + +
+
+ +
+ + class + PeakModel(ramanchada2.misc.types.pydantic_base_model.PydBaseModel): + + + +
+ +
13class PeakModel(PydBaseModel):
+14    amplitude: PositiveFloat
+15    position: float
+16    sigma: PositiveFloat
+17    skew: float = 0
+18
+19    @property
+20    def fwhm(self) -> float:
+21        return self.sigma * 2.355
+22
+23    @property
+24    def lwhm(self) -> float:
+25        """
+26        Left width at half maximum.
+27        """
+28        return self.fwhm*(1-self.skew)/2
+29
+30    @property
+31    def rwhm(self) -> float:
+32        """
+33        Right width at half maximum.
+34        """
+35        return self.fwhm*(1+self.skew)/2
+36
+37    def serialize(self):
+38        return self.model_dump_json()
+
+ + +

Usage docs: https://docs.pydantic.dev/2.9/concepts/models/

+ +

A base class for creating Pydantic models.

+ +
Attributes:
+ +
    +
  • __class_vars__: The names of the class variables defined on the model.
  • +
  • __private_attributes__: Metadata about the private attributes of the model.
  • +
  • __signature__: The synthesized __init__ [Signature][inspect.Signature] of the model.
  • +
  • __pydantic_complete__: Whether model building is completed, or if there are still undefined fields.
  • +
  • __pydantic_core_schema__: The core schema of the model.
  • +
  • __pydantic_custom_init__: Whether the model has a custom __init__ function.
  • +
  • __pydantic_decorators__: Metadata containing the decorators defined on the model. +This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.
  • +
  • __pydantic_generic_metadata__: Metadata for generic models; contains data used for a similar purpose to +__args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
  • +
  • __pydantic_parent_namespace__: Parent namespace of the model, used for automatic rebuilding of models.
  • +
  • __pydantic_post_init__: The name of the post-init method for the model, if defined.
  • +
  • __pydantic_root_model__: Whether the model is a [RootModel][pydantic.root_model.RootModel].
  • +
  • __pydantic_serializer__: The pydantic-core SchemaSerializer used to dump instances of the model.
  • +
  • __pydantic_validator__: The pydantic-core SchemaValidator used to validate instances of the model.
  • +
  • __pydantic_extra__: A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] +is set to 'allow'.
  • +
  • __pydantic_fields_set__: The names of fields explicitly set during instantiation.
  • +
  • __pydantic_private__: Values of private attributes set on the model instance.
  • +
+
+ + +
+
+ amplitude: typing.Annotated[float, Gt(gt=0)] + + +
+ + + + +
+
+
+ position: float + + +
+ + + + +
+
+
+ sigma: typing.Annotated[float, Gt(gt=0)] + + +
+ + + + +
+
+
+ skew: float + + +
+ + + + +
+
+ +
+ fwhm: float + + + +
+ +
19    @property
+20    def fwhm(self) -> float:
+21        return self.sigma * 2.355
+
+ + + + +
+
+ +
+ lwhm: float + + + +
+ +
23    @property
+24    def lwhm(self) -> float:
+25        """
+26        Left width at half maximum.
+27        """
+28        return self.fwhm*(1-self.skew)/2
+
+ + +

Left width at half maximum.

+
+ + +
+
+ +
+ rwhm: float + + + +
+ +
30    @property
+31    def rwhm(self) -> float:
+32        """
+33        Right width at half maximum.
+34        """
+35        return self.fwhm*(1+self.skew)/2
+
+ + +

Right width at half maximum.

+
+ + +
+
+ +
+ + def + serialize(self): + + + +
+ +
37    def serialize(self):
+38        return self.model_dump_json()
+
+ + + + +
+
+
+ model_config = +{'arbitrary_types_allowed': True} + + +
+ + +

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

+
+ + +
+
+
+ model_fields: ClassVar[Dict[str, pydantic.fields.FieldInfo]] = + + {'amplitude': FieldInfo(annotation=float, required=True, metadata=[Gt(gt=0)]), 'position': FieldInfo(annotation=float, required=True), 'sigma': FieldInfo(annotation=float, required=True, metadata=[Gt(gt=0)]), 'skew': FieldInfo(annotation=float, required=False, default=0)} + + +
+ + +

Metadata about the fields defined on the model, +mapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.

+ +

This replaces Model.__fields__ from Pydantic V1.

+
+ + +
+
+
+ model_computed_fields: ClassVar[Dict[str, pydantic.fields.ComputedFieldInfo]] = +{} + + +
+ + +

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

+
+ + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
+
+
+
+ +
+ + class + PeakCandidateMultiModel(ramanchada2.misc.types.pydantic_base_model.PydBaseModel, ramanchada2.misc.plottable.Plottable): + + + +
+ +
 41class PeakCandidateMultiModel(PydBaseModel, Plottable):
+ 42    peaks: List[PeakModel]
+ 43    base_slope: float = 0
+ 44    base_intercept: float = 0
+ 45    boundaries: Tuple[float, float]
+ 46
+ 47    def plot_params_baseline(self):
+ 48        x = np.array(self.boundaries)
+ 49        return (x, self.base_slope*x + self.base_intercept)
+ 50
+ 51    def plot_params_errorbar(self):
+ 52        x = self.positions
+ 53        xleft = self.lwhms
+ 54        xright = self.rwhms
+ 55        y_err = (self.amplitudes/2)
+ 56        y = y_err + self.peak_bases
+ 57        return x, y, y_err, (xleft, xright)
+ 58
+ 59    @property
+ 60    def positions(self):
+ 61        return np.array([p.position for p in self.peaks])
+ 62
+ 63    @property
+ 64    def sigmas(self):
+ 65        return np.array([p.sigma for p in self.peaks])
+ 66
+ 67    @property
+ 68    def fwhms(self):
+ 69        return np.array([p.fwhm for p in self.peaks])
+ 70
+ 71    @property
+ 72    def lwhms(self):
+ 73        return np.array([p.lwhm for p in self.peaks])
+ 74
+ 75    @property
+ 76    def rwhms(self):
+ 77        return np.array([p.rwhm for p in self.peaks])
+ 78
+ 79    @property
+ 80    def skews(self):
+ 81        return np.array([p.skew for p in self.peaks])
+ 82
+ 83    @property
+ 84    def amplitudes(self):
+ 85        return np.array([p.amplitude for p in self.peaks])
+ 86
+ 87    @property
+ 88    def bases(self):
+ 89        return self.positions * self.base_slope + self.base_intercept
+ 90
+ 91    def get_pos_ampl_dict(self):
+ 92        return dict(zip(self.positions, self.amplitudes))
+ 93
+ 94    def get_ampl_pos_fwhm(self):
+ 95        return np.array([
+ 96            self.amplitudes,
+ 97            self.positions,
+ 98            self.fwhms]).T
+ 99
+100    @property
+101    def peak_bases(self):
+102        return self.positions * self.base_slope + self.base_intercept
+103
+104    def _plot(self, ax, *args, label=" ", **kwargs):
+105        ax.errorbar(*self.plot_params_errorbar(), label=label)
+106        ax.plot(*self.plot_params_baseline())
+107
+108    def serialize(self):
+109        return self.model_dump_json()
+
+ + +

Usage docs: https://docs.pydantic.dev/2.9/concepts/models/

+ +

A base class for creating Pydantic models.

+ +
Attributes:
+ +
    +
  • __class_vars__: The names of the class variables defined on the model.
  • +
  • __private_attributes__: Metadata about the private attributes of the model.
  • +
  • __signature__: The synthesized __init__ [Signature][inspect.Signature] of the model.
  • +
  • __pydantic_complete__: Whether model building is completed, or if there are still undefined fields.
  • +
  • __pydantic_core_schema__: The core schema of the model.
  • +
  • __pydantic_custom_init__: Whether the model has a custom __init__ function.
  • +
  • __pydantic_decorators__: Metadata containing the decorators defined on the model. +This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.
  • +
  • __pydantic_generic_metadata__: Metadata for generic models; contains data used for a similar purpose to +__args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
  • +
  • __pydantic_parent_namespace__: Parent namespace of the model, used for automatic rebuilding of models.
  • +
  • __pydantic_post_init__: The name of the post-init method for the model, if defined.
  • +
  • __pydantic_root_model__: Whether the model is a [RootModel][pydantic.root_model.RootModel].
  • +
  • __pydantic_serializer__: The pydantic-core SchemaSerializer used to dump instances of the model.
  • +
  • __pydantic_validator__: The pydantic-core SchemaValidator used to validate instances of the model.
  • +
  • __pydantic_extra__: A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] +is set to 'allow'.
  • +
  • __pydantic_fields_set__: The names of fields explicitly set during instantiation.
  • +
  • __pydantic_private__: Values of private attributes set on the model instance.
  • +
+
+ + +
+
+ peaks: List[PeakModel] + + +
+ + + + +
+
+
+ base_slope: float + + +
+ + + + +
+
+
+ base_intercept: float + + +
+ + + + +
+
+
+ boundaries: Tuple[float, float] + + +
+ + + + +
+
+ +
+ + def + plot_params_baseline(self): + + + +
+ +
47    def plot_params_baseline(self):
+48        x = np.array(self.boundaries)
+49        return (x, self.base_slope*x + self.base_intercept)
+
+ + + + +
+
+ +
+ + def + plot_params_errorbar(self): + + + +
+ +
51    def plot_params_errorbar(self):
+52        x = self.positions
+53        xleft = self.lwhms
+54        xright = self.rwhms
+55        y_err = (self.amplitudes/2)
+56        y = y_err + self.peak_bases
+57        return x, y, y_err, (xleft, xright)
+
+ + + + +
+
+ +
+ positions + + + +
+ +
59    @property
+60    def positions(self):
+61        return np.array([p.position for p in self.peaks])
+
+ + + + +
+
+ +
+ sigmas + + + +
+ +
63    @property
+64    def sigmas(self):
+65        return np.array([p.sigma for p in self.peaks])
+
+ + + + +
+
+ +
+ fwhms + + + +
+ +
67    @property
+68    def fwhms(self):
+69        return np.array([p.fwhm for p in self.peaks])
+
+ + + + +
+
+ +
+ lwhms + + + +
+ +
71    @property
+72    def lwhms(self):
+73        return np.array([p.lwhm for p in self.peaks])
+
+ + + + +
+
+ +
+ rwhms + + + +
+ +
75    @property
+76    def rwhms(self):
+77        return np.array([p.rwhm for p in self.peaks])
+
+ + + + +
+
+ +
+ skews + + + +
+ +
79    @property
+80    def skews(self):
+81        return np.array([p.skew for p in self.peaks])
+
+ + + + +
+
+ +
+ amplitudes + + + +
+ +
83    @property
+84    def amplitudes(self):
+85        return np.array([p.amplitude for p in self.peaks])
+
+ + + + +
+
+ +
+ bases + + + +
+ +
87    @property
+88    def bases(self):
+89        return self.positions * self.base_slope + self.base_intercept
+
+ + + + +
+
+ +
+ + def + get_pos_ampl_dict(self): + + + +
+ +
91    def get_pos_ampl_dict(self):
+92        return dict(zip(self.positions, self.amplitudes))
+
+ + + + +
+
+ +
+ + def + get_ampl_pos_fwhm(self): + + + +
+ +
94    def get_ampl_pos_fwhm(self):
+95        return np.array([
+96            self.amplitudes,
+97            self.positions,
+98            self.fwhms]).T
+
+ + + + +
+
+ +
+ peak_bases + + + +
+ +
100    @property
+101    def peak_bases(self):
+102        return self.positions * self.base_slope + self.base_intercept
+
+ + + + +
+
+ +
+ + def + serialize(self): + + + +
+ +
108    def serialize(self):
+109        return self.model_dump_json()
+
+ + + + +
+
+
+ model_config = +{'arbitrary_types_allowed': True} + + +
+ + +

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

+
+ + +
+
+
+ model_fields: ClassVar[Dict[str, pydantic.fields.FieldInfo]] = + + {'peaks': FieldInfo(annotation=List[PeakModel], required=True), 'base_slope': FieldInfo(annotation=float, required=False, default=0), 'base_intercept': FieldInfo(annotation=float, required=False, default=0), 'boundaries': FieldInfo(annotation=Tuple[float, float], required=True)} + + +
+ + +

Metadata about the fields defined on the model, +mapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.

+ +

This replaces Model.__fields__ from Pydantic V1.

+
+ + +
+
+
+ model_computed_fields: ClassVar[Dict[str, pydantic.fields.ComputedFieldInfo]] = +{} + + +
+ + +

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

+
+ + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
ramanchada2.misc.plottable.Plottable
+
plot
+ +
+
+
+
+
+ +
+ + class + ListPeakCandidateMultiModel(pydantic.main.BaseModel, typing.Generic[~RootModelRootType]): + + + +
+ +
112class ListPeakCandidateMultiModel(PydRootModel, Plottable):
+113    root: List[PeakCandidateMultiModel]
+114
+115    def get_ampl_pos_fwhm(self):
+116        return np.concatenate([cands.get_ampl_pos_fwhm() for cands in self.root])
+117
+118    def get_pos_ampl_dict(self):
+119        return {k: v for cands in self.root for k, v in cands.get_pos_ampl_dict().items()}
+120
+121    def _plot(self, ax, *args, label=" ", **kwargs):
+122        for i, gr in enumerate(self.root):
+123            gr.plot(ax=ax, *args, label=f'{label}_{i}', **kwargs)
+124
+125    def __getitem__(self, key) -> PeakCandidateMultiModel:
+126        return self.root[key]
+127
+128    def __iter__(self):
+129        return iter(self.root)
+130
+131    def __len__(self):
+132        return len(self.root)
+133
+134    def serialize(self):
+135        return self.model_dump_json()
+
+ + +

Usage docs: https://docs.pydantic.dev/2.9/concepts/models/#rootmodel-and-custom-root-types

+ +

A Pydantic BaseModel for the root object of the model.

+ +
Attributes:
+ +
    +
  • root: The root object of the model.
  • +
  • __pydantic_root_model__: Whether the model is a RootModel.
  • +
  • __pydantic_private__: Private fields in the model.
  • +
  • __pydantic_extra__: Extra fields in the model.
  • +
+
+ + +
+
+ root: List[PeakCandidateMultiModel] + + +
+ + + + +
+
+ +
+ + def + get_ampl_pos_fwhm(self): + + + +
+ +
115    def get_ampl_pos_fwhm(self):
+116        return np.concatenate([cands.get_ampl_pos_fwhm() for cands in self.root])
+
+ + + + +
+
+ +
+ + def + get_pos_ampl_dict(self): + + + +
+ +
118    def get_pos_ampl_dict(self):
+119        return {k: v for cands in self.root for k, v in cands.get_pos_ampl_dict().items()}
+
+ + + + +
+
+ +
+ + def + serialize(self): + + + +
+ +
134    def serialize(self):
+135        return self.model_dump_json()
+
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_config
+
model_fields
+
model_computed_fields
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
ramanchada2.misc.plottable.Plottable
+
plot
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/ramanchada2/misc/types/positive_not_multiple.html b/ramanchada2/misc/types/positive_not_multiple.html new file mode 100644 index 00000000..12edaecc --- /dev/null +++ b/ramanchada2/misc/types/positive_not_multiple.html @@ -0,0 +1,287 @@ + + + + + + + ramanchada2.misc.types.positive_not_multiple API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.misc.types.positive_not_multiple

+ + + + + + +
1from pydantic import PositiveInt
+2
+3# For more info check https://github.com/pydantic/pydantic/issues/10111
+4# PositiveOddInt = typing.Annotated[int,
+5#                                   annotated_types.Ge(0),
+6#                                   annotated_types.Not(annotated_types.MultipleOf(2))]
+7
+8# FIXME This is a quickfix
+9PositiveOddInt = PositiveInt
+
+ + +
+
+
+ PositiveOddInt = +typing.Annotated[int, Gt(gt=0)] + + +
+ + + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/misc/types/pydantic_base_model.html b/ramanchada2/misc/types/pydantic_base_model.html new file mode 100644 index 00000000..7b76184a --- /dev/null +++ b/ramanchada2/misc/types/pydantic_base_model.html @@ -0,0 +1,566 @@ + + + + + + + ramanchada2.misc.types.pydantic_base_model API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.misc.types.pydantic_base_model

+ + + + + + +
 1from abc import ABC, abstractmethod
+ 2
+ 3from pydantic import BaseModel, RootModel
+ 4
+ 5
+ 6class PydBaseModel(BaseModel, ABC):
+ 7    model_config = dict(
+ 8        arbitrary_types_allowed=True
+ 9    )
+10
+11    @abstractmethod
+12    def serialize(self):
+13        pass
+14
+15
+16class PydRootModel(RootModel, ABC):
+17    model_config = dict(
+18        arbitrary_types_allowed=True
+19    )
+20
+21    @abstractmethod
+22    def serialize(self):
+23        pass
+
+ + +
+
+ +
+ + class + PydBaseModel(pydantic.main.BaseModel, abc.ABC): + + + +
+ +
 7class PydBaseModel(BaseModel, ABC):
+ 8    model_config = dict(
+ 9        arbitrary_types_allowed=True
+10    )
+11
+12    @abstractmethod
+13    def serialize(self):
+14        pass
+
+ + +

Usage docs: https://docs.pydantic.dev/2.9/concepts/models/

+ +

A base class for creating Pydantic models.

+ +
Attributes:
+ +
    +
  • __class_vars__: The names of the class variables defined on the model.
  • +
  • __private_attributes__: Metadata about the private attributes of the model.
  • +
  • __signature__: The synthesized __init__ [Signature][inspect.Signature] of the model.
  • +
  • __pydantic_complete__: Whether model building is completed, or if there are still undefined fields.
  • +
  • __pydantic_core_schema__: The core schema of the model.
  • +
  • __pydantic_custom_init__: Whether the model has a custom __init__ function.
  • +
  • __pydantic_decorators__: Metadata containing the decorators defined on the model. +This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.
  • +
  • __pydantic_generic_metadata__: Metadata for generic models; contains data used for a similar purpose to +__args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
  • +
  • __pydantic_parent_namespace__: Parent namespace of the model, used for automatic rebuilding of models.
  • +
  • __pydantic_post_init__: The name of the post-init method for the model, if defined.
  • +
  • __pydantic_root_model__: Whether the model is a [RootModel][pydantic.root_model.RootModel].
  • +
  • __pydantic_serializer__: The pydantic-core SchemaSerializer used to dump instances of the model.
  • +
  • __pydantic_validator__: The pydantic-core SchemaValidator used to validate instances of the model.
  • +
  • __pydantic_extra__: A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] +is set to 'allow'.
  • +
  • __pydantic_fields_set__: The names of fields explicitly set during instantiation.
  • +
  • __pydantic_private__: Values of private attributes set on the model instance.
  • +
+
+ + +
+
+ model_config = +{'arbitrary_types_allowed': True} + + +
+ + +

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

+
+ + +
+
+ +
+
@abstractmethod
+ + def + serialize(self): + + + +
+ +
12    @abstractmethod
+13    def serialize(self):
+14        pass
+
+ + + + +
+
+
+ model_fields: ClassVar[Dict[str, pydantic.fields.FieldInfo]] = +{} + + +
+ + +

Metadata about the fields defined on the model, +mapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.

+ +

This replaces Model.__fields__ from Pydantic V1.

+
+ + +
+
+
+ model_computed_fields: ClassVar[Dict[str, pydantic.fields.ComputedFieldInfo]] = +{} + + +
+ + +

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

+
+ + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
+
+
+
+ +
+ + class + PydRootModel(pydantic.main.BaseModel, typing.Generic[~RootModelRootType]): + + + +
+ +
17class PydRootModel(RootModel, ABC):
+18    model_config = dict(
+19        arbitrary_types_allowed=True
+20    )
+21
+22    @abstractmethod
+23    def serialize(self):
+24        pass
+
+ + +

Usage docs: https://docs.pydantic.dev/2.9/concepts/models/#rootmodel-and-custom-root-types

+ +

A Pydantic BaseModel for the root object of the model.

+ +
Attributes:
+ +
    +
  • root: The root object of the model.
  • +
  • __pydantic_root_model__: Whether the model is a RootModel.
  • +
  • __pydantic_private__: Private fields in the model.
  • +
  • __pydantic_extra__: Extra fields in the model.
  • +
+
+ + +
+ +
+
@abstractmethod
+ + def + serialize(self): + + + +
+ +
22    @abstractmethod
+23    def serialize(self):
+24        pass
+
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_config
+
model_fields
+
model_computed_fields
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
pydantic.root_model.RootModel
+
root
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/ramanchada2/misc/types/spectrum.html b/ramanchada2/misc/types/spectrum.html new file mode 100644 index 00000000..b6ca3891 --- /dev/null +++ b/ramanchada2/misc/types/spectrum.html @@ -0,0 +1,266 @@ + + + + + + + ramanchada2.misc.types.spectrum API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.misc.types.spectrum

+ + + + + + +
1from .applied_processings import SpeProcessingListModel, SpeProcessingModel
+2from .metadata import SpeMetadataFieldTyping, SpeMetadataModel
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/misc/types/spectrum/applied_processings.html b/ramanchada2/misc/types/spectrum/applied_processings.html new file mode 100644 index 00000000..5997a85d --- /dev/null +++ b/ramanchada2/misc/types/spectrum/applied_processings.html @@ -0,0 +1,904 @@ + + + + + + + ramanchada2.misc.types.spectrum.applied_processings API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.misc.types.spectrum.applied_processings

+ + + + + + +
 1from __future__ import annotations
+ 2
+ 3from typing import Dict, List
+ 4
+ 5from pydantic import (BaseModel, Field, RootModel, field_validator,
+ 6                      validate_call)
+ 7
+ 8
+ 9class SpeProcessingModel(BaseModel):
+10    proc: str = Field(...)
+11    args: List = list()
+12    kwargs: Dict = dict()
+13
+14    @property
+15    def is_constructor(self):
+16        from ramanchada2.misc.spectrum_deco.dynamically_added import \
+17            dynamically_added_constructors
+18        return self.proc in dynamically_added_constructors
+19
+20    @field_validator('proc', mode='before')
+21    @validate_call
+22    def check_proc(cls, val: str):
+23        from ramanchada2.misc.spectrum_deco.dynamically_added import (
+24            dynamically_added_constructors, dynamically_added_filters)
+25        if val in dynamically_added_filters:
+26            return val
+27        if val in dynamically_added_constructors:
+28            return val
+29        raise ValueError(f'processing {val} not supported')
+30
+31
+32class SpeProcessingListModel(RootModel):
+33    root: List[SpeProcessingModel]
+34
+35    def __len__(self):
+36        return len(self.root)
+37
+38    def append(self, proc, args=[], kwargs={}):
+39        self.root.append(SpeProcessingModel(proc=proc, args=args, kwargs=kwargs))
+40
+41    @validate_call
+42    def extend_left(self, proc_list: List[SpeProcessingModel]):
+43        self.root = proc_list + self.root
+44
+45    def pop(self):
+46        return self.root.pop()
+47
+48    def clear(self):
+49        return self.root.clear()
+50
+51    def assign(self, *args, **kwargs):
+52        self.clear()
+53        self.append(*args, **kwargs)
+54
+55    def _string_list(self):
+56        ret = list()
+57        for elem in self.root:
+58            args = [f'{repr(i)}' for i in elem.args]
+59            kwargs = [f'{k}={repr(v)}' for k, v in elem.kwargs.items()]
+60            comb = ', '.join(args + kwargs)
+61            ret.append(f'{elem.proc}({comb})')
+62        return ret
+63
+64    def repr(self):
+65        return '.'.join(self._string_list())
+66
+67    def cache_path(self):
+68        return '/'.join([
+69            i.replace(' ', '').replace('/', '_')
+70            for i in self._string_list()])
+71
+72    def to_list(self):
+73        return [i.model_dump() for i in self.root]
+
+ + +
+
+ +
+ + class + SpeProcessingModel(pydantic.main.BaseModel): + + + +
+ +
10class SpeProcessingModel(BaseModel):
+11    proc: str = Field(...)
+12    args: List = list()
+13    kwargs: Dict = dict()
+14
+15    @property
+16    def is_constructor(self):
+17        from ramanchada2.misc.spectrum_deco.dynamically_added import \
+18            dynamically_added_constructors
+19        return self.proc in dynamically_added_constructors
+20
+21    @field_validator('proc', mode='before')
+22    @validate_call
+23    def check_proc(cls, val: str):
+24        from ramanchada2.misc.spectrum_deco.dynamically_added import (
+25            dynamically_added_constructors, dynamically_added_filters)
+26        if val in dynamically_added_filters:
+27            return val
+28        if val in dynamically_added_constructors:
+29            return val
+30        raise ValueError(f'processing {val} not supported')
+
+ + +

Usage docs: https://docs.pydantic.dev/2.9/concepts/models/

+ +

A base class for creating Pydantic models.

+ +
Attributes:
+ +
    +
  • __class_vars__: The names of the class variables defined on the model.
  • +
  • __private_attributes__: Metadata about the private attributes of the model.
  • +
  • __signature__: The synthesized __init__ [Signature][inspect.Signature] of the model.
  • +
  • __pydantic_complete__: Whether model building is completed, or if there are still undefined fields.
  • +
  • __pydantic_core_schema__: The core schema of the model.
  • +
  • __pydantic_custom_init__: Whether the model has a custom __init__ function.
  • +
  • __pydantic_decorators__: Metadata containing the decorators defined on the model. +This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.
  • +
  • __pydantic_generic_metadata__: Metadata for generic models; contains data used for a similar purpose to +__args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
  • +
  • __pydantic_parent_namespace__: Parent namespace of the model, used for automatic rebuilding of models.
  • +
  • __pydantic_post_init__: The name of the post-init method for the model, if defined.
  • +
  • __pydantic_root_model__: Whether the model is a [RootModel][pydantic.root_model.RootModel].
  • +
  • __pydantic_serializer__: The pydantic-core SchemaSerializer used to dump instances of the model.
  • +
  • __pydantic_validator__: The pydantic-core SchemaValidator used to validate instances of the model.
  • +
  • __pydantic_extra__: A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] +is set to 'allow'.
  • +
  • __pydantic_fields_set__: The names of fields explicitly set during instantiation.
  • +
  • __pydantic_private__: Values of private attributes set on the model instance.
  • +
+
+ + +
+
+ proc: str + + +
+ + + + +
+
+
+ args: List + + +
+ + + + +
+
+
+ kwargs: Dict + + +
+ + + + +
+
+ +
+ is_constructor + + + +
+ +
15    @property
+16    def is_constructor(self):
+17        from ramanchada2.misc.spectrum_deco.dynamically_added import \
+18            dynamically_added_constructors
+19        return self.proc in dynamically_added_constructors
+
+ + + + +
+
+ +
+
@field_validator('proc', mode='before')
+
@validate_call
+ + def + check_proc(cls, val: str): + + + +
+ +
21    @field_validator('proc', mode='before')
+22    @validate_call
+23    def check_proc(cls, val: str):
+24        from ramanchada2.misc.spectrum_deco.dynamically_added import (
+25            dynamically_added_constructors, dynamically_added_filters)
+26        if val in dynamically_added_filters:
+27            return val
+28        if val in dynamically_added_constructors:
+29            return val
+30        raise ValueError(f'processing {val} not supported')
+
+ + + + +
+
+
+ model_config: ClassVar[pydantic.config.ConfigDict] = +{} + + +
+ + +

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

+
+ + +
+
+
+ model_fields: ClassVar[Dict[str, pydantic.fields.FieldInfo]] = + + {'proc': FieldInfo(annotation=str, required=True), 'args': FieldInfo(annotation=List, required=False, default=[]), 'kwargs': FieldInfo(annotation=Dict, required=False, default={})} + + +
+ + +

Metadata about the fields defined on the model, +mapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.

+ +

This replaces Model.__fields__ from Pydantic V1.

+
+ + +
+
+
+ model_computed_fields: ClassVar[Dict[str, pydantic.fields.ComputedFieldInfo]] = +{} + + +
+ + +

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

+
+ + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
+
+
+
+ +
+ + class + SpeProcessingListModel(pydantic.main.BaseModel, typing.Generic[~RootModelRootType]): + + + +
+ +
33class SpeProcessingListModel(RootModel):
+34    root: List[SpeProcessingModel]
+35
+36    def __len__(self):
+37        return len(self.root)
+38
+39    def append(self, proc, args=[], kwargs={}):
+40        self.root.append(SpeProcessingModel(proc=proc, args=args, kwargs=kwargs))
+41
+42    @validate_call
+43    def extend_left(self, proc_list: List[SpeProcessingModel]):
+44        self.root = proc_list + self.root
+45
+46    def pop(self):
+47        return self.root.pop()
+48
+49    def clear(self):
+50        return self.root.clear()
+51
+52    def assign(self, *args, **kwargs):
+53        self.clear()
+54        self.append(*args, **kwargs)
+55
+56    def _string_list(self):
+57        ret = list()
+58        for elem in self.root:
+59            args = [f'{repr(i)}' for i in elem.args]
+60            kwargs = [f'{k}={repr(v)}' for k, v in elem.kwargs.items()]
+61            comb = ', '.join(args + kwargs)
+62            ret.append(f'{elem.proc}({comb})')
+63        return ret
+64
+65    def repr(self):
+66        return '.'.join(self._string_list())
+67
+68    def cache_path(self):
+69        return '/'.join([
+70            i.replace(' ', '').replace('/', '_')
+71            for i in self._string_list()])
+72
+73    def to_list(self):
+74        return [i.model_dump() for i in self.root]
+
+ + +

Usage docs: https://docs.pydantic.dev/2.9/concepts/models/#rootmodel-and-custom-root-types

+ +

A Pydantic BaseModel for the root object of the model.

+ +
Attributes:
+ +
    +
  • root: The root object of the model.
  • +
  • __pydantic_root_model__: Whether the model is a RootModel.
  • +
  • __pydantic_private__: Private fields in the model.
  • +
  • __pydantic_extra__: Extra fields in the model.
  • +
+
+ + +
+
+ root: List[SpeProcessingModel] + + +
+ + + + +
+
+ +
+ + def + append(self, proc, args=[], kwargs={}): + + + +
+ +
39    def append(self, proc, args=[], kwargs={}):
+40        self.root.append(SpeProcessingModel(proc=proc, args=args, kwargs=kwargs))
+
+ + + + +
+
+ +
+
@validate_call
+ + def + extend_left( self, proc_list: List[SpeProcessingModel]): + + + +
+ +
42    @validate_call
+43    def extend_left(self, proc_list: List[SpeProcessingModel]):
+44        self.root = proc_list + self.root
+
+ + + + +
+
+ +
+ + def + pop(self): + + + +
+ +
46    def pop(self):
+47        return self.root.pop()
+
+ + + + +
+
+ +
+ + def + clear(self): + + + +
+ +
49    def clear(self):
+50        return self.root.clear()
+
+ + + + +
+
+ +
+ + def + assign(self, *args, **kwargs): + + + +
+ +
52    def assign(self, *args, **kwargs):
+53        self.clear()
+54        self.append(*args, **kwargs)
+
+ + + + +
+
+ +
+ + def + repr(self): + + + +
+ +
65    def repr(self):
+66        return '.'.join(self._string_list())
+
+ + + + +
+
+ +
+ + def + cache_path(self): + + + +
+ +
68    def cache_path(self):
+69        return '/'.join([
+70            i.replace(' ', '').replace('/', '_')
+71            for i in self._string_list()])
+
+ + + + +
+
+ +
+ + def + to_list(self): + + + +
+ +
73    def to_list(self):
+74        return [i.model_dump() for i in self.root]
+
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_config
+
model_fields
+
model_computed_fields
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/ramanchada2/misc/types/spectrum/metadata.html b/ramanchada2/misc/types/spectrum/metadata.html new file mode 100644 index 00000000..bda19dc8 --- /dev/null +++ b/ramanchada2/misc/types/spectrum/metadata.html @@ -0,0 +1,708 @@ + + + + + + + ramanchada2.misc.types.spectrum.metadata API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.misc.types.spectrum.metadata

+ + + + + + +
 1import datetime
+ 2import json
+ 3from typing import Any, Dict, List, Union
+ 4
+ 5import numpy as np
+ 6import numpy.typing as npt
+ 7from pydantic import Field, StrictBool, StrictInt, StrictStr, field_validator
+ 8
+ 9from ..pydantic_base_model import PydBaseModel, PydRootModel
+10
+11SpeMetadataFieldTyping = Union[
+12    npt.NDArray,
+13    StrictBool,
+14    StrictInt, float,
+15    datetime.datetime,
+16    List[Any], Dict[str, Any],
+17    StrictStr]
+18
+19
+20class SpeMetadataFieldModel(PydRootModel):
+21    root: SpeMetadataFieldTyping = Field(union_mode='left_to_right')
+22
+23    @field_validator('root', mode='before')
+24    def pre_validate(cls, val):
+25        if isinstance(val, np.ndarray):
+26            return val
+27        if isinstance(val, str):
+28            if val.startswith('ramanchada2_model@'):
+29                # The format is:
+30                # ramanchada2_model@ModelName#<DATA>
+31                pos_at = val.index('@')
+32                pos_hash = val.index('#')
+33                model_name = val[pos_at+1:pos_hash]
+34                from ramanchada2.misc import types
+35                model = getattr(types, model_name)
+36                return model.model_validate(val[pos_hash+1:])
+37            if (val.startswith('[') and val.endswith(']') or
+38               val.startswith('{') and val.endswith('}')):
+39                return json.loads(val.replace("'", '"').replace(r'b"', '"'))
+40        return val
+41
+42    def serialize(self):
+43        if isinstance(self.root, list) or isinstance(self.root, dict):
+44            return json.dumps(self.root)
+45        if isinstance(self.root, PydBaseModel):
+46            return f'ramanchada2_model@{type(self.root).__name__}#' + self.json()
+47        if isinstance(self.root, datetime.datetime):
+48            return self.root.isoformat()
+49        if isinstance(self.root, PydBaseModel):
+50            return self.root.serialize()
+51        return self.root
+52
+53
+54class SpeMetadataModel(PydRootModel):
+55    root: Dict[str, SpeMetadataFieldModel]
+56
+57    def __str__(self):
+58        return str(self.serialize())
+59
+60    def serialize(self):
+61        return {k: v.serialize() for k, v in sorted(self.root.items())}
+62
+63    def __getitem__(self, key: str) -> SpeMetadataFieldTyping:
+64        return self.root[key].root
+65
+66    def _update(self, val: Dict):
+67        self.root.update(self.model_validate(val).root)
+68
+69    def _del_key(self, key: str):
+70        del self.root[key]
+71
+72    def _flush(self):
+73        self.root = {}
+74
+75    def get_all_keys(self) -> list[str]:
+76        """
+77        Returns a list of all keys in the metadata model.
+78        """
+79        return list(self.root.keys())
+
+ + +
+
+
+ SpeMetadataFieldTyping = + + typing.Union[numpy.ndarray[typing.Any, numpy.dtype[+_ScalarType_co]], typing.Annotated[bool, Strict(strict=True)], typing.Annotated[int, Strict(strict=True)], float, datetime.datetime, typing.List[typing.Any], typing.Dict[str, typing.Any], typing.Annotated[str, Strict(strict=True)]] + + +
+ + + + +
+
+ +
+ + class + SpeMetadataFieldModel(pydantic.main.BaseModel, typing.Generic[~RootModelRootType]): + + + +
+ +
21class SpeMetadataFieldModel(PydRootModel):
+22    root: SpeMetadataFieldTyping = Field(union_mode='left_to_right')
+23
+24    @field_validator('root', mode='before')
+25    def pre_validate(cls, val):
+26        if isinstance(val, np.ndarray):
+27            return val
+28        if isinstance(val, str):
+29            if val.startswith('ramanchada2_model@'):
+30                # The format is:
+31                # ramanchada2_model@ModelName#<DATA>
+32                pos_at = val.index('@')
+33                pos_hash = val.index('#')
+34                model_name = val[pos_at+1:pos_hash]
+35                from ramanchada2.misc import types
+36                model = getattr(types, model_name)
+37                return model.model_validate(val[pos_hash+1:])
+38            if (val.startswith('[') and val.endswith(']') or
+39               val.startswith('{') and val.endswith('}')):
+40                return json.loads(val.replace("'", '"').replace(r'b"', '"'))
+41        return val
+42
+43    def serialize(self):
+44        if isinstance(self.root, list) or isinstance(self.root, dict):
+45            return json.dumps(self.root)
+46        if isinstance(self.root, PydBaseModel):
+47            return f'ramanchada2_model@{type(self.root).__name__}#' + self.json()
+48        if isinstance(self.root, datetime.datetime):
+49            return self.root.isoformat()
+50        if isinstance(self.root, PydBaseModel):
+51            return self.root.serialize()
+52        return self.root
+
+ + +

Usage docs: https://docs.pydantic.dev/2.9/concepts/models/#rootmodel-and-custom-root-types

+ +

A Pydantic BaseModel for the root object of the model.

+ +
Attributes:
+ +
    +
  • root: The root object of the model.
  • +
  • __pydantic_root_model__: Whether the model is a RootModel.
  • +
  • __pydantic_private__: Private fields in the model.
  • +
  • __pydantic_extra__: Extra fields in the model.
  • +
+
+ + +
+
+ root: Union[numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]], Annotated[bool, Strict(strict=True)], Annotated[int, Strict(strict=True)], float, datetime.datetime, List[Any], Dict[str, Any], Annotated[str, Strict(strict=True)]] + + +
+ + + + +
+
+ +
+
@field_validator('root', mode='before')
+ + def + pre_validate(cls, val): + + + +
+ +
24    @field_validator('root', mode='before')
+25    def pre_validate(cls, val):
+26        if isinstance(val, np.ndarray):
+27            return val
+28        if isinstance(val, str):
+29            if val.startswith('ramanchada2_model@'):
+30                # The format is:
+31                # ramanchada2_model@ModelName#<DATA>
+32                pos_at = val.index('@')
+33                pos_hash = val.index('#')
+34                model_name = val[pos_at+1:pos_hash]
+35                from ramanchada2.misc import types
+36                model = getattr(types, model_name)
+37                return model.model_validate(val[pos_hash+1:])
+38            if (val.startswith('[') and val.endswith(']') or
+39               val.startswith('{') and val.endswith('}')):
+40                return json.loads(val.replace("'", '"').replace(r'b"', '"'))
+41        return val
+
+ + + + +
+
+ +
+ + def + serialize(self): + + + +
+ +
43    def serialize(self):
+44        if isinstance(self.root, list) or isinstance(self.root, dict):
+45            return json.dumps(self.root)
+46        if isinstance(self.root, PydBaseModel):
+47            return f'ramanchada2_model@{type(self.root).__name__}#' + self.json()
+48        if isinstance(self.root, datetime.datetime):
+49            return self.root.isoformat()
+50        if isinstance(self.root, PydBaseModel):
+51            return self.root.serialize()
+52        return self.root
+
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_config
+
model_fields
+
model_computed_fields
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
+
+
+
+ +
+ + class + SpeMetadataModel(pydantic.main.BaseModel, typing.Generic[~RootModelRootType]): + + + +
+ +
55class SpeMetadataModel(PydRootModel):
+56    root: Dict[str, SpeMetadataFieldModel]
+57
+58    def __str__(self):
+59        return str(self.serialize())
+60
+61    def serialize(self):
+62        return {k: v.serialize() for k, v in sorted(self.root.items())}
+63
+64    def __getitem__(self, key: str) -> SpeMetadataFieldTyping:
+65        return self.root[key].root
+66
+67    def _update(self, val: Dict):
+68        self.root.update(self.model_validate(val).root)
+69
+70    def _del_key(self, key: str):
+71        del self.root[key]
+72
+73    def _flush(self):
+74        self.root = {}
+75
+76    def get_all_keys(self) -> list[str]:
+77        """
+78        Returns a list of all keys in the metadata model.
+79        """
+80        return list(self.root.keys())
+
+ + +

Usage docs: https://docs.pydantic.dev/2.9/concepts/models/#rootmodel-and-custom-root-types

+ +

A Pydantic BaseModel for the root object of the model.

+ +
Attributes:
+ +
    +
  • root: The root object of the model.
  • +
  • __pydantic_root_model__: Whether the model is a RootModel.
  • +
  • __pydantic_private__: Private fields in the model.
  • +
  • __pydantic_extra__: Extra fields in the model.
  • +
+
+ + +
+
+ root: Dict[str, SpeMetadataFieldModel] + + +
+ + + + +
+
+ +
+ + def + serialize(self): + + + +
+ +
61    def serialize(self):
+62        return {k: v.serialize() for k, v in sorted(self.root.items())}
+
+ + + + +
+
+ +
+ + def + get_all_keys(self) -> list[str]: + + + +
+ +
76    def get_all_keys(self) -> list[str]:
+77        """
+78        Returns a list of all keys in the metadata model.
+79        """
+80        return list(self.root.keys())
+
+ + +

Returns a list of all keys in the metadata model.

+
+ + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_config
+
model_fields
+
model_computed_fields
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/ramanchada2/misc/utils.html b/ramanchada2/misc/utils.html new file mode 100644 index 00000000..d94bf7b1 --- /dev/null +++ b/ramanchada2/misc/utils.html @@ -0,0 +1,284 @@ + + + + + + + ramanchada2.misc.utils API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.misc.utils

+ + + + + + +
 1#!/usr/bin/env python3
+ 2
+ 3from .ramanshift_to_wavelength import (abs_nm_to_shift_cm_1,
+ 4                                       shift_cm_1_to_abs_nm,
+ 5                                       abs_nm_to_shift_cm_1_dict,
+ 6                                       shift_cm_1_to_abs_nm_dict,
+ 7                                       laser_wl_nm,
+ 8                                       )
+ 9
+10from .svd import (svd_inverse,
+11                  svd_solve,
+12                  )
+13
+14from .argmin2d import (argmin2d,
+15                       find_closest_pairs,
+16                       find_closest_pairs_idx,
+17                       align, align_shift,
+18                       match_peaks
+19                       )
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/misc/utils/argmin2d.html b/ramanchada2/misc/utils/argmin2d.html new file mode 100644 index 00000000..e7766487 --- /dev/null +++ b/ramanchada2/misc/utils/argmin2d.html @@ -0,0 +1,662 @@ + + + + + + + ramanchada2.misc.utils.argmin2d API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.misc.utils.argmin2d

+ + + + + + +
  1from typing import List, Union
+  2
+  3import numpy as np
+  4import numpy.typing as npt
+  5import pandas as pd
+  6from pydantic import PositiveInt, validate_call
+  7from scipy import linalg
+  8from sklearn.cluster import KMeans
+  9from sklearn.metrics.pairwise import euclidean_distances
+ 10
+ 11
+ 12def argmin2d(A):
+ 13    ymin_idx = np.argmin(A, axis=0)
+ 14    xmin_idx = np.argmin(A, axis=1)
+ 15    x_idx = np.unique(xmin_idx[xmin_idx[ymin_idx[xmin_idx]] == xmin_idx])
+ 16    y_idx = np.unique(ymin_idx[ymin_idx[xmin_idx[ymin_idx]] == ymin_idx])
+ 17    matches = np.stack([y_idx, x_idx]).T
+ 18    return matches
+ 19
+ 20
+ 21def find_closest_pairs_idx(x, y):
+ 22    outer_dif = np.abs(np.subtract.outer(x, y))
+ 23    return argmin2d(outer_dif).T
+ 24
+ 25
+ 26def find_closest_pairs(x, y):
+ 27    x_idx, y_idx = find_closest_pairs_idx(x, y)
+ 28    return x[x_idx], y[y_idx]
+ 29
+ 30
+ 31@validate_call(config=dict(arbitrary_types_allowed=True))
+ 32def align(x, y,
+ 33          p0: Union[List[float], npt.NDArray] = [0, 1, 0, 0],
+ 34          func=lambda x, a0, a1, a2, a3: (a0*np.ones_like(x), a1*x, a2*x**2/1, a3*(x/1000)**3),
+ 35          max_iter: PositiveInt = 1000):
+ 36    """
+ 37    Iteratively finds best match between x and y and evaluates the x scaling parameters.
+ 38    min((lambda(x, *p)-y)**2 | *p)
+ 39    Finds best parameters *p that minimise L2 distance between scaled x and original y
+ 40    """
+ 41    if isinstance(p0, list):
+ 42        p = np.array(p0)
+ 43    else:
+ 44        p = p0
+ 45    loss = np.inf
+ 46    cur_x = x
+ 47    for it in range(max_iter):
+ 48        cur_x = np.sum(func(x, *p), axis=0)
+ 49        x_idx, y_idx = find_closest_pairs_idx(cur_x, y)
+ 50        x_match, y_match = x[x_idx], y[y_idx]
+ 51        p_bak = p
+ 52        obj_mat = np.stack(func(x_match, *np.ones_like(p)), axis=1)
+ 53        p, *_ = linalg.lstsq(obj_mat, y_match, cond=1e-8)
+ 54        loss_bak = loss
+ 55        loss = np.sum((x_match-y_match)**2)/len(x_match)**2
+ 56        if np.allclose(p, p_bak):
+ 57            break
+ 58        if loss > loss_bak:
+ 59            pass
+ 60            return p_bak
+ 61    return p
+ 62
+ 63
+ 64@validate_call(config=dict(arbitrary_types_allowed=True))
+ 65def align_shift(x, y,
+ 66                p0: float = 0,
+ 67                max_iter: PositiveInt = 1000):
+ 68    loss = np.inf
+ 69    cur_x = x
+ 70    p = p0
+ 71    for it in range(max_iter):
+ 72        cur_x = x + p
+ 73        x_idx, y_idx = find_closest_pairs_idx(cur_x, y)
+ 74        x_match, y_match = x[x_idx], y[y_idx]
+ 75        p_bak = p
+ 76        p = np.mean(y_match-x_match)
+ 77        loss_bak = loss
+ 78        loss = np.sum((y_match-x_match)**2)
+ 79        if np.allclose(p, p_bak):
+ 80            break
+ 81        if loss > loss_bak:
+ 82            return p_bak
+ 83    return p
+ 84
+ 85
+ 86def match_peaks(spe_pos_dict, ref):
+ 87    # Min-Max normalize the reference values
+ 88    min_value = min(ref.values())
+ 89    max_value = max(ref.values())
+ 90    if len(ref.keys()) > 1:
+ 91        normalized_ref = {key: (value - min_value) / (max_value - min_value) for key, value in ref.items()}
+ 92    else:
+ 93        normalized_ref = ref
+ 94
+ 95    min_value_spe = min(spe_pos_dict.values())
+ 96    max_value_spe = max(spe_pos_dict.values())
+ 97    # Min-Max normalize the spe_pos_dict
+ 98    if len(spe_pos_dict.keys()) > 1:
+ 99        normalized_spe = {
+100                key: (value - min_value_spe) / (max_value_spe - min_value_spe) for key, value in spe_pos_dict.items()
+101                }
+102    else:
+103        normalized_spe = spe_pos_dict
+104    data_list = [
+105        {'Wavelength': key, 'Intensity': value, 'Source': 'spe'} for key, value in normalized_spe.items()
+106    ] + [
+107        {'Wavelength': key, 'Intensity': value, 'Source': 'reference'} for key, value in normalized_ref.items()
+108    ]
+109
+110    # Create a DataFrame from the list of dictionaries
+111    df = pd.DataFrame(data_list)
+112    feature_matrix = df[['Wavelength', 'Intensity']].to_numpy()
+113
+114    n_ref = len(ref.keys())
+115    n_spe = len(spe_pos_dict.keys())
+116    kmeans = KMeans(n_clusters=n_ref if n_ref > n_spe else n_spe)
+117    kmeans.fit(feature_matrix)
+118    labels = kmeans.labels_
+119    # Extract cluster labels, x values, and y values
+120    df['Cluster'] = labels
+121    grouped = df.groupby('Cluster')
+122    x_spe = np.array([])
+123    x_reference = np.array([])
+124    x_distance = np.array([])
+125    clusters = np.array([])
+126    # Iterate through each group
+127    for cluster, group in grouped:
+128        # Get the unique sources within the group
+129        unique_sources = group['Source'].unique()
+130        if 'reference' in unique_sources and 'spe' in unique_sources:
+131            # Pivot the DataFrame to create the desired structure
+132            for w_spe in group.loc[group["Source"] == "spe"]["Wavelength"].values:
+133                x = None
+134                r = None
+135                e_min = None
+136                for w_ref in group.loc[group["Source"] == "reference"]["Wavelength"].values:
+137                    e = euclidean_distances(w_spe.reshape(-1, 1), w_ref.reshape(-1, 1))[0][0]
+138                    if (e_min is None) or (e < e_min):
+139                        x = w_spe
+140                        r = w_ref
+141                        e_min = e
+142                x_spe = np.append(x_spe, x)
+143                x_reference = np.append(x_reference, r)
+144                x_distance = np.append(x_distance, e_min)
+145                clusters = np.append(clusters, cluster)
+146    sort_indices = np.argsort(x_spe)
+147    return (x_spe[sort_indices], x_reference[sort_indices], x_distance[sort_indices], df)
+
+ + +
+
+ +
+ + def + argmin2d(A): + + + +
+ +
13def argmin2d(A):
+14    ymin_idx = np.argmin(A, axis=0)
+15    xmin_idx = np.argmin(A, axis=1)
+16    x_idx = np.unique(xmin_idx[xmin_idx[ymin_idx[xmin_idx]] == xmin_idx])
+17    y_idx = np.unique(ymin_idx[ymin_idx[xmin_idx[ymin_idx]] == ymin_idx])
+18    matches = np.stack([y_idx, x_idx]).T
+19    return matches
+
+ + + + +
+
+ +
+ + def + find_closest_pairs_idx(x, y): + + + +
+ +
22def find_closest_pairs_idx(x, y):
+23    outer_dif = np.abs(np.subtract.outer(x, y))
+24    return argmin2d(outer_dif).T
+
+ + + + +
+
+ +
+ + def + find_closest_pairs(x, y): + + + +
+ +
27def find_closest_pairs(x, y):
+28    x_idx, y_idx = find_closest_pairs_idx(x, y)
+29    return x[x_idx], y[y_idx]
+
+ + + + +
+
+ +
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + align( x, y, p0: Union[List[float], numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]]] = [0, 1, 0, 0], func=<function <lambda>>, max_iter: typing.Annotated[int, Gt(gt=0)] = 1000): + + + +
+ +
32@validate_call(config=dict(arbitrary_types_allowed=True))
+33def align(x, y,
+34          p0: Union[List[float], npt.NDArray] = [0, 1, 0, 0],
+35          func=lambda x, a0, a1, a2, a3: (a0*np.ones_like(x), a1*x, a2*x**2/1, a3*(x/1000)**3),
+36          max_iter: PositiveInt = 1000):
+37    """
+38    Iteratively finds best match between x and y and evaluates the x scaling parameters.
+39    min((lambda(x, *p)-y)**2 | *p)
+40    Finds best parameters *p that minimise L2 distance between scaled x and original y
+41    """
+42    if isinstance(p0, list):
+43        p = np.array(p0)
+44    else:
+45        p = p0
+46    loss = np.inf
+47    cur_x = x
+48    for it in range(max_iter):
+49        cur_x = np.sum(func(x, *p), axis=0)
+50        x_idx, y_idx = find_closest_pairs_idx(cur_x, y)
+51        x_match, y_match = x[x_idx], y[y_idx]
+52        p_bak = p
+53        obj_mat = np.stack(func(x_match, *np.ones_like(p)), axis=1)
+54        p, *_ = linalg.lstsq(obj_mat, y_match, cond=1e-8)
+55        loss_bak = loss
+56        loss = np.sum((x_match-y_match)**2)/len(x_match)**2
+57        if np.allclose(p, p_bak):
+58            break
+59        if loss > loss_bak:
+60            pass
+61            return p_bak
+62    return p
+
+ + +

Iteratively finds best match between x and y and evaluates the x scaling parameters. +min((lambda(x, p)-y)*2 | *p) +Finds best parameters *p that minimise L2 distance between scaled x and original y

+
+ + +
+
+ +
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + align_shift( x, y, p0: float = 0, max_iter: typing.Annotated[int, Gt(gt=0)] = 1000): + + + +
+ +
65@validate_call(config=dict(arbitrary_types_allowed=True))
+66def align_shift(x, y,
+67                p0: float = 0,
+68                max_iter: PositiveInt = 1000):
+69    loss = np.inf
+70    cur_x = x
+71    p = p0
+72    for it in range(max_iter):
+73        cur_x = x + p
+74        x_idx, y_idx = find_closest_pairs_idx(cur_x, y)
+75        x_match, y_match = x[x_idx], y[y_idx]
+76        p_bak = p
+77        p = np.mean(y_match-x_match)
+78        loss_bak = loss
+79        loss = np.sum((y_match-x_match)**2)
+80        if np.allclose(p, p_bak):
+81            break
+82        if loss > loss_bak:
+83            return p_bak
+84    return p
+
+ + + + +
+
+ +
+ + def + match_peaks(spe_pos_dict, ref): + + + +
+ +
 87def match_peaks(spe_pos_dict, ref):
+ 88    # Min-Max normalize the reference values
+ 89    min_value = min(ref.values())
+ 90    max_value = max(ref.values())
+ 91    if len(ref.keys()) > 1:
+ 92        normalized_ref = {key: (value - min_value) / (max_value - min_value) for key, value in ref.items()}
+ 93    else:
+ 94        normalized_ref = ref
+ 95
+ 96    min_value_spe = min(spe_pos_dict.values())
+ 97    max_value_spe = max(spe_pos_dict.values())
+ 98    # Min-Max normalize the spe_pos_dict
+ 99    if len(spe_pos_dict.keys()) > 1:
+100        normalized_spe = {
+101                key: (value - min_value_spe) / (max_value_spe - min_value_spe) for key, value in spe_pos_dict.items()
+102                }
+103    else:
+104        normalized_spe = spe_pos_dict
+105    data_list = [
+106        {'Wavelength': key, 'Intensity': value, 'Source': 'spe'} for key, value in normalized_spe.items()
+107    ] + [
+108        {'Wavelength': key, 'Intensity': value, 'Source': 'reference'} for key, value in normalized_ref.items()
+109    ]
+110
+111    # Create a DataFrame from the list of dictionaries
+112    df = pd.DataFrame(data_list)
+113    feature_matrix = df[['Wavelength', 'Intensity']].to_numpy()
+114
+115    n_ref = len(ref.keys())
+116    n_spe = len(spe_pos_dict.keys())
+117    kmeans = KMeans(n_clusters=n_ref if n_ref > n_spe else n_spe)
+118    kmeans.fit(feature_matrix)
+119    labels = kmeans.labels_
+120    # Extract cluster labels, x values, and y values
+121    df['Cluster'] = labels
+122    grouped = df.groupby('Cluster')
+123    x_spe = np.array([])
+124    x_reference = np.array([])
+125    x_distance = np.array([])
+126    clusters = np.array([])
+127    # Iterate through each group
+128    for cluster, group in grouped:
+129        # Get the unique sources within the group
+130        unique_sources = group['Source'].unique()
+131        if 'reference' in unique_sources and 'spe' in unique_sources:
+132            # Pivot the DataFrame to create the desired structure
+133            for w_spe in group.loc[group["Source"] == "spe"]["Wavelength"].values:
+134                x = None
+135                r = None
+136                e_min = None
+137                for w_ref in group.loc[group["Source"] == "reference"]["Wavelength"].values:
+138                    e = euclidean_distances(w_spe.reshape(-1, 1), w_ref.reshape(-1, 1))[0][0]
+139                    if (e_min is None) or (e < e_min):
+140                        x = w_spe
+141                        r = w_ref
+142                        e_min = e
+143                x_spe = np.append(x_spe, x)
+144                x_reference = np.append(x_reference, r)
+145                x_distance = np.append(x_distance, e_min)
+146                clusters = np.append(clusters, cluster)
+147    sort_indices = np.argsort(x_spe)
+148    return (x_spe[sort_indices], x_reference[sort_indices], x_distance[sort_indices], df)
+
+ + + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/misc/utils/ramanshift_to_wavelength.html b/ramanchada2/misc/utils/ramanshift_to_wavelength.html new file mode 100644 index 00000000..da6630a7 --- /dev/null +++ b/ramanchada2/misc/utils/ramanshift_to_wavelength.html @@ -0,0 +1,406 @@ + + + + + + + ramanchada2.misc.utils.ramanshift_to_wavelength API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.misc.utils.ramanshift_to_wavelength

+ + + + + + +
 1import numpy as np
+ 2
+ 3
+ 4def shift_cm_1_to_abs_nm_dict(deltas, laser_wave_length_nm):
+ 5    arr = np.array(list(deltas.items()), dtype=float)
+ 6    arr[:, 0] = 1/(1/laser_wave_length_nm - arr[:, 0] * 1e-7)
+ 7    return dict(arr)
+ 8
+ 9
+10def abs_nm_to_shift_cm_1_dict(deltas, laser_wave_length_nm):
+11    arr = np.array(list(deltas.items()), dtype=float)
+12    arr[:, 0] = 1e7*(1/laser_wave_length_nm - 1/arr[:, 0])
+13    return dict(arr)
+14
+15
+16def abs_nm_to_shift_cm_1(wl, laser_wave_length_nm):
+17    return 1e7*(1/laser_wave_length_nm - 1/wl)
+18
+19
+20def shift_cm_1_to_abs_nm(wn, laser_wave_length_nm):
+21    shift_nm = wn * 1e-7
+22    absolute_nm = 1/(1/laser_wave_length_nm - shift_nm)
+23    return absolute_nm
+24
+25
+26def laser_wl_nm(raman_shift_cm_1, wave_length_nm):
+27    return 1/(1/wave_length_nm+raman_shift_cm_1*1e-7)
+
+ + +
+
+ +
+ + def + shift_cm_1_to_abs_nm_dict(deltas, laser_wave_length_nm): + + + +
+ +
5def shift_cm_1_to_abs_nm_dict(deltas, laser_wave_length_nm):
+6    arr = np.array(list(deltas.items()), dtype=float)
+7    arr[:, 0] = 1/(1/laser_wave_length_nm - arr[:, 0] * 1e-7)
+8    return dict(arr)
+
+ + + + +
+
+ +
+ + def + abs_nm_to_shift_cm_1_dict(deltas, laser_wave_length_nm): + + + +
+ +
11def abs_nm_to_shift_cm_1_dict(deltas, laser_wave_length_nm):
+12    arr = np.array(list(deltas.items()), dtype=float)
+13    arr[:, 0] = 1e7*(1/laser_wave_length_nm - 1/arr[:, 0])
+14    return dict(arr)
+
+ + + + +
+
+ +
+ + def + abs_nm_to_shift_cm_1(wl, laser_wave_length_nm): + + + +
+ +
17def abs_nm_to_shift_cm_1(wl, laser_wave_length_nm):
+18    return 1e7*(1/laser_wave_length_nm - 1/wl)
+
+ + + + +
+
+ +
+ + def + shift_cm_1_to_abs_nm(wn, laser_wave_length_nm): + + + +
+ +
21def shift_cm_1_to_abs_nm(wn, laser_wave_length_nm):
+22    shift_nm = wn * 1e-7
+23    absolute_nm = 1/(1/laser_wave_length_nm - shift_nm)
+24    return absolute_nm
+
+ + + + +
+
+ +
+ + def + laser_wl_nm(raman_shift_cm_1, wave_length_nm): + + + +
+ +
27def laser_wl_nm(raman_shift_cm_1, wave_length_nm):
+28    return 1/(1/wave_length_nm+raman_shift_cm_1*1e-7)
+
+ + + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/misc/utils/svd.html b/ramanchada2/misc/utils/svd.html new file mode 100644 index 00000000..24bf2838 --- /dev/null +++ b/ramanchada2/misc/utils/svd.html @@ -0,0 +1,340 @@ + + + + + + + ramanchada2.misc.utils.svd API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.misc.utils.svd

+ + + + + + +
 1import numpy as np
+ 2
+ 3
+ 4def svd_solve(A, b):
+ 5    """
+ 6    Solves Ax=b
+ 7    """
+ 8    u, s, vt = np.linalg.svd(A, full_matrices=False)
+ 9    v = vt.T
+10    s_1 = 1/s
+11    s_1[np.abs(s) < 1e-8 * np.max(s)] = 0
+12    x = v @ (np.diag(s_1) @ (u.T@b))
+13    return x
+14
+15
+16def svd_inverse(mat):
+17    u, s, vt = np.linalg.svd(mat, full_matrices=False)
+18    s_1 = 1/s
+19    s_1[np.abs(s) < 1e-8 * np.max(s)] = 0
+20    return vt.T @ np.diag(s_1) @ u.T
+
+ + +
+
+ +
+ + def + svd_solve(A, b): + + + +
+ +
 5def svd_solve(A, b):
+ 6    """
+ 7    Solves Ax=b
+ 8    """
+ 9    u, s, vt = np.linalg.svd(A, full_matrices=False)
+10    v = vt.T
+11    s_1 = 1/s
+12    s_1[np.abs(s) < 1e-8 * np.max(s)] = 0
+13    x = v @ (np.diag(s_1) @ (u.T@b))
+14    return x
+
+ + +

Solves Ax=b

+
+ + +
+
+ +
+ + def + svd_inverse(mat): + + + +
+ +
17def svd_inverse(mat):
+18    u, s, vt = np.linalg.svd(mat, full_matrices=False)
+19    s_1 = 1/s
+20    s_1[np.abs(s) < 1e-8 * np.max(s)] = 0
+21    return vt.T @ np.diag(s_1) @ u.T
+
+ + + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/protocols.html b/ramanchada2/protocols.html new file mode 100644 index 00000000..f7e6a1a6 --- /dev/null +++ b/ramanchada2/protocols.html @@ -0,0 +1,259 @@ + + + + + + + ramanchada2.protocols API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.protocols

+ + + + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/protocols/calibration.html b/ramanchada2/protocols/calibration.html new file mode 100644 index 00000000..b77ff220 --- /dev/null +++ b/ramanchada2/protocols/calibration.html @@ -0,0 +1,4581 @@ + + + + + + + ramanchada2.protocols.calibration API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.protocols.calibration

+ + + + + + +
  1import json
+  2import logging
+  3import os
+  4import pickle
+  5import warnings
+  6from typing import Dict, Optional, Tuple
+  7
+  8import matplotlib.pyplot as plt
+  9import numpy as np
+ 10import pandas as pd
+ 11from matplotlib.axes import Axes
+ 12from pydantic import BaseModel, ValidationError
+ 13from scipy.interpolate import RBFInterpolator
+ 14
+ 15import ramanchada2.misc.constants as rc2const
+ 16from ramanchada2.misc.plottable import Plottable
+ 17from ..misc import utils as rc2utils
+ 18from ..spectrum import Spectrum
+ 19
+ 20logger = logging.getLogger(__name__)
+ 21
+ 22
+ 23class ProcessingModel:
+ 24    def __init__(self):
+ 25        pass
+ 26
+ 27
+ 28class CalibrationComponent(Plottable):
+ 29    def __init__(self, laser_wl, spe, spe_units, ref, ref_units, sample=None):
+ 30        super(CalibrationComponent, self).__init__()
+ 31        self.laser_wl = laser_wl
+ 32        self.spe = spe
+ 33        self.spe_units = spe_units
+ 34        self.ref = ref
+ 35        self.ref_units = ref_units
+ 36        self.name = "not estimated"
+ 37        self.model = None
+ 38        self.model_units = None
+ 39        self.peaks = None
+ 40        self.sample = sample
+ 41        self.enabled = True
+ 42        self.fit_res = None
+ 43
+ 44    def set_model(self, model, model_units, peaks, name=None):
+ 45        self.model = model
+ 46        self.model_units = model_units
+ 47        self.peaks = peaks
+ 48        self.name = "calibration component" if name is None else name
+ 49
+ 50    def __str__(self):
+ 51        return (
+ 52            f"{self.name} spe ({self.spe_units}) reference ({self.ref_units}) "
+ 53            f"model ({self.model_units}) {self.model}"
+ 54        )
+ 55
+ 56    def convert_units(self, old_spe, spe_unit="cm-1", newspe_unit="nm", laser_wl=None):
+ 57        if laser_wl is None:
+ 58            laser_wl = self.laser_wl
+ 59        logger.debug(
+ 60            "convert laser_wl {} {} --> {}".format(laser_wl, spe_unit, newspe_unit)
+ 61        )
+ 62        if spe_unit != newspe_unit:
+ 63            new_spe = old_spe.__copy__()
+ 64            if spe_unit == "nm":
+ 65                new_spe = old_spe.abs_nm_to_shift_cm_1_filter(
+ 66                    laser_wave_length_nm=laser_wl
+ 67                )
+ 68            elif spe_unit == "cm-1":
+ 69                new_spe = old_spe.shift_cm_1_to_abs_nm_filter(
+ 70                    laser_wave_length_nm=laser_wl
+ 71                )
+ 72            else:
+ 73                raise Exception(
+ 74                    "Unsupported conversion {} to {}", spe_unit, newspe_unit
+ 75                )
+ 76        else:
+ 77            new_spe = old_spe.__copy__()
+ 78        #    new_spe = old_spe.__copy__()
+ 79        return new_spe
+ 80
+ 81    def process(self, old_spe: Spectrum, spe_units="cm-1", convert_back=False):
+ 82        raise NotImplementedError(self)
+ 83
+ 84    def derive_model(self, find_kw={}, fit_peaks_kw={}, should_fit=False, name=None):
+ 85        raise NotImplementedError(self)
+ 86
+ 87    def plot(self, ax=None, label=" ", **kwargs) -> Axes:
+ 88        if ax is None:
+ 89            fig, ax = plt.subplots(3, 1, figsize=(12, 4))
+ 90        elif not isinstance(ax, (list, np.ndarray)):
+ 91            raise ValueError(
+ 92                "ax should be a list or array of Axes when creating multiple subplots."
+ 93            )
+ 94
+ 95        self._plot(ax[0], label=label, **kwargs)
+ 96        ax[0].legend()
+ 97        return ax
+ 98
+ 99    def _plot(self, ax, **kwargs):
+100        pass
+101
+102    def __getstate__(self):
+103        # Return the state to be serialized, excluding transient_data
+104        state = self.__dict__.copy()
+105        del state["fit_res"]
+106        return state
+107
+108    def __setstate__(self, state):
+109        self.__dict__.update(state)
+110        self.fit_res = None
+111
+112    def fitres2df(self, spe):
+113        df = pd.DataFrame(
+114            list(
+115                zip(
+116                    self.fit_res.centers,
+117                    self.fit_res.fwhm,
+118                    np.array(
+119                        [
+120                            v
+121                            for peak in self.fit_res
+122                            for k, v in peak.values.items()
+123                            if k.endswith("height")
+124                        ]
+125                    ),
+126                    np.array(
+127                        [
+128                            v
+129                            for peak in self.fit_res
+130                            for k, v in peak.values.items()
+131                            if k.endswith("amplitude")
+132                        ]
+133                    ),
+134                )
+135            ),
+136            columns=["center", "fwhm", "height", "amplitude"],
+137        )
+138        return df[(df["center"] >= min(spe.x)) & (df["center"] <= max(spe.x))]
+139
+140
+141class XCalibrationComponent(CalibrationComponent):
+142    def __init__(self, laser_wl, spe, spe_units, ref, ref_units, sample="Neon"):
+143        super(XCalibrationComponent, self).__init__(
+144            laser_wl, spe, spe_units, ref, ref_units, sample
+145        )
+146        self.spe_pos_dict = None
+147
+148    # @staticmethod
+149    # def from_json(filepath: str):
+150    #    rbf_intrpolator, other_data = load_xcalibration_model(filepath)
+151    #    calibration_x = XCalibrationComponent(laser_wl, spe, spe_units, ref, ref_units)
+152    #    calibration_x.model = rbf_intrpolator
+153    #    return calibration_x
+154
+155    def process(self, old_spe: Spectrum, spe_units="cm-1", convert_back=False):
+156        logger.debug(
+157            "convert spe_units {} --> model units {}".format(
+158                spe_units, self.model_units
+159            )
+160        )
+161        new_spe = self.convert_units(old_spe, spe_units, self.model_units)
+162        logger.debug("process", self)
+163        if self.model is None:
+164            return new_spe
+165        elif self.enabled:
+166            if isinstance(self.model, RBFInterpolator):
+167                new_spe.x = self.model(new_spe.x.reshape(-1, 1))
+168            elif isinstance(self.model, float):
+169                new_spe.x = new_spe.x + self.model
+170        else:
+171            return new_spe
+172        # convert back
+173        if convert_back:
+174            # print("convert back", spe_units)
+175            return self.convert_units(new_spe, self.model_units, spe_units)
+176        else:
+177            return new_spe
+178
+179    def _plot(self, ax, **kwargs):
+180        ax.stem(
+181            self.spe_pos_dict.keys(),
+182            self.spe_pos_dict.values(),
+183            linefmt="b-",
+184            basefmt=" ",
+185            label="{} peaks".format(self.sample),
+186        )
+187        ax.twinx().stem(
+188            self.ref.keys(),
+189            self.ref.values(),
+190            linefmt="r-",
+191            basefmt=" ",
+192            label="Reference {}".format(self.sample),
+193        )
+194        ax.set_xlabel("{}".format(self.ref_units))
+195        ax.legend()
+196
+197    def _plot_peaks(self, ax, **kwargs):
+198        # self.model.peaks
+199        pass
+200        # fig, ax = plt.subplots(3,1,figsize=(12,4))
+201        # spe.plot(ax=ax[0].twinx(),label=spe_units)
+202        # spe_to_process.plot(ax=ax[1],label=ref_units)
+203
+204    def derive_model(
+205        self, find_kw={"sharpening": None}, fit_peaks_kw={}, should_fit=False, name=None
+206    ):
+207
+208        # convert to ref_units
+209        logger.debug(
+210            "[{}]: convert spe_units {} to ref_units {}".format(
+211                self.name, self.spe_units, self.ref_units
+212            )
+213        )
+214        spe_to_process = self.convert_units(self.spe, self.spe_units, self.ref_units)
+215        logger.debug("max x", max(spe_to_process.x), self.ref_units)
+216
+217        peaks_df = None
+218        self.fit_res = None
+219        if should_fit:
+220            # instead of fit_peak_positions - we don't want movmin here
+221            # baseline removal might be done during preprocessing
+222            center_err_threshold = 0.5
+223            find_kw.update(dict(sharpening=None))
+224            cand = spe_to_process.find_peak_multipeak(**find_kw)
+225            # print(cand.get_ampl_pos_fwhm())
+226            fit_kw = dict(profile="Gaussian")
+227            fit_kw.update(fit_peaks_kw)
+228            self.fit_res = spe_to_process.fit_peak_multimodel(candidates=cand, **fit_kw)  # type: ignore
+229            peaks_df = self.fitres2df(spe_to_process)
+230            # self.fit_res.to_dataframe_peaks()
+231            pos, amp = self.fit_res.center_amplitude(threshold=center_err_threshold)
+232            self.spe_pos_dict = dict(zip(pos, amp))
+233        else:
+234            # prominence = prominence, wlen=wlen, width=width
+235            logger.debug("find_peak_multipeak")
+236            cand = spe_to_process.find_peak_multipeak(**find_kw)
+237            self.spe_pos_dict = cand.get_pos_ampl_dict()
+238            # print(cand.get_ampl_pos_fwhm())
+239        x_spe, x_reference, x_distance, df = rc2utils.match_peaks(
+240            self.spe_pos_dict, self.ref
+241        )
+242        self.matched_peaks = df
+243        sum_of_differences = np.sum(np.abs(x_spe - x_reference)) / len(x_spe)
+244        logger.debug(
+245            "sum_of_differences original {} {}".format(
+246                sum_of_differences, self.ref_units
+247            )
+248        )
+249        if len(x_reference) == 1:
+250            _offset = x_reference[0] - x_spe[0]
+251            logger.debug(
+252                "ref",
+253                x_reference[0],
+254                "sample",
+255                x_spe[0],
+256                "offset",
+257                _offset,
+258                self.ref_units,
+259            )
+260            self.set_model(_offset, self.ref_units, peaks_df, name)
+261        else:
+262            try:
+263                kwargs = {"kernel": "thin_plate_spline"}
+264                interp = CustomRBFInterpolator(
+265                    x_spe.reshape(-1, 1), x_reference, **kwargs
+266                )
+267                self.set_model(interp, self.ref_units, peaks_df, name)
+268            except Exception as err:
+269                raise err
+270
+271
+272class LazerZeroingComponent(CalibrationComponent):
+273    def __init__(
+274        self,
+275        laser_wl,
+276        spe,
+277        spe_units="nm",
+278        ref={520.45: 1},
+279        ref_units="cm-1",
+280        sample="Silicon",
+281    ):
+282        super(LazerZeroingComponent, self).__init__(
+283            laser_wl, spe, spe_units, ref, ref_units, sample
+284        )
+285        self.profile = "Pearson4"
+286        # self.profile = "Gaussian"
+287
+288    def derive_model(self, find_kw={}, fit_peaks_kw={}, should_fit=True, name=None):
+289        find_kw = dict(sharpening=None)
+290        cand = self.spe.find_peak_multipeak(**find_kw)
+291        logger.debug(self.name, cand)
+292        # init_guess = self.spe.fit_peak_multimodel(profile='Pearson4', candidates=cand, no_fit=False)
+293        self.fit_res = self.spe.fit_peak_multimodel(
+294            profile=self.profile, candidates=cand, **fit_peaks_kw
+295        )
+296        # df = self.fit_res.to_dataframe_peaks()
+297        df = self.fitres2df(self.spe)
+298        # highest peak first
+299        df = df.sort_values(by="height", ascending=False)
+300        # df = df.sort_values(by='amplitude', ascending=False)
+301        if df.empty:
+302            raise Exception("No peaks found")
+303        else:
+304            if "position" in df.columns:
+305                zero_peak_nm = df.iloc[0]["position"]
+306            elif "center" in df.columns:
+307                zero_peak_nm = df.iloc[0]["center"]
+308            # https://www.elodiz.com/calibration-and-validation-of-raman-instruments/
+309            self.set_model(
+310                zero_peak_nm, "nm", df, "Laser zeroing using {} nm".format(zero_peak_nm)
+311            )
+312            print(self.name, "peak", zero_peak_nm)
+313            logger.info(self.name, "peak", zero_peak_nm)
+314        # laser_wl should be calculated  based on the peak position and set instead of the nominal
+315
+316    def zero_nm_to_shift_cm_1(self, wl, zero_pos_nm, zero_ref_cm_1=520.45):
+317        return 1e7 * (1 / zero_pos_nm - 1 / wl) + zero_ref_cm_1
+318
+319    # we do not do shift (as initially implemented)
+320    # just convert the spectrum nm->cm-1 using the Si measured peak in nm and reference in cm-1
+321    # https://www.elodiz.com/calibration-and-validation-of-raman-instruments/
+322    def process(self, old_spe: Spectrum, spe_units="nm", convert_back=False):
+323        wl_si_ref = list(self.ref.keys())[0]
+324        logger.debug(self.name, "process", self.model, wl_si_ref)
+325        new_x = self.zero_nm_to_shift_cm_1(old_spe.x, self.model, wl_si_ref)
+326        new_spe = Spectrum(x=new_x, y=old_spe.y, metadata=old_spe.meta)
+327        # new_spe = old_spe.lazer_zero_nm_to_shift_cm_1(self.model, wl_si_ref)
+328        # print("old si", old_spe.x)
+329        # print("new si", new_spe.x)
+330        return new_spe
+331
+332    def _plot(self, ax, **kwargs):
+333        # spe_sil.plot(label="{} original".format(si_tag),ax=ax)
+334        # spe_sil_calib.plot(ax = ax,label="{} laser zeroed".format(si_tag),fmt=":")
+335        # ax.set_xlim(520.45-50,520.45+50)
+336        # ax.set_xlabel("cm-1")
+337        pass
+338
+339
+340class YCalibrationCertificate(BaseModel, Plottable):
+341    """
+342    Class for intensity calibration certificates
+343
+344    Usage:
+345
+346        1. Use for specific SRM
+347        >>> cert = YCalibrationCertificate(
+348        ...             id="NIST785_SRM2241",
+349        ...             description="optical glass",
+350        ...             url="https://tsapps.nist.gov/srmext/certificates/2241.pdf",
+351        ...             wavelength=785,
+352        ...             params="A0 = 9.71937e-02, A1 = 2.28325e-04, A2 = -5.86762e-08, A3 = 2.16023e-10, A4 = -9.77171e-14, A5 = 1.15596e-17",
+353        ...             equation="A0 + A1 * x + A2 * x**2 + A3 * x**3 + A4 * x**4 + A5 * x**5",
+354        ...             temperature_c=(20, 25),
+355        ...             raman_shift=(200, 3500)
+356        ...         )
+357        ...
+358        >>> cert.plot()
+359
+360    """  # noqa: E501
+361
+362    id: str
+363    description: Optional[str]
+364    url: Optional[str]
+365    wavelength: int
+366    params: str
+367    equation: str
+368    temperature_c: Optional[Tuple[int, int]]
+369    raman_shift: Optional[Tuple[int, int]]
+370
+371    @property
+372    def response_function(self):
+373        local_vars = {}
+374        for param in self.params.split(","):
+375            key, value = param.split("=")
+376            key = key.strip()
+377            value = value.strip()
+378            local_vars[key] = eval(value)
+379
+380        def evaluate_expression(x_value):
+381            local_vars["x"] = x_value
+382            return eval(self.equation, {"np": np}, local_vars)
+383
+384        return evaluate_expression
+385
+386    def Y(self, x_value):
+387        return self.response_function(x_value)
+388
+389    def _plot(self, ax, **kwargs):
+390        if self.raman_shift is None:
+391            x = np.linspace(100, 4000)
+392        else:
+393            x = np.linspace(self.raman_shift[0], self.raman_shift[1])
+394        kwargs.pop("label", None)
+395        ax.plot(
+396            x, self.Y(x), label="{} ({}nm)".format(self.id, self.wavelength), **kwargs
+397        )
+398        ax.set_xlabel("Raman shift cm-1")
+399        ax.set_ylabel("Intensity")
+400
+401    @staticmethod
+402    def load(wavelength=785, key="NIST785_SRM2241"):
+403        return CertificatesDict().get(wavelength, key)
+404
+405
+406class CertificatesDict:
+407    """
+408    Class for loading y calibration certificates
+409
+410    Usage:
+411       Load single certificate
+412       >>> cert = CertificatesDict.load(wavelength="785", key="NIST785_SRM2241")
+413       >>> cert.plot()
+414
+415       Load all certificates for wavelength. Iterate :
+416
+417        >>> certificates = CertificatesDict()
+418        ... plt.figure()
+419        ... ax=None
+420        ... certs = certificates.get_certificates(wavelength=532)
+421        ... ax = certs[cert].plot(ax=ax)
+422        >>> plt.show()
+423    """
+424
+425    def __init__(self):
+426        self.load_certificates(
+427            os.path.join(os.path.dirname(__file__), "config_certs.json")
+428        )
+429
+430    def load_certificates(self, file_path):
+431
+432        with open(file_path, "r") as f:
+433            certificates_data = json.load(f)
+434            certificates = {}
+435            self.laser_wl = []
+436            for wavelength, certificates_dict in certificates_data.items():
+437                certificates[wavelength] = {}
+438                self.laser_wl.append(wavelength)
+439                for certificate_id, certificate_data in certificates_dict.items():
+440                    certificate_data["wavelength"] = int(wavelength)
+441                    certificate_data["id"] = certificate_id
+442                    try:
+443                        certificate = YCalibrationCertificate.model_construct(
+444                            **certificate_data
+445                        )
+446                        certificates[wavelength][certificate_id] = certificate
+447                    except ValidationError as e:
+448                        print(f"Validation error for certificate {certificate_id}: {e}")
+449            self.config_certs = certificates
+450
+451    def get_laser_wl(self):
+452        return self.laser_wl
+453
+454    def get_certificates(self, wavelength=785):
+455        return self.config_certs[str(wavelength)]
+456
+457    def get(self, wavelength=532, key="NIST532_SRM2242a"):
+458        return self.config_certs[str(wavelength)][key]
+459
+460    @staticmethod
+461    def load(wavelength=785, key="NIST785_SRM2241"):
+462        return CertificatesDict().get(wavelength, key)
+463
+464
+465class YCalibrationComponent(CalibrationComponent):
+466    """
+467    Class for relative intensity calibration. Uses response functions loaded in
+468    ResponseFunctionEvaluator. Functions are defined in json file.
+469
+470    Usage:
+471
+472        >>> laser_wl = 785
+473        >>> ycert = YCalibrationCertificate.load(wavelength=785, key="SRM2241")
+474        >>> ycal = YCalibrationComponent(laser_wl, reference_spe_xcalibrated=spe_srm,certificate=ycert)
+475        >>> fig, ax = plt.subplots(1, 1, figsize=(15,4))
+476        >>> spe_srm.plot(ax=ax)
+477        >>> spe_to_correct.plot(ax=ax)
+478        >>> spe_ycalibrated = ycal.process(spe_to_correct)
+479        >>> spe_ycalibrated.plot(label="y-calibrated",color="green",ax=ax.twinx())
+480    """
+481
+482    def __init__(
+483        self, laser_wl, reference_spe_xcalibrated, certificate: YCalibrationCertificate
+484    ):
+485        super(YCalibrationComponent, self).__init__(
+486            laser_wl,
+487            spe=reference_spe_xcalibrated,
+488            spe_units=None,
+489            ref=certificate,
+490            ref_units=None,
+491        )
+492        self.laser_wl = laser_wl
+493        self.spe = reference_spe_xcalibrated
+494        self.ref = certificate
+495        self.name = "Y calibration"
+496        self.model = self.spe.spe_distribution(trim_range=certificate.raman_shift)
+497        self.model_units = "cm-1"
+498
+499    def derive_model(self, find_kw={}, fit_peaks_kw={}, should_fit=True, name=None):
+500        # measured reference spectrum as distribution, so we can resample
+501        self.model = self.spe.spe_distribution(trim_range=self.ref.raman_shift)
+502
+503    def safe_divide(self, spe_to_correct, spe_reference_resampled):
+504        numerator = spe_to_correct.y
+505        # numerator_noise = spe_to_correct.y_noise
+506
+507        scaling_denominator = spe_reference_resampled.y / self.ref.Y(
+508            spe_reference_resampled.x
+509        )
+510        # print(np.median(scaling_denominator), np.mean(scaling_denominator), np.std(scaling_denominator))
+511
+512        # denominator_noise = spe_reference_resampled.y_noise
+513        denominator = spe_reference_resampled.y
+514        # Create a mask for dividing only where value is above noise !
+515        # mask = (abs(scaling_denominator) > 0) & (kind_of_snr > 0.9)
+516        # mask =  (abs(denominator) > abs(denominator_noise)) &
+517        mask = (abs(scaling_denominator) > 0) & (numerator > 0) & (denominator > 0)
+518        # & (abs(numerator) > numerator_noise) & (abs(scaling_denominator) > 0)
+519        # & (abs(denominator-numerator) > min(denominator_noise,numerator_noise))
+520        result = np.zeros_like(numerator)
+521        # Perform division where mask is true
+522        result[mask] = numerator[mask] / scaling_denominator[mask]
+523        return result
+524
+525    def safe_mask(self, spe_to_correct, spe_reference_resampled):
+526        ref_noise = spe_reference_resampled.y_noise_MAD()
+527        return (spe_reference_resampled.y >= 0) & (
+528            abs(spe_reference_resampled.y) > ref_noise
+529        )
+530
+531    def safe_factor(self, spe_to_correct, spe_reference_resampled):
+532        numerator = spe_to_correct.y
+533        # numerator_noise = spe_to_correct.y_noise
+534
+535        Y = self.ref.Y(spe_reference_resampled.x)
+536        mask = self.safe_mask(spe_to_correct, spe_reference_resampled)
+537        if mask is None:
+538            scaling_factor = Y / spe_reference_resampled.y
+539        else:
+540            scaling_factor = np.zeros_like(spe_reference_resampled.y)
+541            scaling_factor[mask] = Y[mask] / spe_reference_resampled.y[mask]
+542
+543        result = numerator * scaling_factor
+544        return result
+545
+546    def process(self, old_spe: Spectrum, spe_units="nm", convert_back=False):
+547        # resample using probability density function
+548        _tmp = self.model.pdf(old_spe.x)
+549        _tmp = (
+550            _tmp * max(self.spe.y) / max(_tmp)
+551        )  # pdf sampling is normalized to area unity, scaling back
+552        spe_reference_resampled = Spectrum(old_spe.x, _tmp)
+553        # new_spe = Spectrum(old_spe.x,self.safe_divide(old_spe,spe_reference_resampled))
+554        new_spe = Spectrum(
+555            old_spe.x, self.safe_factor(old_spe, spe_reference_resampled)
+556        )
+557        return new_spe
+558
+559    def _plot(self, ax, **kwargs):
+560        if self.ref is not None:
+561            self.ref.plot(ax, **kwargs)
+562
+563
+564class CalibrationModel(ProcessingModel, Plottable):
+565    """
+566    A class representing a calibration model for Raman spectrum.
+567    """
+568
+569    def __init__(self, laser_wl: int):
+570        """
+571        Initializes a CalibrationModel instance.
+572
+573        Args:
+574            laser_wl:
+575                The wavelength of the laser used for calibration.
+576
+577        Example:
+578        ```python
+579        # Create an instance of CalibrationModel
+580        calmodel = CalibrationModel(laser_wl=785)
+581        calmodel.derive_model_x(
+582            spe_neon,
+583            spe_neon_units="cm-1",
+584            ref_neon=None,
+585            ref_neon_units="nm",
+586            spe_sil=None,
+587            spe_sil_units="cm-1",
+588            ref_sil=None,
+589            ref_sil_units="cm-1"
+590            )
+591        # Store
+592        calmodel.save(modelfile)
+593        # Load
+594        calmodel = CalibrationModel.from_file(modelfile)
+595        # Apply to new spectrum
+596        calmodel.apply_calibration_x(
+597            spe_to_calibrate,
+598            spe_units="cm-1"
+599            )
+600        ```
+601        """
+602        super(ProcessingModel, self).__init__()
+603        super(Plottable, self).__init__()
+604        self.set_laser_wavelength(laser_wl)
+605        self.prominence_coeff = 3
+606
+607    def set_laser_wavelength(self, laser_wl):
+608        """
+609        Sets the wavelength of the laser used for calibration.
+610        """
+611        self.clear()
+612        self.laser_wl = laser_wl
+613
+614    def clear(self):
+615        """
+616        Clears the calibration model.
+617        """
+618        self.laser_wl = None
+619        self.components = []
+620
+621    def save(self, filename):
+622        """
+623        Saves the calibration model to a file.
+624        """
+625        with open(filename, "wb") as file:
+626            pickle.dump(self, file)
+627
+628    @staticmethod
+629    def from_file(filename):
+630        """
+631        Loads a calibration model from a file.
+632        """
+633        with open(filename, "rb") as file:
+634            return pickle.load(file)
+635
+636    def derive_model_x(
+637        self,
+638        spe_neon: Spectrum,
+639        spe_neon_units: str,
+640        ref_neon: Dict,
+641        ref_neon_units: str,
+642        spe_sil: Spectrum,
+643        spe_sil_units="cm-1",
+644        ref_sil={520.45: 1},
+645        ref_sil_units="cm-1",
+646        find_kw={"wlen": 200, "width": 1},
+647        fit_kw={},
+648        should_fit=False,
+649    ):
+650        """
+651        Derives x-calibration models using Neon and Silicon spectra.
+652        """
+653        self.components.clear()
+654        if ref_neon_units is None:
+655            ref_neon_units = "nm"
+656        if spe_neon_units is None:
+657            spe_neon_units = "cm-1"
+658        find_kw["prominence"] = spe_neon.y_noise_MAD() * self.prominence_coeff
+659        model_neon = self._derive_model_curve(
+660            spe_neon,
+661            rc2const.NEON_WL[self.laser_wl] if ref_neon is None else ref_neon,
+662            spe_units=spe_neon_units,
+663            ref_units=ref_neon_units,
+664            find_kw=find_kw,
+665            fit_peaks_kw=fit_kw,
+666            should_fit=should_fit,
+667            name="Neon calibration",
+668        )
+669        spe_sil_ne_calib = model_neon.process(
+670            spe_sil, spe_units=spe_sil_units, convert_back=False
+671        )
+672
+673        find_kw["prominence"] = spe_sil_ne_calib.y_noise_MAD() * self.prominence_coeff
+674        model_si = self._derive_model_zero(
+675            spe_sil_ne_calib,
+676            ref=ref_sil,
+677            spe_units=model_neon.model_units,
+678            ref_units=ref_sil_units,
+679            find_kw=find_kw,
+680            fit_peaks_kw=fit_kw,
+681            should_fit=True,
+682            name="Si laser zeroing",
+683        )
+684        return (model_neon, model_si)
+685
+686    def _derive_model_curve(
+687        self,
+688        spe: Spectrum,
+689        ref=None,
+690        spe_units="cm-1",
+691        ref_units="nm",
+692        find_kw=None,
+693        fit_peaks_kw=None,
+694        should_fit=False,
+695        name="X calibration",
+696    ):
+697        if find_kw is None:
+698            find_kw = {}
+699        if fit_peaks_kw is None:
+700            fit_peaks_kw = {}
+701        reference_peaks = rc2const.NEON_WL[self.laser_wl] if ref is None else ref
+702        calibration_x = XCalibrationComponent(
+703            self.laser_wl,
+704            spe=spe,
+705            spe_units=spe_units,
+706            ref=reference_peaks,
+707            ref_units=ref_units,
+708        )
+709        calibration_x.derive_model(
+710            find_kw=find_kw, fit_peaks_kw=fit_peaks_kw, should_fit=should_fit, name=name
+711        )
+712        self.components.append(calibration_x)
+713        return calibration_x
+714
+715    def derive_model_curve(
+716        self,
+717        spe: Spectrum,
+718        ref=None,
+719        spe_units="cm-1",
+720        ref_units="nm",
+721        find_kw={},
+722        fit_peaks_kw={},
+723        should_fit=False,
+724        name="X calibration",
+725    ):
+726        warnings.warn(
+727            message="Do not use directly. Use derive_model_x instead.",
+728            category=DeprecationWarning,
+729        )
+730        return self._derive_model_curve(
+731            spe=spe,
+732            ref=ref,
+733            spe_units=spe_units,
+734            ref_units=ref_units,
+735            find_kw=find_kw,
+736            fit_peaks_kw=fit_peaks_kw,
+737            should_fit=should_fit,
+738            name=name,
+739        )
+740
+741    def _derive_model_zero(
+742        self,
+743        spe: Spectrum,
+744        ref=None,
+745        spe_units="nm",
+746        ref_units="cm-1",
+747        find_kw=None,
+748        fit_peaks_kw=None,
+749        should_fit=False,
+750        name="Laser zeroing",
+751        profile="Gaussian",
+752    ):
+753        if ref is None:
+754            ref = {520.45: 1}
+755        if find_kw is None:
+756            find_kw = {}
+757        if fit_peaks_kw is None:
+758            fit_peaks_kw = {}
+759        calibration_shift = LazerZeroingComponent(
+760            self.laser_wl, spe, spe_units, ref, ref_units
+761        )
+762        calibration_shift.profile = profile
+763        calibration_shift.derive_model(
+764            find_kw=find_kw, fit_peaks_kw=fit_peaks_kw, should_fit=should_fit, name=name
+765        )
+766        _laser_zeroing_component = None
+767        for i, item in enumerate(self.components):
+768            if isinstance(item, LazerZeroingComponent):
+769                self.components[i] = calibration_shift
+770                _laser_zeroing_component = self.components[i]
+771        if (
+772            _laser_zeroing_component is None
+773        ):  # LaserZeroing component should present only once
+774            self.components.append(calibration_shift)
+775        return calibration_shift
+776
+777    def derive_model_zero(
+778        self,
+779        spe: Spectrum,
+780        ref={520.45: 1},
+781        spe_units="nm",
+782        ref_units="cm-1",
+783        find_kw={},
+784        fit_peaks_kw={},
+785        should_fit=False,
+786        name="X Shift",
+787        profile="Gaussian",
+788    ):
+789        warnings.warn(
+790            message="Do not use directly. Use derive_model_x instead.",
+791            category=DeprecationWarning,
+792        )
+793        return self._derive_model_zero(
+794            spe=spe,
+795            ref=ref,
+796            spe_units=spe_units,
+797            ref_units=ref_units,
+798            find_kw=find_kw,
+799            fit_peaks_kw=fit_peaks_kw,
+800            should_fit=should_fit,
+801            name=name,
+802            profile=profile,
+803        )
+804
+805    def apply_calibration_x(self, old_spe: Spectrum, spe_units="cm-1"):
+806        # neon calibration converts to nm
+807        # silicon calibration takes nm and converts back to cm-1 using laser zeroing
+808        new_spe = old_spe
+809        model_units = spe_units
+810        for model in self.components:
+811            # TODO: tbd find out if to convert units
+812            if model.enabled:
+813                new_spe = model.process(new_spe, model_units, convert_back=False)
+814                model_units = model.model_units
+815        return new_spe
+816
+817    def plot(self, ax=None, label=" ", **kwargs) -> Axes:
+818        if ax is None:
+819            fig, ax = plt.subplots(1, 1, figsize=(12, 4))
+820        self._plot(ax, **kwargs)
+821        return ax
+822
+823    def _plot(self, ax, **kwargs):
+824        for index, model in enumerate(self.components):
+825            model._plot(ax, **kwargs)
+826            break
+827
+828    @staticmethod
+829    def calibration_model_factory(
+830        laser_wl,
+831        spe_neon: Spectrum,
+832        spe_sil: Spectrum,
+833        neon_wl=None,
+834        find_kw=None,
+835        fit_peaks_kw=None,
+836        should_fit=False,
+837        prominence_coeff=3,
+838    ):
+839        if neon_wl is None:
+840            neon_wl = rc2const.NEON_WL[laser_wl]
+841        if find_kw is None:
+842            find_kw = {"wlen": 100, "width": 1}
+843        if fit_peaks_kw is None:
+844            fit_peaks_kw = {}
+845        calmodel = CalibrationModel(laser_wl)
+846        calmodel.prominence_coeff = prominence_coeff
+847        find_kw["prominence"] = spe_neon.y_noise_MAD() * calmodel.prominence_coeff
+848        model_neon = calmodel.derive_model_curve(
+849            spe=spe_neon,
+850            ref=neon_wl,
+851            spe_units="cm-1",
+852            ref_units="nm",
+853            find_kw=find_kw,
+854            fit_peaks_kw=fit_peaks_kw,
+855            should_fit=should_fit,
+856            name="Neon calibration",
+857        )
+858        spe_sil_ne_calib = model_neon.process(
+859            spe_sil, spe_units="cm-1", convert_back=False
+860        )
+861        find_kw["prominence"] = (
+862            spe_sil_ne_calib.y_noise_MAD() * calmodel.prominence_coeff
+863        )
+864        calmodel.derive_model_zero(
+865            spe=spe_sil_ne_calib,
+866            ref={520.45: 1},
+867            spe_units=model_neon.model_units,
+868            ref_units="cm-1",
+869            find_kw=find_kw,
+870            fit_peaks_kw=fit_peaks_kw,
+871            should_fit=True,
+872            name="Si calibration",
+873        )
+874        return calmodel
+875
+876
+877class CustomRBFInterpolator(RBFInterpolator):
+878    def __init__(self, *args, **kwargs):
+879        super().__init__(*args, **kwargs)
+880
+881    @staticmethod
+882    def from_dict(rbf_dict={}):
+883        interpolator_loaded = CustomRBFInterpolator(
+884            rbf_dict["y"],
+885            rbf_dict["d"],
+886            epsilon=rbf_dict["epsilon"],
+887            smoothing=rbf_dict["smoothing"],
+888            kernel=rbf_dict["kernel"],
+889            neighbors=rbf_dict["neighbors"],
+890        )
+891        interpolator_loaded._coeffs = rbf_dict["coeffs"]
+892        interpolator_loaded._scale = rbf_dict["scale"]
+893        interpolator_loaded._shift = rbf_dict["shift"]
+894        return interpolator_loaded
+895
+896    def to_dict(self):
+897        return {
+898            "y": self.y,
+899            "d": self.d,
+900            "d_dtype": self.d_dtype,
+901            "d_shape": self.d_shape,
+902            "epsilon": self.epsilon,
+903            "kernel": self.kernel,
+904            "neighbors": self.neighbors,
+905            "powers": self.powers,
+906            "smoothing": self.smoothing,
+907            "coeffs": self._coeffs,
+908            "scale": self._scale,
+909            "shift": self._shift,
+910        }
+
+ + +
+
+
+ logger = +<Logger ramanchada2.protocols.calibration (WARNING)> + + +
+ + + + +
+
+ +
+ + class + ProcessingModel: + + + +
+ +
24class ProcessingModel:
+25    def __init__(self):
+26        pass
+
+ + + + +
+
+ +
+ + class + CalibrationComponent(ramanchada2.misc.plottable.Plottable): + + + +
+ +
 29class CalibrationComponent(Plottable):
+ 30    def __init__(self, laser_wl, spe, spe_units, ref, ref_units, sample=None):
+ 31        super(CalibrationComponent, self).__init__()
+ 32        self.laser_wl = laser_wl
+ 33        self.spe = spe
+ 34        self.spe_units = spe_units
+ 35        self.ref = ref
+ 36        self.ref_units = ref_units
+ 37        self.name = "not estimated"
+ 38        self.model = None
+ 39        self.model_units = None
+ 40        self.peaks = None
+ 41        self.sample = sample
+ 42        self.enabled = True
+ 43        self.fit_res = None
+ 44
+ 45    def set_model(self, model, model_units, peaks, name=None):
+ 46        self.model = model
+ 47        self.model_units = model_units
+ 48        self.peaks = peaks
+ 49        self.name = "calibration component" if name is None else name
+ 50
+ 51    def __str__(self):
+ 52        return (
+ 53            f"{self.name} spe ({self.spe_units}) reference ({self.ref_units}) "
+ 54            f"model ({self.model_units}) {self.model}"
+ 55        )
+ 56
+ 57    def convert_units(self, old_spe, spe_unit="cm-1", newspe_unit="nm", laser_wl=None):
+ 58        if laser_wl is None:
+ 59            laser_wl = self.laser_wl
+ 60        logger.debug(
+ 61            "convert laser_wl {} {} --> {}".format(laser_wl, spe_unit, newspe_unit)
+ 62        )
+ 63        if spe_unit != newspe_unit:
+ 64            new_spe = old_spe.__copy__()
+ 65            if spe_unit == "nm":
+ 66                new_spe = old_spe.abs_nm_to_shift_cm_1_filter(
+ 67                    laser_wave_length_nm=laser_wl
+ 68                )
+ 69            elif spe_unit == "cm-1":
+ 70                new_spe = old_spe.shift_cm_1_to_abs_nm_filter(
+ 71                    laser_wave_length_nm=laser_wl
+ 72                )
+ 73            else:
+ 74                raise Exception(
+ 75                    "Unsupported conversion {} to {}", spe_unit, newspe_unit
+ 76                )
+ 77        else:
+ 78            new_spe = old_spe.__copy__()
+ 79        #    new_spe = old_spe.__copy__()
+ 80        return new_spe
+ 81
+ 82    def process(self, old_spe: Spectrum, spe_units="cm-1", convert_back=False):
+ 83        raise NotImplementedError(self)
+ 84
+ 85    def derive_model(self, find_kw={}, fit_peaks_kw={}, should_fit=False, name=None):
+ 86        raise NotImplementedError(self)
+ 87
+ 88    def plot(self, ax=None, label=" ", **kwargs) -> Axes:
+ 89        if ax is None:
+ 90            fig, ax = plt.subplots(3, 1, figsize=(12, 4))
+ 91        elif not isinstance(ax, (list, np.ndarray)):
+ 92            raise ValueError(
+ 93                "ax should be a list or array of Axes when creating multiple subplots."
+ 94            )
+ 95
+ 96        self._plot(ax[0], label=label, **kwargs)
+ 97        ax[0].legend()
+ 98        return ax
+ 99
+100    def _plot(self, ax, **kwargs):
+101        pass
+102
+103    def __getstate__(self):
+104        # Return the state to be serialized, excluding transient_data
+105        state = self.__dict__.copy()
+106        del state["fit_res"]
+107        return state
+108
+109    def __setstate__(self, state):
+110        self.__dict__.update(state)
+111        self.fit_res = None
+112
+113    def fitres2df(self, spe):
+114        df = pd.DataFrame(
+115            list(
+116                zip(
+117                    self.fit_res.centers,
+118                    self.fit_res.fwhm,
+119                    np.array(
+120                        [
+121                            v
+122                            for peak in self.fit_res
+123                            for k, v in peak.values.items()
+124                            if k.endswith("height")
+125                        ]
+126                    ),
+127                    np.array(
+128                        [
+129                            v
+130                            for peak in self.fit_res
+131                            for k, v in peak.values.items()
+132                            if k.endswith("amplitude")
+133                        ]
+134                    ),
+135                )
+136            ),
+137            columns=["center", "fwhm", "height", "amplitude"],
+138        )
+139        return df[(df["center"] >= min(spe.x)) & (df["center"] <= max(spe.x))]
+
+ + +

Helper class that provides a standard way to create an ABC using +inheritance.

+
+ + +
+ +
+ + CalibrationComponent(laser_wl, spe, spe_units, ref, ref_units, sample=None) + + + +
+ +
30    def __init__(self, laser_wl, spe, spe_units, ref, ref_units, sample=None):
+31        super(CalibrationComponent, self).__init__()
+32        self.laser_wl = laser_wl
+33        self.spe = spe
+34        self.spe_units = spe_units
+35        self.ref = ref
+36        self.ref_units = ref_units
+37        self.name = "not estimated"
+38        self.model = None
+39        self.model_units = None
+40        self.peaks = None
+41        self.sample = sample
+42        self.enabled = True
+43        self.fit_res = None
+
+ + + + +
+
+
+ laser_wl + + +
+ + + + +
+
+
+ spe + + +
+ + + + +
+
+
+ spe_units + + +
+ + + + +
+
+
+ ref + + +
+ + + + +
+
+
+ ref_units + + +
+ + + + +
+
+
+ name + + +
+ + + + +
+
+
+ model + + +
+ + + + +
+
+
+ model_units + + +
+ + + + +
+
+
+ peaks + + +
+ + + + +
+
+
+ sample + + +
+ + + + +
+
+
+ enabled + + +
+ + + + +
+
+
+ fit_res + + +
+ + + + +
+
+ +
+ + def + set_model(self, model, model_units, peaks, name=None): + + + +
+ +
45    def set_model(self, model, model_units, peaks, name=None):
+46        self.model = model
+47        self.model_units = model_units
+48        self.peaks = peaks
+49        self.name = "calibration component" if name is None else name
+
+ + + + +
+
+ +
+ + def + convert_units(self, old_spe, spe_unit='cm-1', newspe_unit='nm', laser_wl=None): + + + +
+ +
57    def convert_units(self, old_spe, spe_unit="cm-1", newspe_unit="nm", laser_wl=None):
+58        if laser_wl is None:
+59            laser_wl = self.laser_wl
+60        logger.debug(
+61            "convert laser_wl {} {} --> {}".format(laser_wl, spe_unit, newspe_unit)
+62        )
+63        if spe_unit != newspe_unit:
+64            new_spe = old_spe.__copy__()
+65            if spe_unit == "nm":
+66                new_spe = old_spe.abs_nm_to_shift_cm_1_filter(
+67                    laser_wave_length_nm=laser_wl
+68                )
+69            elif spe_unit == "cm-1":
+70                new_spe = old_spe.shift_cm_1_to_abs_nm_filter(
+71                    laser_wave_length_nm=laser_wl
+72                )
+73            else:
+74                raise Exception(
+75                    "Unsupported conversion {} to {}", spe_unit, newspe_unit
+76                )
+77        else:
+78            new_spe = old_spe.__copy__()
+79        #    new_spe = old_spe.__copy__()
+80        return new_spe
+
+ + + + +
+
+ +
+ + def + process( self, old_spe: ramanchada2.spectrum.spectrum.Spectrum, spe_units='cm-1', convert_back=False): + + + +
+ +
82    def process(self, old_spe: Spectrum, spe_units="cm-1", convert_back=False):
+83        raise NotImplementedError(self)
+
+ + + + +
+
+ +
+ + def + derive_model(self, find_kw={}, fit_peaks_kw={}, should_fit=False, name=None): + + + +
+ +
85    def derive_model(self, find_kw={}, fit_peaks_kw={}, should_fit=False, name=None):
+86        raise NotImplementedError(self)
+
+ + + + +
+
+ +
+ + def + plot(self, ax=None, label=' ', **kwargs) -> matplotlib.axes._axes.Axes: + + + +
+ +
88    def plot(self, ax=None, label=" ", **kwargs) -> Axes:
+89        if ax is None:
+90            fig, ax = plt.subplots(3, 1, figsize=(12, 4))
+91        elif not isinstance(ax, (list, np.ndarray)):
+92            raise ValueError(
+93                "ax should be a list or array of Axes when creating multiple subplots."
+94            )
+95
+96        self._plot(ax[0], label=label, **kwargs)
+97        ax[0].legend()
+98        return ax
+
+ + + + +
+
+ +
+ + def + fitres2df(self, spe): + + + +
+ +
113    def fitres2df(self, spe):
+114        df = pd.DataFrame(
+115            list(
+116                zip(
+117                    self.fit_res.centers,
+118                    self.fit_res.fwhm,
+119                    np.array(
+120                        [
+121                            v
+122                            for peak in self.fit_res
+123                            for k, v in peak.values.items()
+124                            if k.endswith("height")
+125                        ]
+126                    ),
+127                    np.array(
+128                        [
+129                            v
+130                            for peak in self.fit_res
+131                            for k, v in peak.values.items()
+132                            if k.endswith("amplitude")
+133                        ]
+134                    ),
+135                )
+136            ),
+137            columns=["center", "fwhm", "height", "amplitude"],
+138        )
+139        return df[(df["center"] >= min(spe.x)) & (df["center"] <= max(spe.x))]
+
+ + + + +
+
+
+ +
+ + class + XCalibrationComponent(CalibrationComponent): + + + +
+ +
142class XCalibrationComponent(CalibrationComponent):
+143    def __init__(self, laser_wl, spe, spe_units, ref, ref_units, sample="Neon"):
+144        super(XCalibrationComponent, self).__init__(
+145            laser_wl, spe, spe_units, ref, ref_units, sample
+146        )
+147        self.spe_pos_dict = None
+148
+149    # @staticmethod
+150    # def from_json(filepath: str):
+151    #    rbf_intrpolator, other_data = load_xcalibration_model(filepath)
+152    #    calibration_x = XCalibrationComponent(laser_wl, spe, spe_units, ref, ref_units)
+153    #    calibration_x.model = rbf_intrpolator
+154    #    return calibration_x
+155
+156    def process(self, old_spe: Spectrum, spe_units="cm-1", convert_back=False):
+157        logger.debug(
+158            "convert spe_units {} --> model units {}".format(
+159                spe_units, self.model_units
+160            )
+161        )
+162        new_spe = self.convert_units(old_spe, spe_units, self.model_units)
+163        logger.debug("process", self)
+164        if self.model is None:
+165            return new_spe
+166        elif self.enabled:
+167            if isinstance(self.model, RBFInterpolator):
+168                new_spe.x = self.model(new_spe.x.reshape(-1, 1))
+169            elif isinstance(self.model, float):
+170                new_spe.x = new_spe.x + self.model
+171        else:
+172            return new_spe
+173        # convert back
+174        if convert_back:
+175            # print("convert back", spe_units)
+176            return self.convert_units(new_spe, self.model_units, spe_units)
+177        else:
+178            return new_spe
+179
+180    def _plot(self, ax, **kwargs):
+181        ax.stem(
+182            self.spe_pos_dict.keys(),
+183            self.spe_pos_dict.values(),
+184            linefmt="b-",
+185            basefmt=" ",
+186            label="{} peaks".format(self.sample),
+187        )
+188        ax.twinx().stem(
+189            self.ref.keys(),
+190            self.ref.values(),
+191            linefmt="r-",
+192            basefmt=" ",
+193            label="Reference {}".format(self.sample),
+194        )
+195        ax.set_xlabel("{}".format(self.ref_units))
+196        ax.legend()
+197
+198    def _plot_peaks(self, ax, **kwargs):
+199        # self.model.peaks
+200        pass
+201        # fig, ax = plt.subplots(3,1,figsize=(12,4))
+202        # spe.plot(ax=ax[0].twinx(),label=spe_units)
+203        # spe_to_process.plot(ax=ax[1],label=ref_units)
+204
+205    def derive_model(
+206        self, find_kw={"sharpening": None}, fit_peaks_kw={}, should_fit=False, name=None
+207    ):
+208
+209        # convert to ref_units
+210        logger.debug(
+211            "[{}]: convert spe_units {} to ref_units {}".format(
+212                self.name, self.spe_units, self.ref_units
+213            )
+214        )
+215        spe_to_process = self.convert_units(self.spe, self.spe_units, self.ref_units)
+216        logger.debug("max x", max(spe_to_process.x), self.ref_units)
+217
+218        peaks_df = None
+219        self.fit_res = None
+220        if should_fit:
+221            # instead of fit_peak_positions - we don't want movmin here
+222            # baseline removal might be done during preprocessing
+223            center_err_threshold = 0.5
+224            find_kw.update(dict(sharpening=None))
+225            cand = spe_to_process.find_peak_multipeak(**find_kw)
+226            # print(cand.get_ampl_pos_fwhm())
+227            fit_kw = dict(profile="Gaussian")
+228            fit_kw.update(fit_peaks_kw)
+229            self.fit_res = spe_to_process.fit_peak_multimodel(candidates=cand, **fit_kw)  # type: ignore
+230            peaks_df = self.fitres2df(spe_to_process)
+231            # self.fit_res.to_dataframe_peaks()
+232            pos, amp = self.fit_res.center_amplitude(threshold=center_err_threshold)
+233            self.spe_pos_dict = dict(zip(pos, amp))
+234        else:
+235            # prominence = prominence, wlen=wlen, width=width
+236            logger.debug("find_peak_multipeak")
+237            cand = spe_to_process.find_peak_multipeak(**find_kw)
+238            self.spe_pos_dict = cand.get_pos_ampl_dict()
+239            # print(cand.get_ampl_pos_fwhm())
+240        x_spe, x_reference, x_distance, df = rc2utils.match_peaks(
+241            self.spe_pos_dict, self.ref
+242        )
+243        self.matched_peaks = df
+244        sum_of_differences = np.sum(np.abs(x_spe - x_reference)) / len(x_spe)
+245        logger.debug(
+246            "sum_of_differences original {} {}".format(
+247                sum_of_differences, self.ref_units
+248            )
+249        )
+250        if len(x_reference) == 1:
+251            _offset = x_reference[0] - x_spe[0]
+252            logger.debug(
+253                "ref",
+254                x_reference[0],
+255                "sample",
+256                x_spe[0],
+257                "offset",
+258                _offset,
+259                self.ref_units,
+260            )
+261            self.set_model(_offset, self.ref_units, peaks_df, name)
+262        else:
+263            try:
+264                kwargs = {"kernel": "thin_plate_spline"}
+265                interp = CustomRBFInterpolator(
+266                    x_spe.reshape(-1, 1), x_reference, **kwargs
+267                )
+268                self.set_model(interp, self.ref_units, peaks_df, name)
+269            except Exception as err:
+270                raise err
+
+ + +

Helper class that provides a standard way to create an ABC using +inheritance.

+
+ + +
+ +
+ + XCalibrationComponent(laser_wl, spe, spe_units, ref, ref_units, sample='Neon') + + + +
+ +
143    def __init__(self, laser_wl, spe, spe_units, ref, ref_units, sample="Neon"):
+144        super(XCalibrationComponent, self).__init__(
+145            laser_wl, spe, spe_units, ref, ref_units, sample
+146        )
+147        self.spe_pos_dict = None
+
+ + + + +
+
+
+ spe_pos_dict + + +
+ + + + +
+
+ +
+ + def + process( self, old_spe: ramanchada2.spectrum.spectrum.Spectrum, spe_units='cm-1', convert_back=False): + + + +
+ +
156    def process(self, old_spe: Spectrum, spe_units="cm-1", convert_back=False):
+157        logger.debug(
+158            "convert spe_units {} --> model units {}".format(
+159                spe_units, self.model_units
+160            )
+161        )
+162        new_spe = self.convert_units(old_spe, spe_units, self.model_units)
+163        logger.debug("process", self)
+164        if self.model is None:
+165            return new_spe
+166        elif self.enabled:
+167            if isinstance(self.model, RBFInterpolator):
+168                new_spe.x = self.model(new_spe.x.reshape(-1, 1))
+169            elif isinstance(self.model, float):
+170                new_spe.x = new_spe.x + self.model
+171        else:
+172            return new_spe
+173        # convert back
+174        if convert_back:
+175            # print("convert back", spe_units)
+176            return self.convert_units(new_spe, self.model_units, spe_units)
+177        else:
+178            return new_spe
+
+ + + + +
+
+ +
+ + def + derive_model( self, find_kw={'sharpening': None}, fit_peaks_kw={}, should_fit=False, name=None): + + + +
+ +
205    def derive_model(
+206        self, find_kw={"sharpening": None}, fit_peaks_kw={}, should_fit=False, name=None
+207    ):
+208
+209        # convert to ref_units
+210        logger.debug(
+211            "[{}]: convert spe_units {} to ref_units {}".format(
+212                self.name, self.spe_units, self.ref_units
+213            )
+214        )
+215        spe_to_process = self.convert_units(self.spe, self.spe_units, self.ref_units)
+216        logger.debug("max x", max(spe_to_process.x), self.ref_units)
+217
+218        peaks_df = None
+219        self.fit_res = None
+220        if should_fit:
+221            # instead of fit_peak_positions - we don't want movmin here
+222            # baseline removal might be done during preprocessing
+223            center_err_threshold = 0.5
+224            find_kw.update(dict(sharpening=None))
+225            cand = spe_to_process.find_peak_multipeak(**find_kw)
+226            # print(cand.get_ampl_pos_fwhm())
+227            fit_kw = dict(profile="Gaussian")
+228            fit_kw.update(fit_peaks_kw)
+229            self.fit_res = spe_to_process.fit_peak_multimodel(candidates=cand, **fit_kw)  # type: ignore
+230            peaks_df = self.fitres2df(spe_to_process)
+231            # self.fit_res.to_dataframe_peaks()
+232            pos, amp = self.fit_res.center_amplitude(threshold=center_err_threshold)
+233            self.spe_pos_dict = dict(zip(pos, amp))
+234        else:
+235            # prominence = prominence, wlen=wlen, width=width
+236            logger.debug("find_peak_multipeak")
+237            cand = spe_to_process.find_peak_multipeak(**find_kw)
+238            self.spe_pos_dict = cand.get_pos_ampl_dict()
+239            # print(cand.get_ampl_pos_fwhm())
+240        x_spe, x_reference, x_distance, df = rc2utils.match_peaks(
+241            self.spe_pos_dict, self.ref
+242        )
+243        self.matched_peaks = df
+244        sum_of_differences = np.sum(np.abs(x_spe - x_reference)) / len(x_spe)
+245        logger.debug(
+246            "sum_of_differences original {} {}".format(
+247                sum_of_differences, self.ref_units
+248            )
+249        )
+250        if len(x_reference) == 1:
+251            _offset = x_reference[0] - x_spe[0]
+252            logger.debug(
+253                "ref",
+254                x_reference[0],
+255                "sample",
+256                x_spe[0],
+257                "offset",
+258                _offset,
+259                self.ref_units,
+260            )
+261            self.set_model(_offset, self.ref_units, peaks_df, name)
+262        else:
+263            try:
+264                kwargs = {"kernel": "thin_plate_spline"}
+265                interp = CustomRBFInterpolator(
+266                    x_spe.reshape(-1, 1), x_reference, **kwargs
+267                )
+268                self.set_model(interp, self.ref_units, peaks_df, name)
+269            except Exception as err:
+270                raise err
+
+ + + + +
+ +
+
+ +
+ + class + LazerZeroingComponent(CalibrationComponent): + + + +
+ +
273class LazerZeroingComponent(CalibrationComponent):
+274    def __init__(
+275        self,
+276        laser_wl,
+277        spe,
+278        spe_units="nm",
+279        ref={520.45: 1},
+280        ref_units="cm-1",
+281        sample="Silicon",
+282    ):
+283        super(LazerZeroingComponent, self).__init__(
+284            laser_wl, spe, spe_units, ref, ref_units, sample
+285        )
+286        self.profile = "Pearson4"
+287        # self.profile = "Gaussian"
+288
+289    def derive_model(self, find_kw={}, fit_peaks_kw={}, should_fit=True, name=None):
+290        find_kw = dict(sharpening=None)
+291        cand = self.spe.find_peak_multipeak(**find_kw)
+292        logger.debug(self.name, cand)
+293        # init_guess = self.spe.fit_peak_multimodel(profile='Pearson4', candidates=cand, no_fit=False)
+294        self.fit_res = self.spe.fit_peak_multimodel(
+295            profile=self.profile, candidates=cand, **fit_peaks_kw
+296        )
+297        # df = self.fit_res.to_dataframe_peaks()
+298        df = self.fitres2df(self.spe)
+299        # highest peak first
+300        df = df.sort_values(by="height", ascending=False)
+301        # df = df.sort_values(by='amplitude', ascending=False)
+302        if df.empty:
+303            raise Exception("No peaks found")
+304        else:
+305            if "position" in df.columns:
+306                zero_peak_nm = df.iloc[0]["position"]
+307            elif "center" in df.columns:
+308                zero_peak_nm = df.iloc[0]["center"]
+309            # https://www.elodiz.com/calibration-and-validation-of-raman-instruments/
+310            self.set_model(
+311                zero_peak_nm, "nm", df, "Laser zeroing using {} nm".format(zero_peak_nm)
+312            )
+313            print(self.name, "peak", zero_peak_nm)
+314            logger.info(self.name, "peak", zero_peak_nm)
+315        # laser_wl should be calculated  based on the peak position and set instead of the nominal
+316
+317    def zero_nm_to_shift_cm_1(self, wl, zero_pos_nm, zero_ref_cm_1=520.45):
+318        return 1e7 * (1 / zero_pos_nm - 1 / wl) + zero_ref_cm_1
+319
+320    # we do not do shift (as initially implemented)
+321    # just convert the spectrum nm->cm-1 using the Si measured peak in nm and reference in cm-1
+322    # https://www.elodiz.com/calibration-and-validation-of-raman-instruments/
+323    def process(self, old_spe: Spectrum, spe_units="nm", convert_back=False):
+324        wl_si_ref = list(self.ref.keys())[0]
+325        logger.debug(self.name, "process", self.model, wl_si_ref)
+326        new_x = self.zero_nm_to_shift_cm_1(old_spe.x, self.model, wl_si_ref)
+327        new_spe = Spectrum(x=new_x, y=old_spe.y, metadata=old_spe.meta)
+328        # new_spe = old_spe.lazer_zero_nm_to_shift_cm_1(self.model, wl_si_ref)
+329        # print("old si", old_spe.x)
+330        # print("new si", new_spe.x)
+331        return new_spe
+332
+333    def _plot(self, ax, **kwargs):
+334        # spe_sil.plot(label="{} original".format(si_tag),ax=ax)
+335        # spe_sil_calib.plot(ax = ax,label="{} laser zeroed".format(si_tag),fmt=":")
+336        # ax.set_xlim(520.45-50,520.45+50)
+337        # ax.set_xlabel("cm-1")
+338        pass
+
+ + +

Helper class that provides a standard way to create an ABC using +inheritance.

+
+ + +
+ +
+ + LazerZeroingComponent( laser_wl, spe, spe_units='nm', ref={520.45: 1}, ref_units='cm-1', sample='Silicon') + + + +
+ +
274    def __init__(
+275        self,
+276        laser_wl,
+277        spe,
+278        spe_units="nm",
+279        ref={520.45: 1},
+280        ref_units="cm-1",
+281        sample="Silicon",
+282    ):
+283        super(LazerZeroingComponent, self).__init__(
+284            laser_wl, spe, spe_units, ref, ref_units, sample
+285        )
+286        self.profile = "Pearson4"
+287        # self.profile = "Gaussian"
+
+ + + + +
+
+
+ profile + + +
+ + + + +
+
+ +
+ + def + derive_model(self, find_kw={}, fit_peaks_kw={}, should_fit=True, name=None): + + + +
+ +
289    def derive_model(self, find_kw={}, fit_peaks_kw={}, should_fit=True, name=None):
+290        find_kw = dict(sharpening=None)
+291        cand = self.spe.find_peak_multipeak(**find_kw)
+292        logger.debug(self.name, cand)
+293        # init_guess = self.spe.fit_peak_multimodel(profile='Pearson4', candidates=cand, no_fit=False)
+294        self.fit_res = self.spe.fit_peak_multimodel(
+295            profile=self.profile, candidates=cand, **fit_peaks_kw
+296        )
+297        # df = self.fit_res.to_dataframe_peaks()
+298        df = self.fitres2df(self.spe)
+299        # highest peak first
+300        df = df.sort_values(by="height", ascending=False)
+301        # df = df.sort_values(by='amplitude', ascending=False)
+302        if df.empty:
+303            raise Exception("No peaks found")
+304        else:
+305            if "position" in df.columns:
+306                zero_peak_nm = df.iloc[0]["position"]
+307            elif "center" in df.columns:
+308                zero_peak_nm = df.iloc[0]["center"]
+309            # https://www.elodiz.com/calibration-and-validation-of-raman-instruments/
+310            self.set_model(
+311                zero_peak_nm, "nm", df, "Laser zeroing using {} nm".format(zero_peak_nm)
+312            )
+313            print(self.name, "peak", zero_peak_nm)
+314            logger.info(self.name, "peak", zero_peak_nm)
+315        # laser_wl should be calculated  based on the peak position and set instead of the nominal
+
+ + + + +
+
+ +
+ + def + zero_nm_to_shift_cm_1(self, wl, zero_pos_nm, zero_ref_cm_1=520.45): + + + +
+ +
317    def zero_nm_to_shift_cm_1(self, wl, zero_pos_nm, zero_ref_cm_1=520.45):
+318        return 1e7 * (1 / zero_pos_nm - 1 / wl) + zero_ref_cm_1
+
+ + + + +
+
+ +
+ + def + process( self, old_spe: ramanchada2.spectrum.spectrum.Spectrum, spe_units='nm', convert_back=False): + + + +
+ +
323    def process(self, old_spe: Spectrum, spe_units="nm", convert_back=False):
+324        wl_si_ref = list(self.ref.keys())[0]
+325        logger.debug(self.name, "process", self.model, wl_si_ref)
+326        new_x = self.zero_nm_to_shift_cm_1(old_spe.x, self.model, wl_si_ref)
+327        new_spe = Spectrum(x=new_x, y=old_spe.y, metadata=old_spe.meta)
+328        # new_spe = old_spe.lazer_zero_nm_to_shift_cm_1(self.model, wl_si_ref)
+329        # print("old si", old_spe.x)
+330        # print("new si", new_spe.x)
+331        return new_spe
+
+ + + + +
+ +
+
+ +
+ + class + YCalibrationCertificate(pydantic.main.BaseModel, ramanchada2.misc.plottable.Plottable): + + + +
+ +
341class YCalibrationCertificate(BaseModel, Plottable):
+342    """
+343    Class for intensity calibration certificates
+344
+345    Usage:
+346
+347        1. Use for specific SRM
+348        >>> cert = YCalibrationCertificate(
+349        ...             id="NIST785_SRM2241",
+350        ...             description="optical glass",
+351        ...             url="https://tsapps.nist.gov/srmext/certificates/2241.pdf",
+352        ...             wavelength=785,
+353        ...             params="A0 = 9.71937e-02, A1 = 2.28325e-04, A2 = -5.86762e-08, A3 = 2.16023e-10, A4 = -9.77171e-14, A5 = 1.15596e-17",
+354        ...             equation="A0 + A1 * x + A2 * x**2 + A3 * x**3 + A4 * x**4 + A5 * x**5",
+355        ...             temperature_c=(20, 25),
+356        ...             raman_shift=(200, 3500)
+357        ...         )
+358        ...
+359        >>> cert.plot()
+360
+361    """  # noqa: E501
+362
+363    id: str
+364    description: Optional[str]
+365    url: Optional[str]
+366    wavelength: int
+367    params: str
+368    equation: str
+369    temperature_c: Optional[Tuple[int, int]]
+370    raman_shift: Optional[Tuple[int, int]]
+371
+372    @property
+373    def response_function(self):
+374        local_vars = {}
+375        for param in self.params.split(","):
+376            key, value = param.split("=")
+377            key = key.strip()
+378            value = value.strip()
+379            local_vars[key] = eval(value)
+380
+381        def evaluate_expression(x_value):
+382            local_vars["x"] = x_value
+383            return eval(self.equation, {"np": np}, local_vars)
+384
+385        return evaluate_expression
+386
+387    def Y(self, x_value):
+388        return self.response_function(x_value)
+389
+390    def _plot(self, ax, **kwargs):
+391        if self.raman_shift is None:
+392            x = np.linspace(100, 4000)
+393        else:
+394            x = np.linspace(self.raman_shift[0], self.raman_shift[1])
+395        kwargs.pop("label", None)
+396        ax.plot(
+397            x, self.Y(x), label="{} ({}nm)".format(self.id, self.wavelength), **kwargs
+398        )
+399        ax.set_xlabel("Raman shift cm-1")
+400        ax.set_ylabel("Intensity")
+401
+402    @staticmethod
+403    def load(wavelength=785, key="NIST785_SRM2241"):
+404        return CertificatesDict().get(wavelength, key)
+
+ + +

Class for intensity calibration certificates

+ +
Usage:
+ +
+
    +
  1. Use for specific SRM + +
    +
    >>> cert = YCalibrationCertificate(
    +...             id="NIST785_SRM2241",
    +...             description="optical glass",
    +...             url="https://tsapps.nist.gov/srmext/certificates/2241.pdf&quot;,
    +...             wavelength=785,
    +...             params="A0 = 9.71937e-02, A1 = 2.28325e-04, A2 = -5.86762e-08, A3 = 2.16023e-10, A4 = -9.77171e-14, A5 = 1.15596e-17",
    +...             equation="A0 + A1 * x + A2 * x**2 + A3 * x**3 + A4 * x**4 + A5 * x**5",
    +...             temperature_c=(20, 25),
    +...             raman_shift=(200, 3500)
    +...         )
    +...
    +>>> cert.plot()
    +
    +
    +
  2. +
+
+
+ + +
+
+ id: str + + +
+ + + + +
+
+
+ description: Optional[str] + + +
+ + + + +
+
+
+ url: Optional[str] + + +
+ + + + +
+
+
+ wavelength: int + + +
+ + + + +
+
+
+ params: str + + +
+ + + + +
+
+
+ equation: str + + +
+ + + + +
+
+
+ temperature_c: Optional[Tuple[int, int]] + + +
+ + + + +
+
+
+ raman_shift: Optional[Tuple[int, int]] + + +
+ + + + +
+
+ +
+ response_function + + + +
+ +
372    @property
+373    def response_function(self):
+374        local_vars = {}
+375        for param in self.params.split(","):
+376            key, value = param.split("=")
+377            key = key.strip()
+378            value = value.strip()
+379            local_vars[key] = eval(value)
+380
+381        def evaluate_expression(x_value):
+382            local_vars["x"] = x_value
+383            return eval(self.equation, {"np": np}, local_vars)
+384
+385        return evaluate_expression
+
+ + + + +
+
+ +
+ + def + Y(self, x_value): + + + +
+ +
387    def Y(self, x_value):
+388        return self.response_function(x_value)
+
+ + + + +
+
+ +
+
@staticmethod
+ + def + load(wavelength=785, key='NIST785_SRM2241'): + + + +
+ +
402    @staticmethod
+403    def load(wavelength=785, key="NIST785_SRM2241"):
+404        return CertificatesDict().get(wavelength, key)
+
+ + + + +
+
+
+ model_config: ClassVar[pydantic.config.ConfigDict] = +{} + + +
+ + +

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

+
+ + +
+
+
+ model_fields: ClassVar[Dict[str, pydantic.fields.FieldInfo]] = + + {'id': FieldInfo(annotation=str, required=True), 'description': FieldInfo(annotation=Union[str, NoneType], required=True), 'url': FieldInfo(annotation=Union[str, NoneType], required=True), 'wavelength': FieldInfo(annotation=int, required=True), 'params': FieldInfo(annotation=str, required=True), 'equation': FieldInfo(annotation=str, required=True), 'temperature_c': FieldInfo(annotation=Union[Tuple[int, int], NoneType], required=True), 'raman_shift': FieldInfo(annotation=Union[Tuple[int, int], NoneType], required=True)} + + +
+ + +

Metadata about the fields defined on the model, +mapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.

+ +

This replaces Model.__fields__ from Pydantic V1.

+
+ + +
+
+
+ model_computed_fields: ClassVar[Dict[str, pydantic.fields.ComputedFieldInfo]] = +{} + + +
+ + +

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

+
+ + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
ramanchada2.misc.plottable.Plottable
+
plot
+ +
+
+
+
+
+ +
+ + class + CertificatesDict: + + + +
+ +
407class CertificatesDict:
+408    """
+409    Class for loading y calibration certificates
+410
+411    Usage:
+412       Load single certificate
+413       >>> cert = CertificatesDict.load(wavelength="785", key="NIST785_SRM2241")
+414       >>> cert.plot()
+415
+416       Load all certificates for wavelength. Iterate :
+417
+418        >>> certificates = CertificatesDict()
+419        ... plt.figure()
+420        ... ax=None
+421        ... certs = certificates.get_certificates(wavelength=532)
+422        ... ax = certs[cert].plot(ax=ax)
+423        >>> plt.show()
+424    """
+425
+426    def __init__(self):
+427        self.load_certificates(
+428            os.path.join(os.path.dirname(__file__), "config_certs.json")
+429        )
+430
+431    def load_certificates(self, file_path):
+432
+433        with open(file_path, "r") as f:
+434            certificates_data = json.load(f)
+435            certificates = {}
+436            self.laser_wl = []
+437            for wavelength, certificates_dict in certificates_data.items():
+438                certificates[wavelength] = {}
+439                self.laser_wl.append(wavelength)
+440                for certificate_id, certificate_data in certificates_dict.items():
+441                    certificate_data["wavelength"] = int(wavelength)
+442                    certificate_data["id"] = certificate_id
+443                    try:
+444                        certificate = YCalibrationCertificate.model_construct(
+445                            **certificate_data
+446                        )
+447                        certificates[wavelength][certificate_id] = certificate
+448                    except ValidationError as e:
+449                        print(f"Validation error for certificate {certificate_id}: {e}")
+450            self.config_certs = certificates
+451
+452    def get_laser_wl(self):
+453        return self.laser_wl
+454
+455    def get_certificates(self, wavelength=785):
+456        return self.config_certs[str(wavelength)]
+457
+458    def get(self, wavelength=532, key="NIST532_SRM2242a"):
+459        return self.config_certs[str(wavelength)][key]
+460
+461    @staticmethod
+462    def load(wavelength=785, key="NIST785_SRM2241"):
+463        return CertificatesDict().get(wavelength, key)
+
+ + +

Class for loading y calibration certificates

+ +
Usage:
+ +
+

Load single certificate

+ +
+
>>> cert = CertificatesDict.load(wavelength="785", key="NIST785_SRM2241")
+>>> cert.plot()
+
+
+ +

Load all certificates for wavelength. Iterate :

+ +
+
>>> certificates = CertificatesDict()
+... plt.figure()
+... ax=None
+... certs = certificates.get_certificates(wavelength=532)
+... ax = certs[cert].plot(ax=ax)
+>>> plt.show()
+
+
+
+
+ + +
+ +
+ + def + load_certificates(self, file_path): + + + +
+ +
431    def load_certificates(self, file_path):
+432
+433        with open(file_path, "r") as f:
+434            certificates_data = json.load(f)
+435            certificates = {}
+436            self.laser_wl = []
+437            for wavelength, certificates_dict in certificates_data.items():
+438                certificates[wavelength] = {}
+439                self.laser_wl.append(wavelength)
+440                for certificate_id, certificate_data in certificates_dict.items():
+441                    certificate_data["wavelength"] = int(wavelength)
+442                    certificate_data["id"] = certificate_id
+443                    try:
+444                        certificate = YCalibrationCertificate.model_construct(
+445                            **certificate_data
+446                        )
+447                        certificates[wavelength][certificate_id] = certificate
+448                    except ValidationError as e:
+449                        print(f"Validation error for certificate {certificate_id}: {e}")
+450            self.config_certs = certificates
+
+ + + + +
+
+ +
+ + def + get_laser_wl(self): + + + +
+ +
452    def get_laser_wl(self):
+453        return self.laser_wl
+
+ + + + +
+
+ +
+ + def + get_certificates(self, wavelength=785): + + + +
+ +
455    def get_certificates(self, wavelength=785):
+456        return self.config_certs[str(wavelength)]
+
+ + + + +
+
+ +
+ + def + get(self, wavelength=532, key='NIST532_SRM2242a'): + + + +
+ +
458    def get(self, wavelength=532, key="NIST532_SRM2242a"):
+459        return self.config_certs[str(wavelength)][key]
+
+ + + + +
+
+ +
+
@staticmethod
+ + def + load(wavelength=785, key='NIST785_SRM2241'): + + + +
+ +
461    @staticmethod
+462    def load(wavelength=785, key="NIST785_SRM2241"):
+463        return CertificatesDict().get(wavelength, key)
+
+ + + + +
+
+
+ +
+ + class + YCalibrationComponent(CalibrationComponent): + + + +
+ +
466class YCalibrationComponent(CalibrationComponent):
+467    """
+468    Class for relative intensity calibration. Uses response functions loaded in
+469    ResponseFunctionEvaluator. Functions are defined in json file.
+470
+471    Usage:
+472
+473        >>> laser_wl = 785
+474        >>> ycert = YCalibrationCertificate.load(wavelength=785, key="SRM2241")
+475        >>> ycal = YCalibrationComponent(laser_wl, reference_spe_xcalibrated=spe_srm,certificate=ycert)
+476        >>> fig, ax = plt.subplots(1, 1, figsize=(15,4))
+477        >>> spe_srm.plot(ax=ax)
+478        >>> spe_to_correct.plot(ax=ax)
+479        >>> spe_ycalibrated = ycal.process(spe_to_correct)
+480        >>> spe_ycalibrated.plot(label="y-calibrated",color="green",ax=ax.twinx())
+481    """
+482
+483    def __init__(
+484        self, laser_wl, reference_spe_xcalibrated, certificate: YCalibrationCertificate
+485    ):
+486        super(YCalibrationComponent, self).__init__(
+487            laser_wl,
+488            spe=reference_spe_xcalibrated,
+489            spe_units=None,
+490            ref=certificate,
+491            ref_units=None,
+492        )
+493        self.laser_wl = laser_wl
+494        self.spe = reference_spe_xcalibrated
+495        self.ref = certificate
+496        self.name = "Y calibration"
+497        self.model = self.spe.spe_distribution(trim_range=certificate.raman_shift)
+498        self.model_units = "cm-1"
+499
+500    def derive_model(self, find_kw={}, fit_peaks_kw={}, should_fit=True, name=None):
+501        # measured reference spectrum as distribution, so we can resample
+502        self.model = self.spe.spe_distribution(trim_range=self.ref.raman_shift)
+503
+504    def safe_divide(self, spe_to_correct, spe_reference_resampled):
+505        numerator = spe_to_correct.y
+506        # numerator_noise = spe_to_correct.y_noise
+507
+508        scaling_denominator = spe_reference_resampled.y / self.ref.Y(
+509            spe_reference_resampled.x
+510        )
+511        # print(np.median(scaling_denominator), np.mean(scaling_denominator), np.std(scaling_denominator))
+512
+513        # denominator_noise = spe_reference_resampled.y_noise
+514        denominator = spe_reference_resampled.y
+515        # Create a mask for dividing only where value is above noise !
+516        # mask = (abs(scaling_denominator) > 0) & (kind_of_snr > 0.9)
+517        # mask =  (abs(denominator) > abs(denominator_noise)) &
+518        mask = (abs(scaling_denominator) > 0) & (numerator > 0) & (denominator > 0)
+519        # & (abs(numerator) > numerator_noise) & (abs(scaling_denominator) > 0)
+520        # & (abs(denominator-numerator) > min(denominator_noise,numerator_noise))
+521        result = np.zeros_like(numerator)
+522        # Perform division where mask is true
+523        result[mask] = numerator[mask] / scaling_denominator[mask]
+524        return result
+525
+526    def safe_mask(self, spe_to_correct, spe_reference_resampled):
+527        ref_noise = spe_reference_resampled.y_noise_MAD()
+528        return (spe_reference_resampled.y >= 0) & (
+529            abs(spe_reference_resampled.y) > ref_noise
+530        )
+531
+532    def safe_factor(self, spe_to_correct, spe_reference_resampled):
+533        numerator = spe_to_correct.y
+534        # numerator_noise = spe_to_correct.y_noise
+535
+536        Y = self.ref.Y(spe_reference_resampled.x)
+537        mask = self.safe_mask(spe_to_correct, spe_reference_resampled)
+538        if mask is None:
+539            scaling_factor = Y / spe_reference_resampled.y
+540        else:
+541            scaling_factor = np.zeros_like(spe_reference_resampled.y)
+542            scaling_factor[mask] = Y[mask] / spe_reference_resampled.y[mask]
+543
+544        result = numerator * scaling_factor
+545        return result
+546
+547    def process(self, old_spe: Spectrum, spe_units="nm", convert_back=False):
+548        # resample using probability density function
+549        _tmp = self.model.pdf(old_spe.x)
+550        _tmp = (
+551            _tmp * max(self.spe.y) / max(_tmp)
+552        )  # pdf sampling is normalized to area unity, scaling back
+553        spe_reference_resampled = Spectrum(old_spe.x, _tmp)
+554        # new_spe = Spectrum(old_spe.x,self.safe_divide(old_spe,spe_reference_resampled))
+555        new_spe = Spectrum(
+556            old_spe.x, self.safe_factor(old_spe, spe_reference_resampled)
+557        )
+558        return new_spe
+559
+560    def _plot(self, ax, **kwargs):
+561        if self.ref is not None:
+562            self.ref.plot(ax, **kwargs)
+
+ + +

Class for relative intensity calibration. Uses response functions loaded in +ResponseFunctionEvaluator. Functions are defined in json file.

+ +
Usage:
+ +
+
+
>>> laser_wl = 785
+>>> ycert = YCalibrationCertificate.load(wavelength=785, key="SRM2241")
+>>> ycal = YCalibrationComponent(laser_wl, reference_spe_xcalibrated=spe_srm,certificate=ycert)
+>>> fig, ax = plt.subplots(1, 1, figsize=(15,4))
+>>> spe_srm.plot(ax=ax)
+>>> spe_to_correct.plot(ax=ax)
+>>> spe_ycalibrated = ycal.process(spe_to_correct)
+>>> spe_ycalibrated.plot(label="y-calibrated",color="green",ax=ax.twinx())
+
+
+
+
+ + +
+ +
+ + YCalibrationComponent( laser_wl, reference_spe_xcalibrated, certificate: YCalibrationCertificate) + + + +
+ +
483    def __init__(
+484        self, laser_wl, reference_spe_xcalibrated, certificate: YCalibrationCertificate
+485    ):
+486        super(YCalibrationComponent, self).__init__(
+487            laser_wl,
+488            spe=reference_spe_xcalibrated,
+489            spe_units=None,
+490            ref=certificate,
+491            ref_units=None,
+492        )
+493        self.laser_wl = laser_wl
+494        self.spe = reference_spe_xcalibrated
+495        self.ref = certificate
+496        self.name = "Y calibration"
+497        self.model = self.spe.spe_distribution(trim_range=certificate.raman_shift)
+498        self.model_units = "cm-1"
+
+ + + + +
+
+
+ laser_wl + + +
+ + + + +
+
+
+ spe + + +
+ + + + +
+
+
+ ref + + +
+ + + + +
+
+
+ name + + +
+ + + + +
+
+
+ model + + +
+ + + + +
+
+
+ model_units + + +
+ + + + +
+
+ +
+ + def + derive_model(self, find_kw={}, fit_peaks_kw={}, should_fit=True, name=None): + + + +
+ +
500    def derive_model(self, find_kw={}, fit_peaks_kw={}, should_fit=True, name=None):
+501        # measured reference spectrum as distribution, so we can resample
+502        self.model = self.spe.spe_distribution(trim_range=self.ref.raman_shift)
+
+ + + + +
+
+ +
+ + def + safe_divide(self, spe_to_correct, spe_reference_resampled): + + + +
+ +
504    def safe_divide(self, spe_to_correct, spe_reference_resampled):
+505        numerator = spe_to_correct.y
+506        # numerator_noise = spe_to_correct.y_noise
+507
+508        scaling_denominator = spe_reference_resampled.y / self.ref.Y(
+509            spe_reference_resampled.x
+510        )
+511        # print(np.median(scaling_denominator), np.mean(scaling_denominator), np.std(scaling_denominator))
+512
+513        # denominator_noise = spe_reference_resampled.y_noise
+514        denominator = spe_reference_resampled.y
+515        # Create a mask for dividing only where value is above noise !
+516        # mask = (abs(scaling_denominator) > 0) & (kind_of_snr > 0.9)
+517        # mask =  (abs(denominator) > abs(denominator_noise)) &
+518        mask = (abs(scaling_denominator) > 0) & (numerator > 0) & (denominator > 0)
+519        # & (abs(numerator) > numerator_noise) & (abs(scaling_denominator) > 0)
+520        # & (abs(denominator-numerator) > min(denominator_noise,numerator_noise))
+521        result = np.zeros_like(numerator)
+522        # Perform division where mask is true
+523        result[mask] = numerator[mask] / scaling_denominator[mask]
+524        return result
+
+ + + + +
+
+ +
+ + def + safe_mask(self, spe_to_correct, spe_reference_resampled): + + + +
+ +
526    def safe_mask(self, spe_to_correct, spe_reference_resampled):
+527        ref_noise = spe_reference_resampled.y_noise_MAD()
+528        return (spe_reference_resampled.y >= 0) & (
+529            abs(spe_reference_resampled.y) > ref_noise
+530        )
+
+ + + + +
+
+ +
+ + def + safe_factor(self, spe_to_correct, spe_reference_resampled): + + + +
+ +
532    def safe_factor(self, spe_to_correct, spe_reference_resampled):
+533        numerator = spe_to_correct.y
+534        # numerator_noise = spe_to_correct.y_noise
+535
+536        Y = self.ref.Y(spe_reference_resampled.x)
+537        mask = self.safe_mask(spe_to_correct, spe_reference_resampled)
+538        if mask is None:
+539            scaling_factor = Y / spe_reference_resampled.y
+540        else:
+541            scaling_factor = np.zeros_like(spe_reference_resampled.y)
+542            scaling_factor[mask] = Y[mask] / spe_reference_resampled.y[mask]
+543
+544        result = numerator * scaling_factor
+545        return result
+
+ + + + +
+
+ +
+ + def + process( self, old_spe: ramanchada2.spectrum.spectrum.Spectrum, spe_units='nm', convert_back=False): + + + +
+ +
547    def process(self, old_spe: Spectrum, spe_units="nm", convert_back=False):
+548        # resample using probability density function
+549        _tmp = self.model.pdf(old_spe.x)
+550        _tmp = (
+551            _tmp * max(self.spe.y) / max(_tmp)
+552        )  # pdf sampling is normalized to area unity, scaling back
+553        spe_reference_resampled = Spectrum(old_spe.x, _tmp)
+554        # new_spe = Spectrum(old_spe.x,self.safe_divide(old_spe,spe_reference_resampled))
+555        new_spe = Spectrum(
+556            old_spe.x, self.safe_factor(old_spe, spe_reference_resampled)
+557        )
+558        return new_spe
+
+ + + + +
+ +
+
+ +
+ + class + CalibrationModel(ProcessingModel, ramanchada2.misc.plottable.Plottable): + + + +
+ +
565class CalibrationModel(ProcessingModel, Plottable):
+566    """
+567    A class representing a calibration model for Raman spectrum.
+568    """
+569
+570    def __init__(self, laser_wl: int):
+571        """
+572        Initializes a CalibrationModel instance.
+573
+574        Args:
+575            laser_wl:
+576                The wavelength of the laser used for calibration.
+577
+578        Example:
+579        ```python
+580        # Create an instance of CalibrationModel
+581        calmodel = CalibrationModel(laser_wl=785)
+582        calmodel.derive_model_x(
+583            spe_neon,
+584            spe_neon_units="cm-1",
+585            ref_neon=None,
+586            ref_neon_units="nm",
+587            spe_sil=None,
+588            spe_sil_units="cm-1",
+589            ref_sil=None,
+590            ref_sil_units="cm-1"
+591            )
+592        # Store
+593        calmodel.save(modelfile)
+594        # Load
+595        calmodel = CalibrationModel.from_file(modelfile)
+596        # Apply to new spectrum
+597        calmodel.apply_calibration_x(
+598            spe_to_calibrate,
+599            spe_units="cm-1"
+600            )
+601        ```
+602        """
+603        super(ProcessingModel, self).__init__()
+604        super(Plottable, self).__init__()
+605        self.set_laser_wavelength(laser_wl)
+606        self.prominence_coeff = 3
+607
+608    def set_laser_wavelength(self, laser_wl):
+609        """
+610        Sets the wavelength of the laser used for calibration.
+611        """
+612        self.clear()
+613        self.laser_wl = laser_wl
+614
+615    def clear(self):
+616        """
+617        Clears the calibration model.
+618        """
+619        self.laser_wl = None
+620        self.components = []
+621
+622    def save(self, filename):
+623        """
+624        Saves the calibration model to a file.
+625        """
+626        with open(filename, "wb") as file:
+627            pickle.dump(self, file)
+628
+629    @staticmethod
+630    def from_file(filename):
+631        """
+632        Loads a calibration model from a file.
+633        """
+634        with open(filename, "rb") as file:
+635            return pickle.load(file)
+636
+637    def derive_model_x(
+638        self,
+639        spe_neon: Spectrum,
+640        spe_neon_units: str,
+641        ref_neon: Dict,
+642        ref_neon_units: str,
+643        spe_sil: Spectrum,
+644        spe_sil_units="cm-1",
+645        ref_sil={520.45: 1},
+646        ref_sil_units="cm-1",
+647        find_kw={"wlen": 200, "width": 1},
+648        fit_kw={},
+649        should_fit=False,
+650    ):
+651        """
+652        Derives x-calibration models using Neon and Silicon spectra.
+653        """
+654        self.components.clear()
+655        if ref_neon_units is None:
+656            ref_neon_units = "nm"
+657        if spe_neon_units is None:
+658            spe_neon_units = "cm-1"
+659        find_kw["prominence"] = spe_neon.y_noise_MAD() * self.prominence_coeff
+660        model_neon = self._derive_model_curve(
+661            spe_neon,
+662            rc2const.NEON_WL[self.laser_wl] if ref_neon is None else ref_neon,
+663            spe_units=spe_neon_units,
+664            ref_units=ref_neon_units,
+665            find_kw=find_kw,
+666            fit_peaks_kw=fit_kw,
+667            should_fit=should_fit,
+668            name="Neon calibration",
+669        )
+670        spe_sil_ne_calib = model_neon.process(
+671            spe_sil, spe_units=spe_sil_units, convert_back=False
+672        )
+673
+674        find_kw["prominence"] = spe_sil_ne_calib.y_noise_MAD() * self.prominence_coeff
+675        model_si = self._derive_model_zero(
+676            spe_sil_ne_calib,
+677            ref=ref_sil,
+678            spe_units=model_neon.model_units,
+679            ref_units=ref_sil_units,
+680            find_kw=find_kw,
+681            fit_peaks_kw=fit_kw,
+682            should_fit=True,
+683            name="Si laser zeroing",
+684        )
+685        return (model_neon, model_si)
+686
+687    def _derive_model_curve(
+688        self,
+689        spe: Spectrum,
+690        ref=None,
+691        spe_units="cm-1",
+692        ref_units="nm",
+693        find_kw=None,
+694        fit_peaks_kw=None,
+695        should_fit=False,
+696        name="X calibration",
+697    ):
+698        if find_kw is None:
+699            find_kw = {}
+700        if fit_peaks_kw is None:
+701            fit_peaks_kw = {}
+702        reference_peaks = rc2const.NEON_WL[self.laser_wl] if ref is None else ref
+703        calibration_x = XCalibrationComponent(
+704            self.laser_wl,
+705            spe=spe,
+706            spe_units=spe_units,
+707            ref=reference_peaks,
+708            ref_units=ref_units,
+709        )
+710        calibration_x.derive_model(
+711            find_kw=find_kw, fit_peaks_kw=fit_peaks_kw, should_fit=should_fit, name=name
+712        )
+713        self.components.append(calibration_x)
+714        return calibration_x
+715
+716    def derive_model_curve(
+717        self,
+718        spe: Spectrum,
+719        ref=None,
+720        spe_units="cm-1",
+721        ref_units="nm",
+722        find_kw={},
+723        fit_peaks_kw={},
+724        should_fit=False,
+725        name="X calibration",
+726    ):
+727        warnings.warn(
+728            message="Do not use directly. Use derive_model_x instead.",
+729            category=DeprecationWarning,
+730        )
+731        return self._derive_model_curve(
+732            spe=spe,
+733            ref=ref,
+734            spe_units=spe_units,
+735            ref_units=ref_units,
+736            find_kw=find_kw,
+737            fit_peaks_kw=fit_peaks_kw,
+738            should_fit=should_fit,
+739            name=name,
+740        )
+741
+742    def _derive_model_zero(
+743        self,
+744        spe: Spectrum,
+745        ref=None,
+746        spe_units="nm",
+747        ref_units="cm-1",
+748        find_kw=None,
+749        fit_peaks_kw=None,
+750        should_fit=False,
+751        name="Laser zeroing",
+752        profile="Gaussian",
+753    ):
+754        if ref is None:
+755            ref = {520.45: 1}
+756        if find_kw is None:
+757            find_kw = {}
+758        if fit_peaks_kw is None:
+759            fit_peaks_kw = {}
+760        calibration_shift = LazerZeroingComponent(
+761            self.laser_wl, spe, spe_units, ref, ref_units
+762        )
+763        calibration_shift.profile = profile
+764        calibration_shift.derive_model(
+765            find_kw=find_kw, fit_peaks_kw=fit_peaks_kw, should_fit=should_fit, name=name
+766        )
+767        _laser_zeroing_component = None
+768        for i, item in enumerate(self.components):
+769            if isinstance(item, LazerZeroingComponent):
+770                self.components[i] = calibration_shift
+771                _laser_zeroing_component = self.components[i]
+772        if (
+773            _laser_zeroing_component is None
+774        ):  # LaserZeroing component should present only once
+775            self.components.append(calibration_shift)
+776        return calibration_shift
+777
+778    def derive_model_zero(
+779        self,
+780        spe: Spectrum,
+781        ref={520.45: 1},
+782        spe_units="nm",
+783        ref_units="cm-1",
+784        find_kw={},
+785        fit_peaks_kw={},
+786        should_fit=False,
+787        name="X Shift",
+788        profile="Gaussian",
+789    ):
+790        warnings.warn(
+791            message="Do not use directly. Use derive_model_x instead.",
+792            category=DeprecationWarning,
+793        )
+794        return self._derive_model_zero(
+795            spe=spe,
+796            ref=ref,
+797            spe_units=spe_units,
+798            ref_units=ref_units,
+799            find_kw=find_kw,
+800            fit_peaks_kw=fit_peaks_kw,
+801            should_fit=should_fit,
+802            name=name,
+803            profile=profile,
+804        )
+805
+806    def apply_calibration_x(self, old_spe: Spectrum, spe_units="cm-1"):
+807        # neon calibration converts to nm
+808        # silicon calibration takes nm and converts back to cm-1 using laser zeroing
+809        new_spe = old_spe
+810        model_units = spe_units
+811        for model in self.components:
+812            # TODO: tbd find out if to convert units
+813            if model.enabled:
+814                new_spe = model.process(new_spe, model_units, convert_back=False)
+815                model_units = model.model_units
+816        return new_spe
+817
+818    def plot(self, ax=None, label=" ", **kwargs) -> Axes:
+819        if ax is None:
+820            fig, ax = plt.subplots(1, 1, figsize=(12, 4))
+821        self._plot(ax, **kwargs)
+822        return ax
+823
+824    def _plot(self, ax, **kwargs):
+825        for index, model in enumerate(self.components):
+826            model._plot(ax, **kwargs)
+827            break
+828
+829    @staticmethod
+830    def calibration_model_factory(
+831        laser_wl,
+832        spe_neon: Spectrum,
+833        spe_sil: Spectrum,
+834        neon_wl=None,
+835        find_kw=None,
+836        fit_peaks_kw=None,
+837        should_fit=False,
+838        prominence_coeff=3,
+839    ):
+840        if neon_wl is None:
+841            neon_wl = rc2const.NEON_WL[laser_wl]
+842        if find_kw is None:
+843            find_kw = {"wlen": 100, "width": 1}
+844        if fit_peaks_kw is None:
+845            fit_peaks_kw = {}
+846        calmodel = CalibrationModel(laser_wl)
+847        calmodel.prominence_coeff = prominence_coeff
+848        find_kw["prominence"] = spe_neon.y_noise_MAD() * calmodel.prominence_coeff
+849        model_neon = calmodel.derive_model_curve(
+850            spe=spe_neon,
+851            ref=neon_wl,
+852            spe_units="cm-1",
+853            ref_units="nm",
+854            find_kw=find_kw,
+855            fit_peaks_kw=fit_peaks_kw,
+856            should_fit=should_fit,
+857            name="Neon calibration",
+858        )
+859        spe_sil_ne_calib = model_neon.process(
+860            spe_sil, spe_units="cm-1", convert_back=False
+861        )
+862        find_kw["prominence"] = (
+863            spe_sil_ne_calib.y_noise_MAD() * calmodel.prominence_coeff
+864        )
+865        calmodel.derive_model_zero(
+866            spe=spe_sil_ne_calib,
+867            ref={520.45: 1},
+868            spe_units=model_neon.model_units,
+869            ref_units="cm-1",
+870            find_kw=find_kw,
+871            fit_peaks_kw=fit_peaks_kw,
+872            should_fit=True,
+873            name="Si calibration",
+874        )
+875        return calmodel
+
+ + +

A class representing a calibration model for Raman spectrum.

+
+ + +
+ +
+ + CalibrationModel(laser_wl: int) + + + +
+ +
570    def __init__(self, laser_wl: int):
+571        """
+572        Initializes a CalibrationModel instance.
+573
+574        Args:
+575            laser_wl:
+576                The wavelength of the laser used for calibration.
+577
+578        Example:
+579        ```python
+580        # Create an instance of CalibrationModel
+581        calmodel = CalibrationModel(laser_wl=785)
+582        calmodel.derive_model_x(
+583            spe_neon,
+584            spe_neon_units="cm-1",
+585            ref_neon=None,
+586            ref_neon_units="nm",
+587            spe_sil=None,
+588            spe_sil_units="cm-1",
+589            ref_sil=None,
+590            ref_sil_units="cm-1"
+591            )
+592        # Store
+593        calmodel.save(modelfile)
+594        # Load
+595        calmodel = CalibrationModel.from_file(modelfile)
+596        # Apply to new spectrum
+597        calmodel.apply_calibration_x(
+598            spe_to_calibrate,
+599            spe_units="cm-1"
+600            )
+601        ```
+602        """
+603        super(ProcessingModel, self).__init__()
+604        super(Plottable, self).__init__()
+605        self.set_laser_wavelength(laser_wl)
+606        self.prominence_coeff = 3
+
+ + +

Initializes a CalibrationModel instance.

+ +
Arguments:
+ +
    +
  • laser_wl: The wavelength of the laser used for calibration.
  • +
+ +

Example:

+ +
+
# Create an instance of CalibrationModel
+calmodel = CalibrationModel(laser_wl=785)
+calmodel.derive_model_x(
+    spe_neon,
+    spe_neon_units="cm-1",
+    ref_neon=None,
+    ref_neon_units="nm",
+    spe_sil=None,
+    spe_sil_units="cm-1",
+    ref_sil=None,
+    ref_sil_units="cm-1"
+    )
+# Store
+calmodel.save(modelfile)
+# Load
+calmodel = CalibrationModel.from_file(modelfile)
+# Apply to new spectrum
+calmodel.apply_calibration_x(
+    spe_to_calibrate,
+    spe_units="cm-1"
+    )
+
+
+
+ + +
+
+
+ prominence_coeff + + +
+ + + + +
+
+ +
+ + def + set_laser_wavelength(self, laser_wl): + + + +
+ +
608    def set_laser_wavelength(self, laser_wl):
+609        """
+610        Sets the wavelength of the laser used for calibration.
+611        """
+612        self.clear()
+613        self.laser_wl = laser_wl
+
+ + +

Sets the wavelength of the laser used for calibration.

+
+ + +
+
+ +
+ + def + clear(self): + + + +
+ +
615    def clear(self):
+616        """
+617        Clears the calibration model.
+618        """
+619        self.laser_wl = None
+620        self.components = []
+
+ + +

Clears the calibration model.

+
+ + +
+
+ +
+ + def + save(self, filename): + + + +
+ +
622    def save(self, filename):
+623        """
+624        Saves the calibration model to a file.
+625        """
+626        with open(filename, "wb") as file:
+627            pickle.dump(self, file)
+
+ + +

Saves the calibration model to a file.

+
+ + +
+
+ +
+
@staticmethod
+ + def + from_file(filename): + + + +
+ +
629    @staticmethod
+630    def from_file(filename):
+631        """
+632        Loads a calibration model from a file.
+633        """
+634        with open(filename, "rb") as file:
+635            return pickle.load(file)
+
+ + +

Loads a calibration model from a file.

+
+ + +
+
+ +
+ + def + derive_model_x( self, spe_neon: ramanchada2.spectrum.spectrum.Spectrum, spe_neon_units: str, ref_neon: Dict, ref_neon_units: str, spe_sil: ramanchada2.spectrum.spectrum.Spectrum, spe_sil_units='cm-1', ref_sil={520.45: 1}, ref_sil_units='cm-1', find_kw={'wlen': 200, 'width': 1}, fit_kw={}, should_fit=False): + + + +
+ +
637    def derive_model_x(
+638        self,
+639        spe_neon: Spectrum,
+640        spe_neon_units: str,
+641        ref_neon: Dict,
+642        ref_neon_units: str,
+643        spe_sil: Spectrum,
+644        spe_sil_units="cm-1",
+645        ref_sil={520.45: 1},
+646        ref_sil_units="cm-1",
+647        find_kw={"wlen": 200, "width": 1},
+648        fit_kw={},
+649        should_fit=False,
+650    ):
+651        """
+652        Derives x-calibration models using Neon and Silicon spectra.
+653        """
+654        self.components.clear()
+655        if ref_neon_units is None:
+656            ref_neon_units = "nm"
+657        if spe_neon_units is None:
+658            spe_neon_units = "cm-1"
+659        find_kw["prominence"] = spe_neon.y_noise_MAD() * self.prominence_coeff
+660        model_neon = self._derive_model_curve(
+661            spe_neon,
+662            rc2const.NEON_WL[self.laser_wl] if ref_neon is None else ref_neon,
+663            spe_units=spe_neon_units,
+664            ref_units=ref_neon_units,
+665            find_kw=find_kw,
+666            fit_peaks_kw=fit_kw,
+667            should_fit=should_fit,
+668            name="Neon calibration",
+669        )
+670        spe_sil_ne_calib = model_neon.process(
+671            spe_sil, spe_units=spe_sil_units, convert_back=False
+672        )
+673
+674        find_kw["prominence"] = spe_sil_ne_calib.y_noise_MAD() * self.prominence_coeff
+675        model_si = self._derive_model_zero(
+676            spe_sil_ne_calib,
+677            ref=ref_sil,
+678            spe_units=model_neon.model_units,
+679            ref_units=ref_sil_units,
+680            find_kw=find_kw,
+681            fit_peaks_kw=fit_kw,
+682            should_fit=True,
+683            name="Si laser zeroing",
+684        )
+685        return (model_neon, model_si)
+
+ + +

Derives x-calibration models using Neon and Silicon spectra.

+
+ + +
+
+ +
+ + def + derive_model_curve( self, spe: ramanchada2.spectrum.spectrum.Spectrum, ref=None, spe_units='cm-1', ref_units='nm', find_kw={}, fit_peaks_kw={}, should_fit=False, name='X calibration'): + + + +
+ +
716    def derive_model_curve(
+717        self,
+718        spe: Spectrum,
+719        ref=None,
+720        spe_units="cm-1",
+721        ref_units="nm",
+722        find_kw={},
+723        fit_peaks_kw={},
+724        should_fit=False,
+725        name="X calibration",
+726    ):
+727        warnings.warn(
+728            message="Do not use directly. Use derive_model_x instead.",
+729            category=DeprecationWarning,
+730        )
+731        return self._derive_model_curve(
+732            spe=spe,
+733            ref=ref,
+734            spe_units=spe_units,
+735            ref_units=ref_units,
+736            find_kw=find_kw,
+737            fit_peaks_kw=fit_peaks_kw,
+738            should_fit=should_fit,
+739            name=name,
+740        )
+
+ + + + +
+
+ +
+ + def + derive_model_zero( self, spe: ramanchada2.spectrum.spectrum.Spectrum, ref={520.45: 1}, spe_units='nm', ref_units='cm-1', find_kw={}, fit_peaks_kw={}, should_fit=False, name='X Shift', profile='Gaussian'): + + + +
+ +
778    def derive_model_zero(
+779        self,
+780        spe: Spectrum,
+781        ref={520.45: 1},
+782        spe_units="nm",
+783        ref_units="cm-1",
+784        find_kw={},
+785        fit_peaks_kw={},
+786        should_fit=False,
+787        name="X Shift",
+788        profile="Gaussian",
+789    ):
+790        warnings.warn(
+791            message="Do not use directly. Use derive_model_x instead.",
+792            category=DeprecationWarning,
+793        )
+794        return self._derive_model_zero(
+795            spe=spe,
+796            ref=ref,
+797            spe_units=spe_units,
+798            ref_units=ref_units,
+799            find_kw=find_kw,
+800            fit_peaks_kw=fit_peaks_kw,
+801            should_fit=should_fit,
+802            name=name,
+803            profile=profile,
+804        )
+
+ + + + +
+
+ +
+ + def + apply_calibration_x( self, old_spe: ramanchada2.spectrum.spectrum.Spectrum, spe_units='cm-1'): + + + +
+ +
806    def apply_calibration_x(self, old_spe: Spectrum, spe_units="cm-1"):
+807        # neon calibration converts to nm
+808        # silicon calibration takes nm and converts back to cm-1 using laser zeroing
+809        new_spe = old_spe
+810        model_units = spe_units
+811        for model in self.components:
+812            # TODO: tbd find out if to convert units
+813            if model.enabled:
+814                new_spe = model.process(new_spe, model_units, convert_back=False)
+815                model_units = model.model_units
+816        return new_spe
+
+ + + + +
+
+ +
+ + def + plot(self, ax=None, label=' ', **kwargs) -> matplotlib.axes._axes.Axes: + + + +
+ +
818    def plot(self, ax=None, label=" ", **kwargs) -> Axes:
+819        if ax is None:
+820            fig, ax = plt.subplots(1, 1, figsize=(12, 4))
+821        self._plot(ax, **kwargs)
+822        return ax
+
+ + + + +
+
+ +
+
@staticmethod
+ + def + calibration_model_factory( laser_wl, spe_neon: ramanchada2.spectrum.spectrum.Spectrum, spe_sil: ramanchada2.spectrum.spectrum.Spectrum, neon_wl=None, find_kw=None, fit_peaks_kw=None, should_fit=False, prominence_coeff=3): + + + +
+ +
829    @staticmethod
+830    def calibration_model_factory(
+831        laser_wl,
+832        spe_neon: Spectrum,
+833        spe_sil: Spectrum,
+834        neon_wl=None,
+835        find_kw=None,
+836        fit_peaks_kw=None,
+837        should_fit=False,
+838        prominence_coeff=3,
+839    ):
+840        if neon_wl is None:
+841            neon_wl = rc2const.NEON_WL[laser_wl]
+842        if find_kw is None:
+843            find_kw = {"wlen": 100, "width": 1}
+844        if fit_peaks_kw is None:
+845            fit_peaks_kw = {}
+846        calmodel = CalibrationModel(laser_wl)
+847        calmodel.prominence_coeff = prominence_coeff
+848        find_kw["prominence"] = spe_neon.y_noise_MAD() * calmodel.prominence_coeff
+849        model_neon = calmodel.derive_model_curve(
+850            spe=spe_neon,
+851            ref=neon_wl,
+852            spe_units="cm-1",
+853            ref_units="nm",
+854            find_kw=find_kw,
+855            fit_peaks_kw=fit_peaks_kw,
+856            should_fit=should_fit,
+857            name="Neon calibration",
+858        )
+859        spe_sil_ne_calib = model_neon.process(
+860            spe_sil, spe_units="cm-1", convert_back=False
+861        )
+862        find_kw["prominence"] = (
+863            spe_sil_ne_calib.y_noise_MAD() * calmodel.prominence_coeff
+864        )
+865        calmodel.derive_model_zero(
+866            spe=spe_sil_ne_calib,
+867            ref={520.45: 1},
+868            spe_units=model_neon.model_units,
+869            ref_units="cm-1",
+870            find_kw=find_kw,
+871            fit_peaks_kw=fit_peaks_kw,
+872            should_fit=True,
+873            name="Si calibration",
+874        )
+875        return calmodel
+
+ + + + +
+
+
+ +
+ + class + CustomRBFInterpolator(scipy.interpolate._rbfinterp.RBFInterpolator): + + + +
+ +
878class CustomRBFInterpolator(RBFInterpolator):
+879    def __init__(self, *args, **kwargs):
+880        super().__init__(*args, **kwargs)
+881
+882    @staticmethod
+883    def from_dict(rbf_dict={}):
+884        interpolator_loaded = CustomRBFInterpolator(
+885            rbf_dict["y"],
+886            rbf_dict["d"],
+887            epsilon=rbf_dict["epsilon"],
+888            smoothing=rbf_dict["smoothing"],
+889            kernel=rbf_dict["kernel"],
+890            neighbors=rbf_dict["neighbors"],
+891        )
+892        interpolator_loaded._coeffs = rbf_dict["coeffs"]
+893        interpolator_loaded._scale = rbf_dict["scale"]
+894        interpolator_loaded._shift = rbf_dict["shift"]
+895        return interpolator_loaded
+896
+897    def to_dict(self):
+898        return {
+899            "y": self.y,
+900            "d": self.d,
+901            "d_dtype": self.d_dtype,
+902            "d_shape": self.d_shape,
+903            "epsilon": self.epsilon,
+904            "kernel": self.kernel,
+905            "neighbors": self.neighbors,
+906            "powers": self.powers,
+907            "smoothing": self.smoothing,
+908            "coeffs": self._coeffs,
+909            "scale": self._scale,
+910            "shift": self._shift,
+911        }
+
+ + +

Radial basis function (RBF) interpolation in N dimensions.

+ +

Parameters

+ +

y : (npoints, ndims) array_like + 2-D array of data point coordinates. +d : (npoints, ...) array_like + N-D array of data values at y. The length of d along the first + axis must be equal to the length of y. Unlike some interpolators, the + interpolation axis cannot be changed. +neighbors : int, optional + If specified, the value of the interpolant at each evaluation point + will be computed using only this many nearest data points. All the data + points are used by default. +smoothing : float or (npoints, ) array_like, optional + Smoothing parameter. The interpolant perfectly fits the data when this + is set to 0. For large values, the interpolant approaches a least + squares fit of a polynomial with the specified degree. Default is 0. +kernel : str, optional + Type of RBF. This should be one of

+ +
    - 'linear'               : ``-r``
+    - 'thin_plate_spline'    : ``r**2 * log(r)``
+    - 'cubic'                : ``r**3``
+    - 'quintic'              : ``-r**5``
+    - 'multiquadric'         : ``-sqrt(1 + r**2)``
+    - 'inverse_multiquadric' : ``1/sqrt(1 + r**2)``
+    - 'inverse_quadratic'    : ``1/(1 + r**2)``
+    - 'gaussian'             : ``exp(-r**2)``
+
+Default is 'thin_plate_spline'.
+
+ +

epsilon : float, optional + Shape parameter that scales the input to the RBF. If kernel is + 'linear', 'thin_plate_spline', 'cubic', or 'quintic', this defaults to + 1 and can be ignored because it has the same effect as scaling the + smoothing parameter. Otherwise, this must be specified. +degree : int, optional + Degree of the added polynomial. For some RBFs the interpolant may not + be well-posed if the polynomial degree is too small. Those RBFs and + their corresponding minimum degrees are

+ +
    - 'multiquadric'      : 0
+    - 'linear'            : 0
+    - 'thin_plate_spline' : 1
+    - 'cubic'             : 1
+    - 'quintic'           : 2
+
+The default value is the minimum degree for `kernel` or 0 if there is
+no minimum degree. Set this to -1 for no added polynomial.
+
+ +

Notes

+ +

An RBF is a scalar valued function in N-dimensional space whose value at +\( x \) can be expressed in terms of \( r=||x - c|| \), where \( c \) +is the center of the RBF.

+ +

An RBF interpolant for the vector of data values \( d \), which are from +locations \( y \), is a linear combination of RBFs centered at \( y \) +plus a polynomial with a specified degree. The RBF interpolant is written +as

+ +

$$f(x) = K(x, y) a + P(x) b,$$

+ +

where \( K(x, y) \) is a matrix of RBFs with centers at \( y \) +evaluated at the points \( x \), and \( P(x) \) is a matrix of +monomials, which span polynomials with the specified degree, evaluated at +\( x \). The coefficients \( a \) and \( b \) are the solution to the +linear equations

+ +

$$(K(y, y) + \lambda I) a + P(y) b = d$$

+ +

and

+ +

$$P(y)^T a = 0,$$

+ +

where \( \lambda \) is a non-negative smoothing parameter that controls +how well we want to fit the data. The data are fit exactly when the +smoothing parameter is 0.

+ +

The above system is uniquely solvable if the following requirements are +met:

+ +
- \\( P(y) \\) must have full column rank. \\( P(y) \\) always has full
+  column rank when `degree` is -1 or 0. When `degree` is 1,
+  \\( P(y) \\) has full column rank if the data point locations are not
+  all collinear (N=2), coplanar (N=3), etc.
+- If `kernel` is 'multiquadric', 'linear', 'thin_plate_spline',
+  'cubic', or 'quintic', then `degree` must not be lower than the
+  minimum value listed above.
+- If `smoothing` is 0, then each data point location must be distinct.
+
+ +

When using an RBF that is not scale invariant ('multiquadric', +'inverse_multiquadric', 'inverse_quadratic', or 'gaussian'), an appropriate +shape parameter must be chosen (e.g., through cross validation). Smaller +values for the shape parameter correspond to wider RBFs. The problem can +become ill-conditioned or singular when the shape parameter is too small.

+ +

The memory required to solve for the RBF interpolation coefficients +increases quadratically with the number of data points, which can become +impractical when interpolating more than about a thousand data points. +To overcome memory limitations for large interpolation problems, the +neighbors argument can be specified to compute an RBF interpolant for +each evaluation point using only the nearest data points.

+ +

New in version 1.7.0.

+ +

See Also

+ +

NearestNDInterpolator +LinearNDInterpolator +CloughTocher2DInterpolator

+ +

References

+ +

Examples

+ +

Demonstrate interpolating scattered data to a grid in 2-D.

+ +
+
>>> import numpy as np
+>>> import matplotlib.pyplot as plt
+>>> from scipy.interpolate import RBFInterpolator
+>>> from scipy.stats.qmc import Halton
+
+
+ +
+
>>> rng = np.random.default_rng()
+>>> xobs = 2*Halton(2, seed=rng).random(100) - 1
+>>> yobs = np.sum(xobs, axis=1)*np.exp(-6*np.sum(xobs**2, axis=1))
+
+
+ +
+
>>> xgrid = np.mgrid[-1:1:50j, -1:1:50j]
+>>> xflat = xgrid.reshape(2, -1).T
+>>> yflat = RBFInterpolator(xobs, yobs)(xflat)
+>>> ygrid = yflat.reshape(50, 50)
+
+
+ +
+
>>> fig, ax = plt.subplots()
+>>> ax.pcolormesh(*xgrid, ygrid, vmin=-0.25, vmax=0.25, shading='gouraud')
+>>> p = ax.scatter(*xobs.T, c=yobs, s=50, ec='k', vmin=-0.25, vmax=0.25)
+>>> fig.colorbar(p)
+>>> plt.show()
+
+
+ +
+
+
    +
+
+
+ + +
+ +
+ + CustomRBFInterpolator(*args, **kwargs) + + + +
+ +
879    def __init__(self, *args, **kwargs):
+880        super().__init__(*args, **kwargs)
+
+ + + + +
+
+ +
+
@staticmethod
+ + def + from_dict(rbf_dict={}): + + + +
+ +
882    @staticmethod
+883    def from_dict(rbf_dict={}):
+884        interpolator_loaded = CustomRBFInterpolator(
+885            rbf_dict["y"],
+886            rbf_dict["d"],
+887            epsilon=rbf_dict["epsilon"],
+888            smoothing=rbf_dict["smoothing"],
+889            kernel=rbf_dict["kernel"],
+890            neighbors=rbf_dict["neighbors"],
+891        )
+892        interpolator_loaded._coeffs = rbf_dict["coeffs"]
+893        interpolator_loaded._scale = rbf_dict["scale"]
+894        interpolator_loaded._shift = rbf_dict["shift"]
+895        return interpolator_loaded
+
+ + + + +
+
+ +
+ + def + to_dict(self): + + + +
+ +
897    def to_dict(self):
+898        return {
+899            "y": self.y,
+900            "d": self.d,
+901            "d_dtype": self.d_dtype,
+902            "d_shape": self.d_shape,
+903            "epsilon": self.epsilon,
+904            "kernel": self.kernel,
+905            "neighbors": self.neighbors,
+906            "powers": self.powers,
+907            "smoothing": self.smoothing,
+908            "coeffs": self._coeffs,
+909            "scale": self._scale,
+910            "shift": self._shift,
+911        }
+
+ + + + +
+
+
Inherited Members
+
+
scipy.interpolate._rbfinterp.RBFInterpolator
+
y
+
d
+
d_shape
+
d_dtype
+
neighbors
+
smoothing
+
kernel
+
epsilon
+
powers
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectral_components.html b/ramanchada2/spectral_components.html new file mode 100644 index 00000000..d8bb0ed4 --- /dev/null +++ b/ramanchada2/spectral_components.html @@ -0,0 +1,274 @@ + + + + + + + ramanchada2.spectral_components API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectral_components

+ + + + + + +
1#!/usr/bin/env python3
+2
+3from .baseline import *  # noqa
+4from .peak_profile import *  # noqa
+5from .spectral_component_collection import SpectralComponentCollection  # noqa
+6
+7#  raise DeprecationWarning('This module is deprecated')
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectral_components/baseline.html b/ramanchada2/spectral_components/baseline.html new file mode 100644 index 00000000..d123ab66 --- /dev/null +++ b/ramanchada2/spectral_components/baseline.html @@ -0,0 +1,261 @@ + + + + + + + ramanchada2.spectral_components.baseline API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectral_components.baseline

+ + + + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectral_components/baseline/analytical.html b/ramanchada2/spectral_components/baseline/analytical.html new file mode 100644 index 00000000..3c08f792 --- /dev/null +++ b/ramanchada2/spectral_components/baseline/analytical.html @@ -0,0 +1,255 @@ + + + + + + + ramanchada2.spectral_components.baseline.analytical API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectral_components.baseline.analytical

+ + + + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectral_components/baseline/baseline_base.html b/ramanchada2/spectral_components/baseline/baseline_base.html new file mode 100644 index 00000000..a2fcc750 --- /dev/null +++ b/ramanchada2/spectral_components/baseline/baseline_base.html @@ -0,0 +1,310 @@ + + + + + + + ramanchada2.spectral_components.baseline.baseline_base API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectral_components.baseline.baseline_base

+ + + + + + +
1from ..spectral_component import SpectralComponent
+2
+3
+4class BaseLineBase(SpectralComponent):
+5    ...
+
+ + +
+
+ +
+ + class + BaseLineBase(ramanchada2.spectral_components.spectral_component.SpectralComponent): + + + +
+ +
5class BaseLineBase(SpectralComponent):
+6    ...
+
+ + +

Helper class that provides a standard way to create an ABC using +inheritance.

+
+ + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectral_components/baseline/numerical.html b/ramanchada2/spectral_components/baseline/numerical.html new file mode 100644 index 00000000..50638fe8 --- /dev/null +++ b/ramanchada2/spectral_components/baseline/numerical.html @@ -0,0 +1,366 @@ + + + + + + + ramanchada2.spectral_components.baseline.numerical API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectral_components.baseline.numerical

+ + + + + + +
 1from .baseline_base import BaseLineBase
+ 2
+ 3
+ 4class BaselineNumerical(BaseLineBase):
+ 5    def __init__(self, x, y):
+ 6        """
+ 7        Numerical baseline
+ 8
+ 9        Args:
+10            x:
+11                array-like
+12            y:
+13                array-like
+14        """
+
+ + +
+
+ +
+ + class + BaselineNumerical(ramanchada2.spectral_components.baseline.baseline_base.BaseLineBase): + + + +
+ +
 5class BaselineNumerical(BaseLineBase):
+ 6    def __init__(self, x, y):
+ 7        """
+ 8        Numerical baseline
+ 9
+10        Args:
+11            x:
+12                array-like
+13            y:
+14                array-like
+15        """
+
+ + +

Helper class that provides a standard way to create an ABC using +inheritance.

+
+ + +
+ +
+ + BaselineNumerical(x, y) + + + +
+ +
 6    def __init__(self, x, y):
+ 7        """
+ 8        Numerical baseline
+ 9
+10        Args:
+11            x:
+12                array-like
+13            y:
+14                array-like
+15        """
+
+ + +

Numerical baseline

+ +
Arguments:
+ +
    +
  • x: array-like
  • +
  • y: array-like
  • +
+
+ + +
+ +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectral_components/peak_profile.html b/ramanchada2/spectral_components/peak_profile.html new file mode 100644 index 00000000..00bc91ba --- /dev/null +++ b/ramanchada2/spectral_components/peak_profile.html @@ -0,0 +1,270 @@ + + + + + + + ramanchada2.spectral_components.peak_profile API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectral_components.peak_profile

+ + + + + + +
1#!/usr/bin/env python3
+2
+3
+4from .gauss import GaussPeak  # noqa
+5from .voigt import VoigtPeak  # noqa
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectral_components/peak_profile/delta.html b/ramanchada2/spectral_components/peak_profile/delta.html new file mode 100644 index 00000000..71974ed8 --- /dev/null +++ b/ramanchada2/spectral_components/peak_profile/delta.html @@ -0,0 +1,477 @@ + + + + + + + ramanchada2.spectral_components.peak_profile.delta API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectral_components.peak_profile.delta

+ + + + + + +
 1#!/usr/bin/env python3
+ 2
+ 3from __future__ import annotations
+ 4import numpy as np
+ 5
+ 6from uncertainties import unumpy
+ 7
+ 8from ..spectral_peak import SpectralPeak
+ 9
+10
+11class DeltasPeak(SpectralPeak):
+12    def __init__(self, **kwargs):
+13        super().__init__(**kwargs)
+14        if {'a', 'x0'} - kwargs.keys():
+15            raise ValueError("'a', 'x0' arguments required")
+16        self.a = kwargs['a']
+17        self.x0 = kwargs['x0']
+18
+19    def __call__(self, x: unumpy.uarray):
+20        ret = np.zeros_like(x)
+21        ret[x == self.x0] = self.a
+22        return ret
+23
+24    @property
+25    def delta(self):
+26        return self.x0, self.a
+27
+28    @property
+29    def pos_amp_fwhm(self):
+30        return self.x0, self.a, 0
+31
+32    @property
+33    def limit_3sigma(self):
+34        return self.x0-1, self.x0+1
+
+ + +
+
+ +
+ + class + DeltasPeak(ramanchada2.spectral_components.spectral_peak.SpectralPeak): + + + +
+ +
12class DeltasPeak(SpectralPeak):
+13    def __init__(self, **kwargs):
+14        super().__init__(**kwargs)
+15        if {'a', 'x0'} - kwargs.keys():
+16            raise ValueError("'a', 'x0' arguments required")
+17        self.a = kwargs['a']
+18        self.x0 = kwargs['x0']
+19
+20    def __call__(self, x: unumpy.uarray):
+21        ret = np.zeros_like(x)
+22        ret[x == self.x0] = self.a
+23        return ret
+24
+25    @property
+26    def delta(self):
+27        return self.x0, self.a
+28
+29    @property
+30    def pos_amp_fwhm(self):
+31        return self.x0, self.a, 0
+32
+33    @property
+34    def limit_3sigma(self):
+35        return self.x0-1, self.x0+1
+
+ + +

Helper class that provides a standard way to create an ABC using +inheritance.

+
+ + +
+ +
+ + DeltasPeak(**kwargs) + + + +
+ +
13    def __init__(self, **kwargs):
+14        super().__init__(**kwargs)
+15        if {'a', 'x0'} - kwargs.keys():
+16            raise ValueError("'a', 'x0' arguments required")
+17        self.a = kwargs['a']
+18        self.x0 = kwargs['x0']
+
+ + + + +
+
+
+ a + + +
+ + + + +
+
+
+ x0 + + +
+ + + + +
+
+ +
+ delta + + + +
+ +
25    @property
+26    def delta(self):
+27        return self.x0, self.a
+
+ + + + +
+
+ +
+ pos_amp_fwhm + + + +
+ +
29    @property
+30    def pos_amp_fwhm(self):
+31        return self.x0, self.a, 0
+
+ + + + +
+
+ +
+ limit_3sigma + + + +
+ +
33    @property
+34    def limit_3sigma(self):
+35        return self.x0-1, self.x0+1
+
+ + + + +
+ +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectral_components/peak_profile/gauss.html b/ramanchada2/spectral_components/peak_profile/gauss.html new file mode 100644 index 00000000..ac1088f6 --- /dev/null +++ b/ramanchada2/spectral_components/peak_profile/gauss.html @@ -0,0 +1,492 @@ + + + + + + + ramanchada2.spectral_components.peak_profile.gauss API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectral_components.peak_profile.gauss

+ + + + + + +
 1#!/usr/bin/env python3
+ 2
+ 3from __future__ import annotations
+ 4import numpy as np
+ 5
+ 6from uncertainties import unumpy
+ 7
+ 8from ..spectral_peak import SpectralPeak
+ 9
+10
+11class GaussPeak(SpectralPeak):
+12    def __init__(self, **kwargs):
+13        super().__init__(**kwargs)
+14        if {'a', 'x0', 'w'} - kwargs.keys():
+15            raise ValueError("'a', 'x0', 'w' arguments required")
+16        self.a = kwargs['a']
+17        self.x0 = kwargs['x0']
+18        self.w = kwargs['w']
+19
+20    def __call__(self, x: unumpy.uarray):
+21        ret = 1/np.sqrt(2*np.pi)/self.w * self.a * unumpy.exp(-(x-self.x0)**2/2/self.w**2)
+22        return ret
+23
+24    @property
+25    def delta(self):
+26        return self.x0, self.a
+27
+28    @property
+29    def pos_amp_fwhm(self):
+30        return self.x0, self.a/np.sqrt(2*np.pi)/self.w, self.w*2*np.sqrt(2*np.log(2))
+31
+32    @property
+33    def limit_3sigma(self):
+34        return self.x0-3*self.w, self.x0+3*self.w
+
+ + +
+
+ +
+ + class + GaussPeak(ramanchada2.spectral_components.spectral_peak.SpectralPeak): + + + +
+ +
12class GaussPeak(SpectralPeak):
+13    def __init__(self, **kwargs):
+14        super().__init__(**kwargs)
+15        if {'a', 'x0', 'w'} - kwargs.keys():
+16            raise ValueError("'a', 'x0', 'w' arguments required")
+17        self.a = kwargs['a']
+18        self.x0 = kwargs['x0']
+19        self.w = kwargs['w']
+20
+21    def __call__(self, x: unumpy.uarray):
+22        ret = 1/np.sqrt(2*np.pi)/self.w * self.a * unumpy.exp(-(x-self.x0)**2/2/self.w**2)
+23        return ret
+24
+25    @property
+26    def delta(self):
+27        return self.x0, self.a
+28
+29    @property
+30    def pos_amp_fwhm(self):
+31        return self.x0, self.a/np.sqrt(2*np.pi)/self.w, self.w*2*np.sqrt(2*np.log(2))
+32
+33    @property
+34    def limit_3sigma(self):
+35        return self.x0-3*self.w, self.x0+3*self.w
+
+ + +

Helper class that provides a standard way to create an ABC using +inheritance.

+
+ + +
+ +
+ + GaussPeak(**kwargs) + + + +
+ +
13    def __init__(self, **kwargs):
+14        super().__init__(**kwargs)
+15        if {'a', 'x0', 'w'} - kwargs.keys():
+16            raise ValueError("'a', 'x0', 'w' arguments required")
+17        self.a = kwargs['a']
+18        self.x0 = kwargs['x0']
+19        self.w = kwargs['w']
+
+ + + + +
+
+
+ a + + +
+ + + + +
+
+
+ x0 + + +
+ + + + +
+
+
+ w + + +
+ + + + +
+
+ +
+ delta + + + +
+ +
25    @property
+26    def delta(self):
+27        return self.x0, self.a
+
+ + + + +
+
+ +
+ pos_amp_fwhm + + + +
+ +
29    @property
+30    def pos_amp_fwhm(self):
+31        return self.x0, self.a/np.sqrt(2*np.pi)/self.w, self.w*2*np.sqrt(2*np.log(2))
+
+ + + + +
+
+ +
+ limit_3sigma + + + +
+ +
33    @property
+34    def limit_3sigma(self):
+35        return self.x0-3*self.w, self.x0+3*self.w
+
+ + + + +
+ +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectral_components/peak_profile/voigt.html b/ramanchada2/spectral_components/peak_profile/voigt.html new file mode 100644 index 00000000..b6e98031 --- /dev/null +++ b/ramanchada2/spectral_components/peak_profile/voigt.html @@ -0,0 +1,320 @@ + + + + + + + ramanchada2.spectral_components.peak_profile.voigt API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectral_components.peak_profile.voigt

+ + + + + + +
1#!/usr/bin/env python3
+2
+3from ..spectral_peak import SpectralPeak
+4
+5
+6class VoigtPeak(SpectralPeak):
+7    def __init__(self, **kwargs):
+8        super().__init__(**kwargs)
+
+ + +
+
+ +
+ + class + VoigtPeak(ramanchada2.spectral_components.spectral_peak.SpectralPeak): + + + +
+ +
7class VoigtPeak(SpectralPeak):
+8    def __init__(self, **kwargs):
+9        super().__init__(**kwargs)
+
+ + +

Helper class that provides a standard way to create an ABC using +inheritance.

+
+ + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectral_components/spectral_component.html b/ramanchada2/spectral_components/spectral_component.html new file mode 100644 index 00000000..8699577a --- /dev/null +++ b/ramanchada2/spectral_components/spectral_component.html @@ -0,0 +1,321 @@ + + + + + + + ramanchada2.spectral_components.spectral_component API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectral_components.spectral_component

+ + + + + + +
 1#!/usr/bin/env python3
+ 2
+ 3from __future__ import annotations
+ 4
+ 5from ramanchada2.misc.plottable import Plottable
+ 6from ramanchada2.misc.base_class import BaseClass
+ 7
+ 8
+ 9class SpectralComponent(Plottable, BaseClass):
+10    def __init__(self, **kwargs):
+11        super(Plottable, self).__init__()
+12        super(BaseClass, self).__init__()
+13        self._origin = [(type(self).__name__, (), kwargs)]
+
+ + +
+
+ +
+ + class + SpectralComponent(ramanchada2.misc.plottable.Plottable, ramanchada2.misc.base_class.BaseClass): + + + +
+ +
10class SpectralComponent(Plottable, BaseClass):
+11    def __init__(self, **kwargs):
+12        super(Plottable, self).__init__()
+13        super(BaseClass, self).__init__()
+14        self._origin = [(type(self).__name__, (), kwargs)]
+
+ + +

Helper class that provides a standard way to create an ABC using +inheritance.

+
+ + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectral_components/spectral_component_collection.html b/ramanchada2/spectral_components/spectral_component_collection.html new file mode 100644 index 00000000..a2cccce5 --- /dev/null +++ b/ramanchada2/spectral_components/spectral_component_collection.html @@ -0,0 +1,552 @@ + + + + + + + ramanchada2.spectral_components.spectral_component_collection API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectral_components.spectral_component_collection

+ + + + + + +
 1#!/usr/bin/env python3
+ 2
+ 3from __future__ import annotations
+ 4
+ 5import numpy as np
+ 6
+ 7from ramanchada2.misc.base_class import BaseClass
+ 8from ramanchada2.misc.plottable import Plottable
+ 9from .spectral_peak import SpectralPeak
+10
+11
+12class SpectralComponentCollection(Plottable, BaseClass):
+13    def __init__(self, peaks, **kwargs):
+14        super(Plottable, self).__init__()
+15        super(BaseClass, self).__init__()
+16        self._peaks = set(peaks)
+17        self.kwargs = kwargs
+18        self.reset_origin()
+19
+20    def reset_origin(self):
+21        self._origin = [(type(self).__name__,
+22                         [tuple(sorted(self._peaks, key=lambda x: repr(x)))],
+23                         self.kwargs)]
+24
+25    def __call__(self, x):
+26        ret = np.array([p(x) for p in self._peaks]).sum(axis=0)
+27        return ret
+28
+29    def get_deltas(self):
+30        pos, ampl = zip(*[p.delta for p in self._peaks])
+31        return pos, ampl
+32
+33    def get_curve(self):
+34        ...
+35
+36    @property
+37    def limit_3sigma(self):
+38        lims = [p.limit_3sigma for p in self._peaks]
+39        return np.min(lims), np.max(lims)
+40
+41    def __iadd__(self, peak: SpectralPeak):
+42        self._peaks.add(peak)
+43        self.reset_origin()
+44
+45    def _plot(self, ax, draw='combined line', **kwargs):
+46        if draw == 'deltas':
+47            stem_kwargs = dict(basefmt='', markerfmt='rD')
+48            stem_kwargs.update(kwargs)
+49            ax.stem(*self.get_deltas(), **stem_kwargs)
+50        elif draw == 'crosses':
+51            x0, a, fwhm = zip(*[i.pos_amp_fwhm for i in self._peaks])
+52            x0 = np.array(x0)
+53            a = np.array(a)
+54            fwhm = np.array(fwhm)
+55            err_kwargs = dict(linewidth=0, elinewidth=1)
+56            err_kwargs.update(kwargs)
+57            ax.errorbar(x0, a/2, xerr=fwhm/2, yerr=a/2, **err_kwargs)
+58        elif draw == 'combined line':
+59            x = np.arange(*self.limit_3sigma)
+60            ax.plot(x, self(x), **kwargs)
+61        elif draw == 'individual lines':
+62            for p in self._peaks:
+63                p.plot(ax, draw='line', **kwargs)
+64        else:
+65            raise TypeError("draw can be 'combined line', 'individual lines', 'crosses' or 'deltas'")
+
+ + +
+
+ +
+ + class + SpectralComponentCollection(ramanchada2.misc.plottable.Plottable, ramanchada2.misc.base_class.BaseClass): + + + +
+ +
13class SpectralComponentCollection(Plottable, BaseClass):
+14    def __init__(self, peaks, **kwargs):
+15        super(Plottable, self).__init__()
+16        super(BaseClass, self).__init__()
+17        self._peaks = set(peaks)
+18        self.kwargs = kwargs
+19        self.reset_origin()
+20
+21    def reset_origin(self):
+22        self._origin = [(type(self).__name__,
+23                         [tuple(sorted(self._peaks, key=lambda x: repr(x)))],
+24                         self.kwargs)]
+25
+26    def __call__(self, x):
+27        ret = np.array([p(x) for p in self._peaks]).sum(axis=0)
+28        return ret
+29
+30    def get_deltas(self):
+31        pos, ampl = zip(*[p.delta for p in self._peaks])
+32        return pos, ampl
+33
+34    def get_curve(self):
+35        ...
+36
+37    @property
+38    def limit_3sigma(self):
+39        lims = [p.limit_3sigma for p in self._peaks]
+40        return np.min(lims), np.max(lims)
+41
+42    def __iadd__(self, peak: SpectralPeak):
+43        self._peaks.add(peak)
+44        self.reset_origin()
+45
+46    def _plot(self, ax, draw='combined line', **kwargs):
+47        if draw == 'deltas':
+48            stem_kwargs = dict(basefmt='', markerfmt='rD')
+49            stem_kwargs.update(kwargs)
+50            ax.stem(*self.get_deltas(), **stem_kwargs)
+51        elif draw == 'crosses':
+52            x0, a, fwhm = zip(*[i.pos_amp_fwhm for i in self._peaks])
+53            x0 = np.array(x0)
+54            a = np.array(a)
+55            fwhm = np.array(fwhm)
+56            err_kwargs = dict(linewidth=0, elinewidth=1)
+57            err_kwargs.update(kwargs)
+58            ax.errorbar(x0, a/2, xerr=fwhm/2, yerr=a/2, **err_kwargs)
+59        elif draw == 'combined line':
+60            x = np.arange(*self.limit_3sigma)
+61            ax.plot(x, self(x), **kwargs)
+62        elif draw == 'individual lines':
+63            for p in self._peaks:
+64                p.plot(ax, draw='line', **kwargs)
+65        else:
+66            raise TypeError("draw can be 'combined line', 'individual lines', 'crosses' or 'deltas'")
+
+ + +

Helper class that provides a standard way to create an ABC using +inheritance.

+
+ + +
+ +
+ + SpectralComponentCollection(peaks, **kwargs) + + + +
+ +
14    def __init__(self, peaks, **kwargs):
+15        super(Plottable, self).__init__()
+16        super(BaseClass, self).__init__()
+17        self._peaks = set(peaks)
+18        self.kwargs = kwargs
+19        self.reset_origin()
+
+ + + + +
+
+
+ kwargs + + +
+ + + + +
+
+ +
+ + def + reset_origin(self): + + + +
+ +
21    def reset_origin(self):
+22        self._origin = [(type(self).__name__,
+23                         [tuple(sorted(self._peaks, key=lambda x: repr(x)))],
+24                         self.kwargs)]
+
+ + + + +
+
+ +
+ + def + get_deltas(self): + + + +
+ +
30    def get_deltas(self):
+31        pos, ampl = zip(*[p.delta for p in self._peaks])
+32        return pos, ampl
+
+ + + + +
+
+ +
+ + def + get_curve(self): + + + +
+ +
34    def get_curve(self):
+35        ...
+
+ + + + +
+
+ +
+ limit_3sigma + + + +
+ +
37    @property
+38    def limit_3sigma(self):
+39        lims = [p.limit_3sigma for p in self._peaks]
+40        return np.min(lims), np.max(lims)
+
+ + + + +
+ +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectral_components/spectral_peak.html b/ramanchada2/spectral_components/spectral_peak.html new file mode 100644 index 00000000..3e1bf533 --- /dev/null +++ b/ramanchada2/spectral_components/spectral_peak.html @@ -0,0 +1,439 @@ + + + + + + + ramanchada2.spectral_components.spectral_peak API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectral_components.spectral_peak

+ + + + + + +
 1#!/usr/bin/env python3
+ 2
+ 3from __future__ import annotations
+ 4from abc import ABC, abstractmethod
+ 5
+ 6import numpy as np
+ 7from uncertainties import unumpy
+ 8
+ 9from ramanchada2.spectral_components.spectral_component import SpectralComponent
+10
+11
+12class SpectralPeak(SpectralComponent, ABC):
+13    def __init__(self, **kwargs):
+14        super().__init__(**kwargs)
+15
+16    def _plot(self, ax, draw='line', **kwargs):
+17        if draw == 'line':
+18            x = np.arange(*self.limit_3sigma)
+19            y = self(x)
+20            ax.errorbar(unumpy.nominal_values(x), unumpy.nominal_values(y),
+21                        yerr=unumpy.std_devs(y), **kwargs)
+22        elif draw == 'delta':
+23            args = dict(basefmt='', markerfmt='rD')
+24            args.update(kwargs)
+25            ax.stem(*self.delta, **args)
+26        elif draw == 'cross':
+27            x0, a, fwhm = self.pos_amp_fwhm
+28            ax.errorbar(x0, a/2, xerr=fwhm/2, yerr=a/2, **kwargs)
+29        else:
+30            raise TypeError("draw can be 'line', 'cross' or 'delta'")
+31
+32    @abstractmethod
+33    def delta(self): pass
+34
+35    @abstractmethod
+36    def limit_3sigma(self): pass
+37
+38    @abstractmethod
+39    def pos_amp_fwhm(self): pass
+
+ + +
+
+ +
+ + class + SpectralPeak(ramanchada2.spectral_components.spectral_component.SpectralComponent, abc.ABC): + + + +
+ +
13class SpectralPeak(SpectralComponent, ABC):
+14    def __init__(self, **kwargs):
+15        super().__init__(**kwargs)
+16
+17    def _plot(self, ax, draw='line', **kwargs):
+18        if draw == 'line':
+19            x = np.arange(*self.limit_3sigma)
+20            y = self(x)
+21            ax.errorbar(unumpy.nominal_values(x), unumpy.nominal_values(y),
+22                        yerr=unumpy.std_devs(y), **kwargs)
+23        elif draw == 'delta':
+24            args = dict(basefmt='', markerfmt='rD')
+25            args.update(kwargs)
+26            ax.stem(*self.delta, **args)
+27        elif draw == 'cross':
+28            x0, a, fwhm = self.pos_amp_fwhm
+29            ax.errorbar(x0, a/2, xerr=fwhm/2, yerr=a/2, **kwargs)
+30        else:
+31            raise TypeError("draw can be 'line', 'cross' or 'delta'")
+32
+33    @abstractmethod
+34    def delta(self): pass
+35
+36    @abstractmethod
+37    def limit_3sigma(self): pass
+38
+39    @abstractmethod
+40    def pos_amp_fwhm(self): pass
+
+ + +

Helper class that provides a standard way to create an ABC using +inheritance.

+
+ + +
+ +
+
@abstractmethod
+ + def + delta(self): + + + +
+ +
33    @abstractmethod
+34    def delta(self): pass
+
+ + + + +
+
+ +
+
@abstractmethod
+ + def + limit_3sigma(self): + + + +
+ +
36    @abstractmethod
+37    def limit_3sigma(self): pass
+
+ + + + +
+
+ +
+
@abstractmethod
+ + def + pos_amp_fwhm(self): + + + +
+ +
39    @abstractmethod
+40    def pos_amp_fwhm(self): pass
+
+ + + + +
+ +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum.html b/ramanchada2/spectrum.html new file mode 100644 index 00000000..b82393dd --- /dev/null +++ b/ramanchada2/spectrum.html @@ -0,0 +1,288 @@ + + + + + + + ramanchada2.spectrum API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum

+ + + + + + +
 1#!/usr/bin/env python3
+ 2
+ 3from .spectrum import Spectrum  # noqa
+ 4from .arithmetics import *  # noqa
+ 5from .baseline import *  # noqa
+ 6from .calc import *  # noqa
+ 7from .calibration import *  # noqa
+ 8from .filters import *  # noqa
+ 9from .peaks import *  # noqa
+10from .creators.from_cache_or_calc import from_cache_or_calc
+11from .creators.from_chada import from_chada
+12from .creators.from_local_file import from_local_file
+13from .creators.from_simulation import from_simulation
+14from .creators.from_theoretical_lines import from_theoretical_lines
+15from .creators.from_spectral_component_collection import from_spectral_component_collection
+16from .creators.from_delta_lines import from_delta_lines
+17from .creators.from_test_spe import from_test_spe
+18from .creators.hdr_from_multi_exposure import hdr_from_multi_exposure
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/arithmetics.html b/ramanchada2/spectrum/arithmetics.html new file mode 100644 index 00000000..ae926ec1 --- /dev/null +++ b/ramanchada2/spectrum/arithmetics.html @@ -0,0 +1,274 @@ + + + + + + + ramanchada2.spectrum.arithmetics API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.arithmetics

+ + + + + + +
1import os
+2import glob
+3
+4__all__ = [
+5    os.path.basename(f)[:-3]
+6    for f in glob.glob(os.path.dirname(__file__)+"/*.py")
+7    if os.path.isfile(f) and not os.path.basename(f).startswith('_')
+8]
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/arithmetics/add.html b/ramanchada2/spectrum/arithmetics/add.html new file mode 100644 index 00000000..77e48c0a --- /dev/null +++ b/ramanchada2/spectrum/arithmetics/add.html @@ -0,0 +1,292 @@ + + + + + + + ramanchada2.spectrum.arithmetics.add API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.arithmetics.add

+ + + + + + +
 1from typing import Union
+ 2
+ 3import numpy as np
+ 4from numpy.typing import NDArray
+ 5from pydantic import validate_call
+ 6
+ 7from ramanchada2.misc.spectrum_deco import add_spectrum_filter
+ 8
+ 9from ..spectrum import Spectrum
+10
+11
+12@add_spectrum_filter
+13@validate_call(config=dict(arbitrary_types_allowed=True))
+14def __add__(
+15        old_spe: Spectrum,
+16        new_spe: Spectrum,
+17        arg: Union[Spectrum, NDArray, float]):
+18    if isinstance(arg, Spectrum):
+19        if not (old_spe.x == arg.x).all():
+20            ValueError('x axes should be equal')
+21        new_spe.y = old_spe.y + arg.y
+22    elif isinstance(arg, np.ndarray):
+23        if old_spe.y.shape != arg.shape:
+24            ValueError(f'shapes does not match {old_spe.y.shape} != {arg.shape}')
+25        new_spe.y = old_spe.y + arg
+26    elif isinstance(arg, float):
+27        new_spe.y = old_spe.y + arg
+28    else:
+29        ValueError('This should never happen')
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/arithmetics/mul.html b/ramanchada2/spectrum/arithmetics/mul.html new file mode 100644 index 00000000..b25b12b1 --- /dev/null +++ b/ramanchada2/spectrum/arithmetics/mul.html @@ -0,0 +1,292 @@ + + + + + + + ramanchada2.spectrum.arithmetics.mul API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.arithmetics.mul

+ + + + + + +
 1from typing import Union
+ 2
+ 3import numpy as np
+ 4from numpy.typing import NDArray
+ 5from pydantic import validate_call
+ 6
+ 7from ramanchada2.misc.spectrum_deco import add_spectrum_filter
+ 8
+ 9from ..spectrum import Spectrum
+10
+11
+12@add_spectrum_filter
+13@validate_call(config=dict(arbitrary_types_allowed=True))
+14def __mul__(
+15        old_spe: Spectrum,
+16        new_spe: Spectrum,
+17        arg: Union[Spectrum, NDArray, float]):
+18    if isinstance(arg, Spectrum):
+19        if not (old_spe.x == arg.x).all():
+20            ValueError('x axes should be equal')
+21        new_spe.y = old_spe.y * arg.y
+22    elif isinstance(arg, np.ndarray):
+23        if old_spe.y.shape != arg.shape:
+24            ValueError(f'shapes does not match {old_spe.y.shape} != {arg.shape}')
+25        new_spe.y = old_spe.y * arg
+26    elif isinstance(arg, float):
+27        new_spe.y = old_spe.y * arg
+28    else:
+29        ValueError('This should never happen')
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/arithmetics/sub.html b/ramanchada2/spectrum/arithmetics/sub.html new file mode 100644 index 00000000..79a7e5ee --- /dev/null +++ b/ramanchada2/spectrum/arithmetics/sub.html @@ -0,0 +1,292 @@ + + + + + + + ramanchada2.spectrum.arithmetics.sub API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.arithmetics.sub

+ + + + + + +
 1from typing import Union
+ 2
+ 3import numpy as np
+ 4from numpy.typing import NDArray
+ 5from pydantic import validate_call
+ 6
+ 7from ramanchada2.misc.spectrum_deco import add_spectrum_filter
+ 8
+ 9from ..spectrum import Spectrum
+10
+11
+12@add_spectrum_filter
+13@validate_call(config=dict(arbitrary_types_allowed=True))
+14def __sub__(
+15        old_spe: Spectrum,
+16        new_spe: Spectrum,
+17        arg: Union[Spectrum, NDArray, float]):
+18    if isinstance(arg, Spectrum):
+19        if not (old_spe.x == arg.x).all():
+20            ValueError('x axes should be equal')
+21        new_spe.y = old_spe.y - arg.y
+22    elif isinstance(arg, np.ndarray):
+23        if old_spe.y.shape != arg.shape:
+24            ValueError(f'shapes does not match {old_spe.y.shape} != {arg.shape}')
+25        new_spe.y = old_spe.y - arg
+26    elif isinstance(arg, float):
+27        new_spe.y = old_spe.y - arg
+28    else:
+29        ValueError('This should never happen')
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/arithmetics/truediv.html b/ramanchada2/spectrum/arithmetics/truediv.html new file mode 100644 index 00000000..b0d9132d --- /dev/null +++ b/ramanchada2/spectrum/arithmetics/truediv.html @@ -0,0 +1,291 @@ + + + + + + + ramanchada2.spectrum.arithmetics.truediv API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.arithmetics.truediv

+ + + + + + +
 1from typing import Union
+ 2
+ 3import numpy as np
+ 4from numpy.typing import NDArray
+ 5from pydantic import validate_call
+ 6
+ 7from ramanchada2.misc.spectrum_deco import add_spectrum_filter
+ 8from ..spectrum import Spectrum
+ 9
+10
+11@add_spectrum_filter
+12@validate_call(config=dict(arbitrary_types_allowed=True))
+13def __truediv__(
+14        old_spe: Spectrum,
+15        new_spe: Spectrum,
+16        arg: Union[Spectrum, NDArray, float]):
+17    if isinstance(arg, Spectrum):
+18        if not (old_spe.x == arg.x).all():
+19            ValueError('x axes should be equal')
+20        new_spe.y = old_spe.y / arg.y
+21    elif isinstance(arg, np.ndarray):
+22        if old_spe.y.shape != arg.shape:
+23            ValueError(f'shapes does not match {old_spe.y.shape} != {arg.shape}')
+24        new_spe.y = old_spe.y / arg
+25    elif isinstance(arg, float):
+26        new_spe.y = old_spe.y / arg
+27    else:
+28        ValueError('This should never happen')
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/baseline.html b/ramanchada2/spectrum/baseline.html new file mode 100644 index 00000000..86b71487 --- /dev/null +++ b/ramanchada2/spectrum/baseline.html @@ -0,0 +1,273 @@ + + + + + + + ramanchada2.spectrum.baseline API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.baseline

+ + + + + + +
1import os
+2import glob
+3
+4__all__ = [
+5    os.path.basename(f)[:-3]
+6    for f in glob.glob(os.path.dirname(__file__)+"/*.py")
+7    if os.path.isfile(f) and not os.path.basename(f).startswith('_')
+8]
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/baseline/add_baseline.html b/ramanchada2/spectrum/baseline/add_baseline.html new file mode 100644 index 00000000..00cef521 --- /dev/null +++ b/ramanchada2/spectrum/baseline/add_baseline.html @@ -0,0 +1,445 @@ + + + + + + + ramanchada2.spectrum.baseline.add_baseline API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.baseline.add_baseline

+ + + + + + +
 1from typing import Union, Callable
+ 2
+ 3from pydantic import validate_call, Field
+ 4import numpy as np
+ 5from scipy import signal, fft
+ 6
+ 7from ramanchada2.misc.spectrum_deco import add_spectrum_filter
+ 8from ..spectrum import Spectrum
+ 9
+10
+11@validate_call(config=dict(arbitrary_types_allowed=True))
+12def generate_baseline(
+13        n_freq: int = Field(..., gt=2),
+14        size: int = Field(..., gt=2),
+15        # validation for rng_seed is removed because
+16        # it makes in-place modification impossible
+17        rng_seed=None):
+18    if isinstance(rng_seed, dict):
+19        rng = np.random.default_rng()
+20        rng.bit_generator.state = rng_seed
+21    else:
+22        rng = np.random.default_rng(rng_seed)
+23    k = rng.normal(0, size, size=(2, n_freq))
+24    k[1][0] = 0
+25    z = k[0] + k[1]*1j
+26    w = signal.windows.bohman(2*len(z))[-len(z):]
+27    z *= w
+28    z = np.concatenate([z, np.zeros(size-n_freq)])
+29    base = fft.irfft(z)
+30    base = base[:size]
+31    base -= base.min()
+32    base /= base.max()
+33    if isinstance(rng_seed, dict):
+34        rng_seed.update(rng.bit_generator.state)
+35    return base
+36
+37
+38@add_spectrum_filter
+39@validate_call(config=dict(arbitrary_types_allowed=True))
+40def add_baseline(old_spe: Spectrum, new_spe: Spectrum, /, n_freq: int, amplitude: float, pedestal: float = 0,
+41                 func: Union[Callable, None] = None, rng_seed=None):
+42    """
+43    Add artificial baseline to the spectrum.
+44    A random baseline is generated in frequency domain using uniform random numbers.
+45    The baseline in frequency domain is tapered with bohman window to reduce the bandwidth
+46    of the baseline to first `n_freq` frequencies and is transformed to "time" domain.
+47    Additionaly by using `func` parameter the user can define arbitrary function
+48    to be added as baseline.
+49
+50    Args:
+51        n_freq:
+52            Must be `> 2`. Number of lowest frequency bins distinct from zero.
+53        amplitude:
+54            Upper boundary for the uniform random generator.
+55        pedestal:
+56            Additive constant pedestal to the spectrum.
+57        func:
+58            Callable. User-defined function to be added as baseline. Example: `func = lambda x: x*.01 + x**2*.0001`.
+59        rng_seed:
+60            `int`, optional. Seed for the random generator.
+61    """
+62    size = len(old_spe.y)
+63    base = generate_baseline(n_freq=n_freq, size=size, rng_seed=rng_seed)
+64    y = old_spe.y + amplitude*base + pedestal
+65    if func is not None:
+66        y += func(old_spe.x) + old_spe.y
+67    new_spe.y = y
+
+ + +
+
+ +
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + generate_baseline( n_freq: int = FieldInfo(annotation=int, required=True, metadata=[Gt(gt=2)]), size: int = FieldInfo(annotation=int, required=True, metadata=[Gt(gt=2)]), rng_seed=None): + + + +
+ +
12@validate_call(config=dict(arbitrary_types_allowed=True))
+13def generate_baseline(
+14        n_freq: int = Field(..., gt=2),
+15        size: int = Field(..., gt=2),
+16        # validation for rng_seed is removed because
+17        # it makes in-place modification impossible
+18        rng_seed=None):
+19    if isinstance(rng_seed, dict):
+20        rng = np.random.default_rng()
+21        rng.bit_generator.state = rng_seed
+22    else:
+23        rng = np.random.default_rng(rng_seed)
+24    k = rng.normal(0, size, size=(2, n_freq))
+25    k[1][0] = 0
+26    z = k[0] + k[1]*1j
+27    w = signal.windows.bohman(2*len(z))[-len(z):]
+28    z *= w
+29    z = np.concatenate([z, np.zeros(size-n_freq)])
+30    base = fft.irfft(z)
+31    base = base[:size]
+32    base -= base.min()
+33    base /= base.max()
+34    if isinstance(rng_seed, dict):
+35        rng_seed.update(rng.bit_generator.state)
+36    return base
+
+ + + + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + add_baseline( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, /, n_freq: int, amplitude: float, pedestal: float = 0, func: Optional[Callable] = None, rng_seed=None): + + + +
+ +
39@add_spectrum_filter
+40@validate_call(config=dict(arbitrary_types_allowed=True))
+41def add_baseline(old_spe: Spectrum, new_spe: Spectrum, /, n_freq: int, amplitude: float, pedestal: float = 0,
+42                 func: Union[Callable, None] = None, rng_seed=None):
+43    """
+44    Add artificial baseline to the spectrum.
+45    A random baseline is generated in frequency domain using uniform random numbers.
+46    The baseline in frequency domain is tapered with bohman window to reduce the bandwidth
+47    of the baseline to first `n_freq` frequencies and is transformed to "time" domain.
+48    Additionaly by using `func` parameter the user can define arbitrary function
+49    to be added as baseline.
+50
+51    Args:
+52        n_freq:
+53            Must be `> 2`. Number of lowest frequency bins distinct from zero.
+54        amplitude:
+55            Upper boundary for the uniform random generator.
+56        pedestal:
+57            Additive constant pedestal to the spectrum.
+58        func:
+59            Callable. User-defined function to be added as baseline. Example: `func = lambda x: x*.01 + x**2*.0001`.
+60        rng_seed:
+61            `int`, optional. Seed for the random generator.
+62    """
+63    size = len(old_spe.y)
+64    base = generate_baseline(n_freq=n_freq, size=size, rng_seed=rng_seed)
+65    y = old_spe.y + amplitude*base + pedestal
+66    if func is not None:
+67        y += func(old_spe.x) + old_spe.y
+68    new_spe.y = y
+
+ + +

Add artificial baseline to the spectrum. +A random baseline is generated in frequency domain using uniform random numbers. +The baseline in frequency domain is tapered with bohman window to reduce the bandwidth +of the baseline to first n_freq frequencies and is transformed to "time" domain. +Additionaly by using func parameter the user can define arbitrary function +to be added as baseline.

+ +
Arguments:
+ +
    +
  • n_freq: Must be > 2. Number of lowest frequency bins distinct from zero.
  • +
  • amplitude: Upper boundary for the uniform random generator.
  • +
  • pedestal: Additive constant pedestal to the spectrum.
  • +
  • func: Callable. User-defined function to be added as baseline. Example: func = lambda x: x*.01 + x**2*.0001.
  • +
  • rng_seed: int, optional. Seed for the random generator.
  • +
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/baseline/baseline_rc1.html b/ramanchada2/spectrum/baseline/baseline_rc1.html new file mode 100644 index 00000000..4f5e91f8 --- /dev/null +++ b/ramanchada2/spectrum/baseline/baseline_rc1.html @@ -0,0 +1,465 @@ + + + + + + + ramanchada2.spectrum.baseline.baseline_rc1 API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.baseline.baseline_rc1

+ + + + + + +
 1from typing import Literal, Union
+ 2
+ 3import numpy as np
+ 4import pandas as pd
+ 5from pydantic import PositiveInt, validate_call
+ 6from scipy import sparse
+ 7from scipy.signal import wiener
+ 8from scipy.sparse.linalg import spsolve
+ 9
+10from ramanchada2.misc.spectrum_deco import add_spectrum_filter
+11from ramanchada2.misc.types import PositiveOddInt
+12
+13from ..spectrum import Spectrum
+14
+15
+16@validate_call
+17def baseline_als(y, lam: float = 1e5, p: float = 0.001, niter: PositiveInt = 100,
+18                 smooth: Union[PositiveOddInt, Literal[0]] = PositiveOddInt(7)):
+19    if smooth > 0:
+20        y = wiener(y, smooth)
+21    L = len(y)
+22    D = sparse.csc_matrix(np.diff(np.eye(L), 2))
+23    w = np.ones(L)
+24    for i in range(niter):
+25        W = sparse.spdiags(w, 0, L, L)
+26        Z = W + lam * D.dot(D.transpose())
+27        z = spsolve(Z, w*y)
+28        w = p * (y > z) + (1-p) * (y < z)
+29    return z
+30
+31
+32def baseline_snip(y0, niter: PositiveInt = 30):
+33    # y can't have negatives. fix by offset:
+34    y_offset = y0.min()
+35    y = y0 - y_offset
+36    # Spectrum must be row of a DataFrame
+37    raman_spectra = pd.DataFrame(y).T
+38    spectrum_points = len(raman_spectra.columns)
+39    raman_spectra_transformed = np.log(np.log(np.sqrt(raman_spectra + 1) + 1) + 1)
+40    working_spectra = np.zeros(raman_spectra.shape)
+41    for pp in np.arange(1, niter+1):
+42        r1 = raman_spectra_transformed.iloc[:, pp:spectrum_points - pp]
+43        r2 = (np.roll(raman_spectra_transformed, - pp, axis=1)[:, pp:spectrum_points - pp] +
+44              np.roll(raman_spectra_transformed, pp, axis=1)[:, pp:spectrum_points - pp])/2
+45        working_spectra = np.minimum(r1, r2)
+46        raman_spectra_transformed.iloc[:, pp:spectrum_points-pp] = working_spectra
+47    baseline = (np.exp(np.exp(raman_spectra_transformed)-1)-1)**2 - 1
+48    # Re-convert to np.array and apply inverse y offset to baseline
+49    return baseline.to_numpy()[0].T + y_offset
+50
+51
+52@add_spectrum_filter
+53@validate_call(config=dict(arbitrary_types_allowed=True))
+54def subtract_baseline_rc1_als(
+55        old_spe: Spectrum,
+56        new_spe: Spectrum,
+57        lam=1e5, p=0.001, niter=100, smooth=7
+58        ):
+59    new_spe.y = old_spe.y - baseline_als(old_spe.y, lam=lam, p=p, niter=niter, smooth=smooth)
+60
+61
+62@add_spectrum_filter
+63@validate_call(config=dict(arbitrary_types_allowed=True))
+64def subtract_baseline_rc1_snip(
+65        old_spe: Spectrum,
+66        new_spe: Spectrum,
+67        niter=30
+68        ):
+69    new_spe.y = old_spe.y - baseline_snip(old_spe.y, niter=niter)
+
+ + +
+
+ +
+
@validate_call
+ + def + baseline_als( y, lam: float = 100000.0, p: float = 0.001, niter: typing.Annotated[int, Gt(gt=0)] = 100, smooth: Union[Annotated[int, Gt(gt=0)], Literal[0]] = 7): + + + +
+ +
17@validate_call
+18def baseline_als(y, lam: float = 1e5, p: float = 0.001, niter: PositiveInt = 100,
+19                 smooth: Union[PositiveOddInt, Literal[0]] = PositiveOddInt(7)):
+20    if smooth > 0:
+21        y = wiener(y, smooth)
+22    L = len(y)
+23    D = sparse.csc_matrix(np.diff(np.eye(L), 2))
+24    w = np.ones(L)
+25    for i in range(niter):
+26        W = sparse.spdiags(w, 0, L, L)
+27        Z = W + lam * D.dot(D.transpose())
+28        z = spsolve(Z, w*y)
+29        w = p * (y > z) + (1-p) * (y < z)
+30    return z
+
+ + + + +
+
+ +
+ + def + baseline_snip(y0, niter: typing.Annotated[int, Gt(gt=0)] = 30): + + + +
+ +
33def baseline_snip(y0, niter: PositiveInt = 30):
+34    # y can't have negatives. fix by offset:
+35    y_offset = y0.min()
+36    y = y0 - y_offset
+37    # Spectrum must be row of a DataFrame
+38    raman_spectra = pd.DataFrame(y).T
+39    spectrum_points = len(raman_spectra.columns)
+40    raman_spectra_transformed = np.log(np.log(np.sqrt(raman_spectra + 1) + 1) + 1)
+41    working_spectra = np.zeros(raman_spectra.shape)
+42    for pp in np.arange(1, niter+1):
+43        r1 = raman_spectra_transformed.iloc[:, pp:spectrum_points - pp]
+44        r2 = (np.roll(raman_spectra_transformed, - pp, axis=1)[:, pp:spectrum_points - pp] +
+45              np.roll(raman_spectra_transformed, pp, axis=1)[:, pp:spectrum_points - pp])/2
+46        working_spectra = np.minimum(r1, r2)
+47        raman_spectra_transformed.iloc[:, pp:spectrum_points-pp] = working_spectra
+48    baseline = (np.exp(np.exp(raman_spectra_transformed)-1)-1)**2 - 1
+49    # Re-convert to np.array and apply inverse y offset to baseline
+50    return baseline.to_numpy()[0].T + y_offset
+
+ + + + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + subtract_baseline_rc1_als( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, lam=100000.0, p=0.001, niter=100, smooth=7): + + + +
+ +
53@add_spectrum_filter
+54@validate_call(config=dict(arbitrary_types_allowed=True))
+55def subtract_baseline_rc1_als(
+56        old_spe: Spectrum,
+57        new_spe: Spectrum,
+58        lam=1e5, p=0.001, niter=100, smooth=7
+59        ):
+60    new_spe.y = old_spe.y - baseline_als(old_spe.y, lam=lam, p=p, niter=niter, smooth=smooth)
+
+ + + + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + subtract_baseline_rc1_snip( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, niter=30): + + + +
+ +
63@add_spectrum_filter
+64@validate_call(config=dict(arbitrary_types_allowed=True))
+65def subtract_baseline_rc1_snip(
+66        old_spe: Spectrum,
+67        new_spe: Spectrum,
+68        niter=30
+69        ):
+70    new_spe.y = old_spe.y - baseline_snip(old_spe.y, niter=niter)
+
+ + + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/baseline/moving_minimum.html b/ramanchada2/spectrum/baseline/moving_minimum.html new file mode 100644 index 00000000..ca88f4d8 --- /dev/null +++ b/ramanchada2/spectrum/baseline/moving_minimum.html @@ -0,0 +1,366 @@ + + + + + + + ramanchada2.spectrum.baseline.moving_minimum API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.baseline.moving_minimum

+ + + + + + +
 1import numpy as np
+ 2from pydantic import validate_call, PositiveInt
+ 3
+ 4from ramanchada2.misc.spectrum_deco import add_spectrum_filter
+ 5from ..spectrum import Spectrum
+ 6
+ 7
+ 8@validate_call(config=dict(arbitrary_types_allowed=True))
+ 9def _moving_minimum(arr, window_size: PositiveInt):
+10    mov_min_left = [min(arr[max(0, i):min(i+window_size, len(arr))])
+11                    for i in range(len(arr))
+12                    ]
+13    mov_min_right = [min(arr[max(0, i-window_size):min(i, len(arr))])
+14                     for i in range(1, len(arr)+1)
+15                     ]
+16    return np.maximum.reduce([mov_min_left, mov_min_right])
+17
+18
+19@add_spectrum_filter
+20@validate_call(config=dict(arbitrary_types_allowed=True))
+21def moving_minimum(
+22        old_spe: Spectrum,
+23        new_spe: Spectrum,
+24        window_size: int):
+25    """
+26    Moving minimum baseline estimator.
+27    Successive values are calculated as minima of rolling rectangular window.
+28    """
+29    new_spe.y = _moving_minimum(old_spe.y, window_size)
+30
+31
+32@add_spectrum_filter
+33@validate_call(config=dict(arbitrary_types_allowed=True))
+34def subtract_moving_minimum(
+35        old_spe: Spectrum,
+36        new_spe: Spectrum,
+37        window_size: int):
+38    new_spe.y = old_spe.y - _moving_minimum(old_spe.y, window_size)
+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + moving_minimum( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, window_size: int): + + + +
+ +
20@add_spectrum_filter
+21@validate_call(config=dict(arbitrary_types_allowed=True))
+22def moving_minimum(
+23        old_spe: Spectrum,
+24        new_spe: Spectrum,
+25        window_size: int):
+26    """
+27    Moving minimum baseline estimator.
+28    Successive values are calculated as minima of rolling rectangular window.
+29    """
+30    new_spe.y = _moving_minimum(old_spe.y, window_size)
+
+ + +

Moving minimum baseline estimator. +Successive values are calculated as minima of rolling rectangular window.

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + subtract_moving_minimum( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, window_size: int): + + + +
+ +
33@add_spectrum_filter
+34@validate_call(config=dict(arbitrary_types_allowed=True))
+35def subtract_moving_minimum(
+36        old_spe: Spectrum,
+37        new_spe: Spectrum,
+38        window_size: int):
+39    new_spe.y = old_spe.y - _moving_minimum(old_spe.y, window_size)
+
+ + + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/calc.html b/ramanchada2/spectrum/calc.html new file mode 100644 index 00000000..895f4946 --- /dev/null +++ b/ramanchada2/spectrum/calc.html @@ -0,0 +1,271 @@ + + + + + + + ramanchada2.spectrum.calc API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.calc

+ + + + + + +
1import os
+2import glob
+3
+4__all__ = [
+5    os.path.basename(f)[:-3]
+6    for f in glob.glob(os.path.dirname(__file__)+"/*.py")
+7    if os.path.isfile(f) and not os.path.basename(f).startswith('_')
+8]
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/calc/central_moments.html b/ramanchada2/spectrum/calc/central_moments.html new file mode 100644 index 00000000..7c995de6 --- /dev/null +++ b/ramanchada2/spectrum/calc/central_moments.html @@ -0,0 +1,333 @@ + + + + + + + ramanchada2.spectrum.calc.central_moments API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.calc.central_moments

+ + + + + + +
 1import numpy as np
+ 2from pydantic import validate_call
+ 3
+ 4from ramanchada2.misc.spectrum_deco import add_spectrum_method
+ 5
+ 6from ..spectrum import Spectrum
+ 7
+ 8
+ 9@add_spectrum_method
+10@validate_call(config=dict(arbitrary_types_allowed=True))
+11def central_moments(spe: Spectrum, /,
+12                    boundaries=(-np.inf, np.inf), moments=[1, 2, 3, 4], normalize=False
+13                    ):
+14    mom = dict()
+15    filter_idx = (spe.x >= boundaries[0]) & (spe.x < boundaries[1])
+16    x = spe.x[filter_idx]
+17    p = spe.y[filter_idx]
+18    p -= p.min()
+19    p /= p.sum()
+20    mom[1] = np.sum(x*p)
+21    mom[2] = np.sum((x - mom[1])**2 * p)
+22    for i in moments:
+23        if i <= 2:
+24            continue
+25        mom[i] = np.sum((x - mom[1])**i * p)
+26        if normalize and i > 2:
+27            mom[i] /= mom[2] ** i/2
+28    return [mom[i] for i in moments]
+
+ + +
+
+ +
+
@add_spectrum_method
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + central_moments( spe: ramanchada2.spectrum.spectrum.Spectrum, /, boundaries=(-inf, inf), moments=[1, 2, 3, 4], normalize=False): + + + +
+ +
10@add_spectrum_method
+11@validate_call(config=dict(arbitrary_types_allowed=True))
+12def central_moments(spe: Spectrum, /,
+13                    boundaries=(-np.inf, np.inf), moments=[1, 2, 3, 4], normalize=False
+14                    ):
+15    mom = dict()
+16    filter_idx = (spe.x >= boundaries[0]) & (spe.x < boundaries[1])
+17    x = spe.x[filter_idx]
+18    p = spe.y[filter_idx]
+19    p -= p.min()
+20    p /= p.sum()
+21    mom[1] = np.sum(x*p)
+22    mom[2] = np.sum((x - mom[1])**2 * p)
+23    for i in moments:
+24        if i <= 2:
+25            continue
+26        mom[i] = np.sum((x - mom[1])**i * p)
+27        if normalize and i > 2:
+28            mom[i] /= mom[2] ** i/2
+29    return [mom[i] for i in moments]
+
+ + + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/calibration.html b/ramanchada2/spectrum/calibration.html new file mode 100644 index 00000000..6980d53d --- /dev/null +++ b/ramanchada2/spectrum/calibration.html @@ -0,0 +1,278 @@ + + + + + + + ramanchada2.spectrum.calibration API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.calibration

+ + + + + + +
 1#!/usr/bin/env python3
+ 2
+ 3import os
+ 4import glob
+ 5
+ 6__all__ = [
+ 7    os.path.basename(f)[:-3]
+ 8    for f in glob.glob(os.path.dirname(__file__)+"/*.py")
+ 9    if os.path.isfile(f) and not os.path.basename(f).startswith('_')
+10]
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/calibration/by_deltas.html b/ramanchada2/spectrum/calibration/by_deltas.html new file mode 100644 index 00000000..8f714b60 --- /dev/null +++ b/ramanchada2/spectrum/calibration/by_deltas.html @@ -0,0 +1,959 @@ + + + + + + + ramanchada2.spectrum.calibration.by_deltas API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.calibration.by_deltas

+ + + + + + +
  1from typing import Dict, List, Literal, Union
+  2
+  3import lmfit
+  4import numpy as np
+  5import numpy.typing as npt
+  6from pydantic import NonNegativeInt, validate_call
+  7from scipy import interpolate
+  8
+  9from ramanchada2.misc.spectrum_deco import (add_spectrum_filter,
+ 10                                            add_spectrum_method)
+ 11
+ 12from ...misc import utils as rc2utils
+ 13from ..spectrum import Spectrum
+ 14
+ 15
+ 16class DeltaSpeModel:
+ 17    def __init__(self, deltas: Dict[float, float], shift=0, scale=1):
+ 18        components = list()
+ 19        self.params = lmfit.Parameters()
+ 20        self.minx = np.min(list(deltas.keys()))
+ 21        self.maxx = np.max(list(deltas.keys()))
+ 22        self.params.add('shift', value=shift, vary=True)
+ 23        self.params.add('scale', value=scale, vary=True, min=.1, max=10)
+ 24        self.params.add('scale2', value=0, vary=False, min=-.1, max=.1)
+ 25        self.params.add('scale3', value=0, vary=False, min=-1e-3, max=1e-3)
+ 26        self.params.add('sigma', value=1, vary=True)
+ 27        self.params.add('gain', value=1, vary=True)
+ 28        for comp_i, (k, v) in enumerate(deltas.items()):
+ 29            prefix = f'comp_{comp_i}'
+ 30            components.append(lmfit.models.GaussianModel(prefix=f'comp_{comp_i}_'))
+ 31            self.params.add(prefix + '_center', expr=f'shift + {k}*scale + {k}**2*scale2 + {k}**3*scale3', vary=False)
+ 32            self.params.add(prefix + '_amplitude', expr=f'{v}*gain', vary=False)
+ 33            self.params.add(prefix + '_sigma', expr='sigma', vary=False)
+ 34        self.model = np.sum(components)
+ 35
+ 36    def fit(self, spe, sigma, ax=None, no_fit=False):
+ 37        self.params['sigma'].set(value=sigma if sigma > 1 else 1)
+ 38        spe_conv = spe.convolve('gaussian', sigma=sigma)
+ 39        if no_fit:
+ 40            fit_res = self.model.fit(spe_conv.y, x=spe_conv.x, params=self.params, max_nfev=-1)
+ 41        else:
+ 42            fit_res = self.model.fit(spe_conv.y, x=spe_conv.x, params=self.params)
+ 43        self.params = fit_res.params
+ 44        if ax is not None:
+ 45            spe_conv.plot(ax=ax)
+ 46            ax.plot(spe_conv.x, fit_res.eval(x=spe_conv.x), 'r')
+ 47
+ 48
+ 49@add_spectrum_method
+ 50@validate_call(config=dict(arbitrary_types_allowed=True))
+ 51def calibrate_by_deltas_model(spe: Spectrum, /,
+ 52                              deltas: Dict[float, float],
+ 53                              convolution_steps: Union[None, List[float]] = [15, 1],
+ 54                              scale2=True, scale3=False,
+ 55                              init_guess: Literal[None, 'cumulative'] = None,
+ 56                              ax=None, **kwargs
+ 57                              ):
+ 58    """
+ 59    - Builds a composite model based on a set of user specified delta lines.
+ 60    - Initial guess is calculated based on 10-th and 90-th percentiles of
+ 61      the distributions.
+ 62
+ 63    The phasespace of the model is flat with big amount of narrow minima.
+ 64    In order to find the best fit, the experimental data are successively
+ 65    convolved with gaussians with different widths startign from wide to
+ 66    narrow. The model for the calibration is 3-th order polynomial, which
+ 67    potentialy can be changed for higher order polynomial. In order to avoid
+ 68    solving the inverse of the calibration function, the result is tabulated
+ 69    and interpolated linarly for each bin of the spectrum.
+ 70    This alogrithm is useful for corse calibration.
+ 71    """
+ 72    mod = DeltaSpeModel(deltas)
+ 73    spe_padded = spe
+ 74
+ 75    if init_guess == 'cumulative':
+ 76        deltasx = np.array(list(deltas.keys()))
+ 77
+ 78        deltas_cs = np.cumsum(list(deltas.values()))
+ 79        deltas_cs /= deltas_cs[-1]
+ 80
+ 81        deltas_idx10 = np.argmin(np.abs(deltas_cs-.1))
+ 82        deltas_idx90 = np.argmin(np.abs(deltas_cs-.9))
+ 83        x1, x2 = deltasx[[deltas_idx10, deltas_idx90]]
+ 84
+ 85        spe_cs = np.cumsum(
+ 86            spe_padded.moving_average(50).subtract_moving_minimum(10).moving_average(5).y)  # type: ignore
+ 87
+ 88        spe_cs /= spe_cs[-1]
+ 89        spe_idx10 = np.argmin(np.abs(spe_cs-.1))
+ 90        spe_idx90 = np.argmin(np.abs(spe_cs-.9))
+ 91        y1, y2 = spe_padded.x[[spe_idx10, spe_idx90]]
+ 92
+ 93        scale = (y1-y2)/(x1-x2)
+ 94        shift = -scale * x1 + y1
+ 95    else:
+ 96        scale = 1
+ 97        shift = 0
+ 98    gain = np.sum(spe.y)/np.sum(list(deltas.values()))
+ 99    mod.params['scale'].set(value=scale)
+100    mod.params['shift'].set(value=shift)
+101    mod.params['gain'].set(value=gain)
+102    mod.params['sigma'].set(value=2.5)
+103
+104    if ax is not None:
+105        spe_padded.plot(ax=ax)
+106
+107    if convolution_steps is not None:
+108        for sig in convolution_steps:
+109            mod.fit(spe=spe_padded, sigma=sig, ax=ax, **kwargs)
+110
+111    if scale2:
+112        mod.params['scale2'].set(vary=True, value=0)
+113        # mod.fit(spe_padded, sigma=1, ax=ax, **kwargs)
+114        mod.fit(spe_padded, sigma=0, ax=ax, **kwargs)
+115    if scale3:
+116        mod.params['scale2'].set(vary=True, value=0)
+117        mod.params['scale3'].set(vary=True, value=0)
+118        # mod.fit(spe_padded, sigma=1, ax=ax, **kwargs)
+119        mod.fit(spe_padded, sigma=0, ax=ax, **kwargs)
+120    return mod.model, mod.params
+121
+122
+123@add_spectrum_filter
+124@validate_call(config=dict(arbitrary_types_allowed=True))
+125def calibrate_by_deltas_filter(old_spe: Spectrum,
+126                               new_spe: Spectrum, /,
+127                               deltas: Dict[float, float],
+128                               convolution_steps,
+129                               init_guess=None,
+130                               **kwargs
+131                               ):
+132    mod, par = old_spe.calibrate_by_deltas_model(  # type: ignore
+133        deltas=deltas,
+134        convolution_steps=convolution_steps,
+135        init_guess=init_guess,
+136        **kwargs)
+137
+138    deltasx = np.array(list(deltas.keys()))
+139    dxl, dxr = deltasx[[0, -1]]
+140    xl = dxl - (dxr - dxl)
+141    xr = dxl + (dxr - dxl)
+142    true_x = np.linspace(xl, xr, len(old_spe.x)*6)
+143    meas_x = (par['shift'].value + true_x * par['scale'] +
+144              true_x**2 * par['scale2'] + true_x**3 * par['scale3'])
+145    x_cal = np.zeros_like(old_spe.x)
+146    for i in range(len(old_spe.x)):
+147        idx = np.argmax(meas_x > old_spe.x[i])
+148        pt_rto = (old_spe.x[i] - meas_x[idx-1])/(meas_x[idx] - meas_x[idx-1])
+149        x_cal[i] = (true_x[idx] - true_x[idx-1])*pt_rto + true_x[idx-1]
+150    new_spe.x = x_cal
+151
+152
+153@add_spectrum_filter
+154@validate_call(config=dict(arbitrary_types_allowed=True))
+155def xcal_fine(old_spe: Spectrum,
+156              new_spe: Spectrum, /, *,
+157              ref: Union[Dict[float, float], List[float]],
+158              should_fit=False,
+159              poly_order: NonNegativeInt,
+160              find_peaks_kw={},
+161              ):
+162
+163    if isinstance(ref, dict):
+164        ref_pos = np.array(list(ref.keys()))
+165    else:
+166        ref_pos = np.array(ref)
+167
+168    if should_fit:
+169        spe_pos_dict = old_spe.fit_peak_positions(center_err_threshold=1, find_peaks_kw=find_peaks_kw)  # type: ignore
+170    else:
+171        find_kw = dict(sharpening=None)
+172        find_kw.update(find_peaks_kw)
+173        spe_pos_dict = old_spe.find_peak_multipeak(**find_kw).get_pos_ampl_dict()  # type: ignore
+174    spe_cent = np.array(list(spe_pos_dict.keys()))
+175
+176    if poly_order == 0:
+177        p = rc2utils.align_shift(spe_cent, ref_pos)
+178        spe_cal = old_spe.scale_xaxis_fun(lambda x: x + p)  # type: ignore
+179    else:
+180        def cal_func(x, *a):
+181            return [par*(x/1000)**power for power, par in enumerate(a)]
+182
+183        p0 = np.resize([0, 1000, 0], poly_order + 1)
+184        p = rc2utils.align(spe_cent, ref_pos, p0=p0, func=cal_func)
+185        spe_cal = old_spe.scale_xaxis_fun(  # type: ignore
+186            (lambda x, *args: np.sum(cal_func(x, *args), axis=0)), args=p)
+187    new_spe.x = spe_cal.x
+188
+189
+190@add_spectrum_filter
+191@validate_call(config=dict(arbitrary_types_allowed=True))
+192def xcal_fine_RBF(old_spe: Spectrum,
+193                  new_spe: Spectrum, /, *,
+194                  ref: Union[Dict[float, float], List[float], npt.NDArray],
+195                  should_fit=False,
+196                  kernel: Literal['thin_plate_spline', 'cubic', 'quintic',
+197                                  'multiquadric', 'inverse_multiquadric',
+198                                  'inverse_quadratic', 'gaussian',
+199                                  ] = 'thin_plate_spline',
+200                  find_peaks_kw={},
+201                  **kwargs,
+202                  ):
+203    """Wavelength calibration using Radial basis fuction interpolation
+204
+205    Please be cautious! Interpolation might not be the most appropriate
+206    approach for this type of calibration.
+207
+208    **kwargs are passed to RBFInterpolator
+209    """
+210
+211    if isinstance(ref, dict):
+212        ref_pos = np.array(list(ref.keys()))
+213    else:
+214        ref_pos = np.array(ref)
+215
+216    if should_fit:
+217        spe_pos_dict = old_spe.fit_peak_positions(center_err_threshold=1, find_peaks_kw=find_peaks_kw)  # type: ignore
+218    else:
+219        find_kw = dict(sharpening=None)
+220        find_kw.update(find_peaks_kw)
+221        spe_pos_dict = old_spe.find_peak_multipeak(**find_kw).get_pos_ampl_dict()  # type: ignore
+222    spe_cent = np.array(list(spe_pos_dict.keys()))
+223
+224    spe_idx, ref_idx = rc2utils.find_closest_pairs_idx(spe_cent, ref_pos)
+225    if len(ref_idx) == 1:
+226        _offset = (ref_pos[ref_idx][0] - spe_cent[spe_idx][0])
+227        new_spe.x = old_spe.x + _offset
+228    else:
+229        kwargs["kernel"] = kernel
+230        interp = interpolate.RBFInterpolator(spe_cent[spe_idx].reshape(-1, 1), ref_pos[ref_idx], **kwargs)
+231        new_spe.x = interp(old_spe.x.reshape(-1, 1))
+
+ + +
+
+ +
+ + class + DeltaSpeModel: + + + +
+ +
17class DeltaSpeModel:
+18    def __init__(self, deltas: Dict[float, float], shift=0, scale=1):
+19        components = list()
+20        self.params = lmfit.Parameters()
+21        self.minx = np.min(list(deltas.keys()))
+22        self.maxx = np.max(list(deltas.keys()))
+23        self.params.add('shift', value=shift, vary=True)
+24        self.params.add('scale', value=scale, vary=True, min=.1, max=10)
+25        self.params.add('scale2', value=0, vary=False, min=-.1, max=.1)
+26        self.params.add('scale3', value=0, vary=False, min=-1e-3, max=1e-3)
+27        self.params.add('sigma', value=1, vary=True)
+28        self.params.add('gain', value=1, vary=True)
+29        for comp_i, (k, v) in enumerate(deltas.items()):
+30            prefix = f'comp_{comp_i}'
+31            components.append(lmfit.models.GaussianModel(prefix=f'comp_{comp_i}_'))
+32            self.params.add(prefix + '_center', expr=f'shift + {k}*scale + {k}**2*scale2 + {k}**3*scale3', vary=False)
+33            self.params.add(prefix + '_amplitude', expr=f'{v}*gain', vary=False)
+34            self.params.add(prefix + '_sigma', expr='sigma', vary=False)
+35        self.model = np.sum(components)
+36
+37    def fit(self, spe, sigma, ax=None, no_fit=False):
+38        self.params['sigma'].set(value=sigma if sigma > 1 else 1)
+39        spe_conv = spe.convolve('gaussian', sigma=sigma)
+40        if no_fit:
+41            fit_res = self.model.fit(spe_conv.y, x=spe_conv.x, params=self.params, max_nfev=-1)
+42        else:
+43            fit_res = self.model.fit(spe_conv.y, x=spe_conv.x, params=self.params)
+44        self.params = fit_res.params
+45        if ax is not None:
+46            spe_conv.plot(ax=ax)
+47            ax.plot(spe_conv.x, fit_res.eval(x=spe_conv.x), 'r')
+
+ + + + +
+ +
+ + DeltaSpeModel(deltas: Dict[float, float], shift=0, scale=1) + + + +
+ +
18    def __init__(self, deltas: Dict[float, float], shift=0, scale=1):
+19        components = list()
+20        self.params = lmfit.Parameters()
+21        self.minx = np.min(list(deltas.keys()))
+22        self.maxx = np.max(list(deltas.keys()))
+23        self.params.add('shift', value=shift, vary=True)
+24        self.params.add('scale', value=scale, vary=True, min=.1, max=10)
+25        self.params.add('scale2', value=0, vary=False, min=-.1, max=.1)
+26        self.params.add('scale3', value=0, vary=False, min=-1e-3, max=1e-3)
+27        self.params.add('sigma', value=1, vary=True)
+28        self.params.add('gain', value=1, vary=True)
+29        for comp_i, (k, v) in enumerate(deltas.items()):
+30            prefix = f'comp_{comp_i}'
+31            components.append(lmfit.models.GaussianModel(prefix=f'comp_{comp_i}_'))
+32            self.params.add(prefix + '_center', expr=f'shift + {k}*scale + {k}**2*scale2 + {k}**3*scale3', vary=False)
+33            self.params.add(prefix + '_amplitude', expr=f'{v}*gain', vary=False)
+34            self.params.add(prefix + '_sigma', expr='sigma', vary=False)
+35        self.model = np.sum(components)
+
+ + + + +
+
+
+ params + + +
+ + + + +
+
+
+ minx + + +
+ + + + +
+
+
+ maxx + + +
+ + + + +
+
+
+ model + + +
+ + + + +
+
+ +
+ + def + fit(self, spe, sigma, ax=None, no_fit=False): + + + +
+ +
37    def fit(self, spe, sigma, ax=None, no_fit=False):
+38        self.params['sigma'].set(value=sigma if sigma > 1 else 1)
+39        spe_conv = spe.convolve('gaussian', sigma=sigma)
+40        if no_fit:
+41            fit_res = self.model.fit(spe_conv.y, x=spe_conv.x, params=self.params, max_nfev=-1)
+42        else:
+43            fit_res = self.model.fit(spe_conv.y, x=spe_conv.x, params=self.params)
+44        self.params = fit_res.params
+45        if ax is not None:
+46            spe_conv.plot(ax=ax)
+47            ax.plot(spe_conv.x, fit_res.eval(x=spe_conv.x), 'r')
+
+ + + + +
+
+
+ +
+
@add_spectrum_method
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + calibrate_by_deltas_model( spe: ramanchada2.spectrum.spectrum.Spectrum, /, deltas: Dict[float, float], convolution_steps: Optional[List[float]] = [15, 1], scale2=True, scale3=False, init_guess: Literal[None, 'cumulative'] = None, ax=None, **kwargs): + + + +
+ +
 50@add_spectrum_method
+ 51@validate_call(config=dict(arbitrary_types_allowed=True))
+ 52def calibrate_by_deltas_model(spe: Spectrum, /,
+ 53                              deltas: Dict[float, float],
+ 54                              convolution_steps: Union[None, List[float]] = [15, 1],
+ 55                              scale2=True, scale3=False,
+ 56                              init_guess: Literal[None, 'cumulative'] = None,
+ 57                              ax=None, **kwargs
+ 58                              ):
+ 59    """
+ 60    - Builds a composite model based on a set of user specified delta lines.
+ 61    - Initial guess is calculated based on 10-th and 90-th percentiles of
+ 62      the distributions.
+ 63
+ 64    The phasespace of the model is flat with big amount of narrow minima.
+ 65    In order to find the best fit, the experimental data are successively
+ 66    convolved with gaussians with different widths startign from wide to
+ 67    narrow. The model for the calibration is 3-th order polynomial, which
+ 68    potentialy can be changed for higher order polynomial. In order to avoid
+ 69    solving the inverse of the calibration function, the result is tabulated
+ 70    and interpolated linarly for each bin of the spectrum.
+ 71    This alogrithm is useful for corse calibration.
+ 72    """
+ 73    mod = DeltaSpeModel(deltas)
+ 74    spe_padded = spe
+ 75
+ 76    if init_guess == 'cumulative':
+ 77        deltasx = np.array(list(deltas.keys()))
+ 78
+ 79        deltas_cs = np.cumsum(list(deltas.values()))
+ 80        deltas_cs /= deltas_cs[-1]
+ 81
+ 82        deltas_idx10 = np.argmin(np.abs(deltas_cs-.1))
+ 83        deltas_idx90 = np.argmin(np.abs(deltas_cs-.9))
+ 84        x1, x2 = deltasx[[deltas_idx10, deltas_idx90]]
+ 85
+ 86        spe_cs = np.cumsum(
+ 87            spe_padded.moving_average(50).subtract_moving_minimum(10).moving_average(5).y)  # type: ignore
+ 88
+ 89        spe_cs /= spe_cs[-1]
+ 90        spe_idx10 = np.argmin(np.abs(spe_cs-.1))
+ 91        spe_idx90 = np.argmin(np.abs(spe_cs-.9))
+ 92        y1, y2 = spe_padded.x[[spe_idx10, spe_idx90]]
+ 93
+ 94        scale = (y1-y2)/(x1-x2)
+ 95        shift = -scale * x1 + y1
+ 96    else:
+ 97        scale = 1
+ 98        shift = 0
+ 99    gain = np.sum(spe.y)/np.sum(list(deltas.values()))
+100    mod.params['scale'].set(value=scale)
+101    mod.params['shift'].set(value=shift)
+102    mod.params['gain'].set(value=gain)
+103    mod.params['sigma'].set(value=2.5)
+104
+105    if ax is not None:
+106        spe_padded.plot(ax=ax)
+107
+108    if convolution_steps is not None:
+109        for sig in convolution_steps:
+110            mod.fit(spe=spe_padded, sigma=sig, ax=ax, **kwargs)
+111
+112    if scale2:
+113        mod.params['scale2'].set(vary=True, value=0)
+114        # mod.fit(spe_padded, sigma=1, ax=ax, **kwargs)
+115        mod.fit(spe_padded, sigma=0, ax=ax, **kwargs)
+116    if scale3:
+117        mod.params['scale2'].set(vary=True, value=0)
+118        mod.params['scale3'].set(vary=True, value=0)
+119        # mod.fit(spe_padded, sigma=1, ax=ax, **kwargs)
+120        mod.fit(spe_padded, sigma=0, ax=ax, **kwargs)
+121    return mod.model, mod.params
+
+ + +
    +
  • Builds a composite model based on a set of user specified delta lines.
  • +
  • Initial guess is calculated based on 10-th and 90-th percentiles of +the distributions.
  • +
+ +

The phasespace of the model is flat with big amount of narrow minima. +In order to find the best fit, the experimental data are successively +convolved with gaussians with different widths startign from wide to +narrow. The model for the calibration is 3-th order polynomial, which +potentialy can be changed for higher order polynomial. In order to avoid +solving the inverse of the calibration function, the result is tabulated +and interpolated linarly for each bin of the spectrum. +This alogrithm is useful for corse calibration.

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + calibrate_by_deltas_filter( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, /, deltas: Dict[float, float], convolution_steps, init_guess=None, **kwargs): + + + +
+ +
124@add_spectrum_filter
+125@validate_call(config=dict(arbitrary_types_allowed=True))
+126def calibrate_by_deltas_filter(old_spe: Spectrum,
+127                               new_spe: Spectrum, /,
+128                               deltas: Dict[float, float],
+129                               convolution_steps,
+130                               init_guess=None,
+131                               **kwargs
+132                               ):
+133    mod, par = old_spe.calibrate_by_deltas_model(  # type: ignore
+134        deltas=deltas,
+135        convolution_steps=convolution_steps,
+136        init_guess=init_guess,
+137        **kwargs)
+138
+139    deltasx = np.array(list(deltas.keys()))
+140    dxl, dxr = deltasx[[0, -1]]
+141    xl = dxl - (dxr - dxl)
+142    xr = dxl + (dxr - dxl)
+143    true_x = np.linspace(xl, xr, len(old_spe.x)*6)
+144    meas_x = (par['shift'].value + true_x * par['scale'] +
+145              true_x**2 * par['scale2'] + true_x**3 * par['scale3'])
+146    x_cal = np.zeros_like(old_spe.x)
+147    for i in range(len(old_spe.x)):
+148        idx = np.argmax(meas_x > old_spe.x[i])
+149        pt_rto = (old_spe.x[i] - meas_x[idx-1])/(meas_x[idx] - meas_x[idx-1])
+150        x_cal[i] = (true_x[idx] - true_x[idx-1])*pt_rto + true_x[idx-1]
+151    new_spe.x = x_cal
+
+ + + + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + xcal_fine( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, /, *, ref: Union[Dict[float, float], List[float]], should_fit=False, poly_order: typing.Annotated[int, Ge(ge=0)], find_peaks_kw={}): + + + +
+ +
154@add_spectrum_filter
+155@validate_call(config=dict(arbitrary_types_allowed=True))
+156def xcal_fine(old_spe: Spectrum,
+157              new_spe: Spectrum, /, *,
+158              ref: Union[Dict[float, float], List[float]],
+159              should_fit=False,
+160              poly_order: NonNegativeInt,
+161              find_peaks_kw={},
+162              ):
+163
+164    if isinstance(ref, dict):
+165        ref_pos = np.array(list(ref.keys()))
+166    else:
+167        ref_pos = np.array(ref)
+168
+169    if should_fit:
+170        spe_pos_dict = old_spe.fit_peak_positions(center_err_threshold=1, find_peaks_kw=find_peaks_kw)  # type: ignore
+171    else:
+172        find_kw = dict(sharpening=None)
+173        find_kw.update(find_peaks_kw)
+174        spe_pos_dict = old_spe.find_peak_multipeak(**find_kw).get_pos_ampl_dict()  # type: ignore
+175    spe_cent = np.array(list(spe_pos_dict.keys()))
+176
+177    if poly_order == 0:
+178        p = rc2utils.align_shift(spe_cent, ref_pos)
+179        spe_cal = old_spe.scale_xaxis_fun(lambda x: x + p)  # type: ignore
+180    else:
+181        def cal_func(x, *a):
+182            return [par*(x/1000)**power for power, par in enumerate(a)]
+183
+184        p0 = np.resize([0, 1000, 0], poly_order + 1)
+185        p = rc2utils.align(spe_cent, ref_pos, p0=p0, func=cal_func)
+186        spe_cal = old_spe.scale_xaxis_fun(  # type: ignore
+187            (lambda x, *args: np.sum(cal_func(x, *args), axis=0)), args=p)
+188    new_spe.x = spe_cal.x
+
+ + + + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + xcal_fine_RBF( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, /, *, ref: Union[Dict[float, float], List[float], numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]]], should_fit=False, kernel: Literal['thin_plate_spline', 'cubic', 'quintic', 'multiquadric', 'inverse_multiquadric', 'inverse_quadratic', 'gaussian'] = 'thin_plate_spline', find_peaks_kw={}, **kwargs): + + + +
+ +
191@add_spectrum_filter
+192@validate_call(config=dict(arbitrary_types_allowed=True))
+193def xcal_fine_RBF(old_spe: Spectrum,
+194                  new_spe: Spectrum, /, *,
+195                  ref: Union[Dict[float, float], List[float], npt.NDArray],
+196                  should_fit=False,
+197                  kernel: Literal['thin_plate_spline', 'cubic', 'quintic',
+198                                  'multiquadric', 'inverse_multiquadric',
+199                                  'inverse_quadratic', 'gaussian',
+200                                  ] = 'thin_plate_spline',
+201                  find_peaks_kw={},
+202                  **kwargs,
+203                  ):
+204    """Wavelength calibration using Radial basis fuction interpolation
+205
+206    Please be cautious! Interpolation might not be the most appropriate
+207    approach for this type of calibration.
+208
+209    **kwargs are passed to RBFInterpolator
+210    """
+211
+212    if isinstance(ref, dict):
+213        ref_pos = np.array(list(ref.keys()))
+214    else:
+215        ref_pos = np.array(ref)
+216
+217    if should_fit:
+218        spe_pos_dict = old_spe.fit_peak_positions(center_err_threshold=1, find_peaks_kw=find_peaks_kw)  # type: ignore
+219    else:
+220        find_kw = dict(sharpening=None)
+221        find_kw.update(find_peaks_kw)
+222        spe_pos_dict = old_spe.find_peak_multipeak(**find_kw).get_pos_ampl_dict()  # type: ignore
+223    spe_cent = np.array(list(spe_pos_dict.keys()))
+224
+225    spe_idx, ref_idx = rc2utils.find_closest_pairs_idx(spe_cent, ref_pos)
+226    if len(ref_idx) == 1:
+227        _offset = (ref_pos[ref_idx][0] - spe_cent[spe_idx][0])
+228        new_spe.x = old_spe.x + _offset
+229    else:
+230        kwargs["kernel"] = kernel
+231        interp = interpolate.RBFInterpolator(spe_cent[spe_idx].reshape(-1, 1), ref_pos[ref_idx], **kwargs)
+232        new_spe.x = interp(old_spe.x.reshape(-1, 1))
+
+ + +

Wavelength calibration using Radial basis fuction interpolation

+ +

Please be cautious! Interpolation might not be the most appropriate +approach for this type of calibration.

+ +

**kwargs are passed to RBFInterpolator

+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/calibration/change_x_units.html b/ramanchada2/spectrum/calibration/change_x_units.html new file mode 100644 index 00000000..5fcb2c43 --- /dev/null +++ b/ramanchada2/spectrum/calibration/change_x_units.html @@ -0,0 +1,529 @@ + + + + + + + ramanchada2.spectrum.calibration.change_x_units API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.calibration.change_x_units

+ + + + + + +
 1from pydantic import validate_call
+ 2
+ 3from ramanchada2.misc.spectrum_deco import (add_spectrum_filter,
+ 4                                            add_spectrum_method)
+ 5from ramanchada2.misc.utils.ramanshift_to_wavelength import \
+ 6    abs_nm_to_shift_cm_1 as util_abs_nm_to_shift_cm_1
+ 7from ramanchada2.misc.utils.ramanshift_to_wavelength import \
+ 8    shift_cm_1_to_abs_nm as util_shift_cm_1_to_abs_nm
+ 9
+10from ..spectrum import Spectrum
+11
+12
+13@add_spectrum_method
+14@validate_call(config=dict(arbitrary_types_allowed=True))
+15def abs_nm_to_shift_cm_1(spe: Spectrum, /,
+16                         laser_wave_length_nm: float):
+17    """
+18    Convert wavelength to Ramanshift in wavenumber
+19
+20    Args:
+21        spe: internal use only
+22        laser_wave_length_nm: Laser wave length
+23
+24    Returns: Corrected x-values
+25    """
+26    return util_abs_nm_to_shift_cm_1(spe.x, laser_wave_length_nm=laser_wave_length_nm)
+27
+28
+29@add_spectrum_method
+30@validate_call(config=dict(arbitrary_types_allowed=True))
+31def shift_cm_1_to_abs_nm(spe: Spectrum, /,
+32                         laser_wave_length_nm: float):
+33    """
+34    Convert Ramanshift in wavenumber to wavelength
+35
+36    Args:
+37        spe: internal use only
+38        laser_wave_length_nm: Laser wave length
+39
+40    Returns: Corrected x-values
+41    """
+42    return util_shift_cm_1_to_abs_nm(spe.x, laser_wave_length_nm=laser_wave_length_nm)
+43
+44
+45@add_spectrum_filter
+46@validate_call(config=dict(arbitrary_types_allowed=True))
+47def abs_nm_to_shift_cm_1_filter(old_spe: Spectrum,
+48                                new_spe: Spectrum, /,
+49                                laser_wave_length_nm: float):
+50    """
+51    Convert wavelength to Ramanshift in wavenumber
+52
+53    Args:
+54        spe: internal use only
+55        laser_wave_length_nm: Laser wave length
+56
+57    Returns: Spectrum with corrected x-values
+58    """
+59    new_spe.x = util_abs_nm_to_shift_cm_1(old_spe.x, laser_wave_length_nm=laser_wave_length_nm)
+60
+61
+62@add_spectrum_filter
+63@validate_call(config=dict(arbitrary_types_allowed=True))
+64def shift_cm_1_to_abs_nm_filter(old_spe: Spectrum,
+65                                new_spe: Spectrum, /,
+66                                laser_wave_length_nm: float):
+67    """
+68    Convert Ramanshift in wavenumber to wavelength
+69
+70    Args:
+71        spe: internal use only
+72        laser_wave_length_nm: Laser wave length
+73
+74    Returns: Spectrum with corrected x-values
+75    """
+76    new_spe.x = util_shift_cm_1_to_abs_nm(old_spe.x, laser_wave_length_nm=laser_wave_length_nm)
+
+ + +
+
+ +
+
@add_spectrum_method
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + abs_nm_to_shift_cm_1( spe: ramanchada2.spectrum.spectrum.Spectrum, /, laser_wave_length_nm: float): + + + +
+ +
14@add_spectrum_method
+15@validate_call(config=dict(arbitrary_types_allowed=True))
+16def abs_nm_to_shift_cm_1(spe: Spectrum, /,
+17                         laser_wave_length_nm: float):
+18    """
+19    Convert wavelength to Ramanshift in wavenumber
+20
+21    Args:
+22        spe: internal use only
+23        laser_wave_length_nm: Laser wave length
+24
+25    Returns: Corrected x-values
+26    """
+27    return util_abs_nm_to_shift_cm_1(spe.x, laser_wave_length_nm=laser_wave_length_nm)
+
+ + +

Convert wavelength to Ramanshift in wavenumber

+ +
Arguments:
+ +
    +
  • spe: internal use only
  • +
  • laser_wave_length_nm: Laser wave length
  • +
+ +

Returns: Corrected x-values

+
+ + +
+
+ +
+
@add_spectrum_method
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + shift_cm_1_to_abs_nm( spe: ramanchada2.spectrum.spectrum.Spectrum, /, laser_wave_length_nm: float): + + + +
+ +
30@add_spectrum_method
+31@validate_call(config=dict(arbitrary_types_allowed=True))
+32def shift_cm_1_to_abs_nm(spe: Spectrum, /,
+33                         laser_wave_length_nm: float):
+34    """
+35    Convert Ramanshift in wavenumber to wavelength
+36
+37    Args:
+38        spe: internal use only
+39        laser_wave_length_nm: Laser wave length
+40
+41    Returns: Corrected x-values
+42    """
+43    return util_shift_cm_1_to_abs_nm(spe.x, laser_wave_length_nm=laser_wave_length_nm)
+
+ + +

Convert Ramanshift in wavenumber to wavelength

+ +
Arguments:
+ +
    +
  • spe: internal use only
  • +
  • laser_wave_length_nm: Laser wave length
  • +
+ +

Returns: Corrected x-values

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + abs_nm_to_shift_cm_1_filter( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, /, laser_wave_length_nm: float): + + + +
+ +
46@add_spectrum_filter
+47@validate_call(config=dict(arbitrary_types_allowed=True))
+48def abs_nm_to_shift_cm_1_filter(old_spe: Spectrum,
+49                                new_spe: Spectrum, /,
+50                                laser_wave_length_nm: float):
+51    """
+52    Convert wavelength to Ramanshift in wavenumber
+53
+54    Args:
+55        spe: internal use only
+56        laser_wave_length_nm: Laser wave length
+57
+58    Returns: Spectrum with corrected x-values
+59    """
+60    new_spe.x = util_abs_nm_to_shift_cm_1(old_spe.x, laser_wave_length_nm=laser_wave_length_nm)
+
+ + +

Convert wavelength to Ramanshift in wavenumber

+ +
Arguments:
+ +
    +
  • spe: internal use only
  • +
  • laser_wave_length_nm: Laser wave length
  • +
+ +

Returns: Spectrum with corrected x-values

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + shift_cm_1_to_abs_nm_filter( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, /, laser_wave_length_nm: float): + + + +
+ +
63@add_spectrum_filter
+64@validate_call(config=dict(arbitrary_types_allowed=True))
+65def shift_cm_1_to_abs_nm_filter(old_spe: Spectrum,
+66                                new_spe: Spectrum, /,
+67                                laser_wave_length_nm: float):
+68    """
+69    Convert Ramanshift in wavenumber to wavelength
+70
+71    Args:
+72        spe: internal use only
+73        laser_wave_length_nm: Laser wave length
+74
+75    Returns: Spectrum with corrected x-values
+76    """
+77    new_spe.x = util_shift_cm_1_to_abs_nm(old_spe.x, laser_wave_length_nm=laser_wave_length_nm)
+
+ + +

Convert Ramanshift in wavenumber to wavelength

+ +
Arguments:
+ +
    +
  • spe: internal use only
  • +
  • laser_wave_length_nm: Laser wave length
  • +
+ +

Returns: Spectrum with corrected x-values

+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/calibration/normalize.html b/ramanchada2/spectrum/calibration/normalize.html new file mode 100644 index 00000000..9a0eb79d --- /dev/null +++ b/ramanchada2/spectrum/calibration/normalize.html @@ -0,0 +1,383 @@ + + + + + + + ramanchada2.spectrum.calibration.normalize API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.calibration.normalize

+ + + + + + +
 1from typing import Literal
+ 2
+ 3import numpy as np
+ 4from pydantic import validate_call
+ 5
+ 6from ramanchada2.misc.spectrum_deco import add_spectrum_filter
+ 7
+ 8from ..spectrum import Spectrum
+ 9
+10
+11@add_spectrum_filter
+12@validate_call(config=dict(arbitrary_types_allowed=True))
+13def normalize(old_spe: Spectrum,
+14              new_spe: Spectrum, /,
+15              strategy: Literal['unity', 'min_unity', 'unity_density', 'unity_area', 'minmax',
+16                                'L1', 'L2'] = 'minmax'):
+17    """
+18    Normalize the spectrum.
+19
+20    Args:
+21        strategy:
+22            If `unity`: normalize to `sum(y)`. If `min_unity`: subtract the minimum and normalize to 'unity'. If
+23            `unity_density`: normalize to `Σ(y_i*Δx_i)`. If `unity_area`: same as `unity_density`. If `minmax`: scale
+24            amplitudes in range `[0, 1]`. If 'L1' or 'L2': L1 or L2 norm without subtracting the pedestal.
+25    """
+26    if strategy == 'unity':
+27        res = old_spe.y
+28        res /= np.sum(res)
+29        new_spe.y = res
+30    elif strategy == 'min_unity':
+31        res = old_spe.y - np.min(old_spe.y)
+32        res /= np.sum(res)
+33        new_spe.y = res
+34    if strategy == 'unity_density' or strategy == 'unity_area':
+35        res = old_spe.y
+36        res /= np.sum(res * np.diff(old_spe.x_bin_boundaries))
+37        new_spe.y = res
+38    elif strategy == 'minmax':
+39        res = old_spe.y - np.min(old_spe.y)
+40        res /= np.max(res)
+41        new_spe.y = res
+42    elif strategy == 'L1':
+43        res = old_spe.y
+44        res /= np.linalg.norm(res, 1)
+45        new_spe.y = res
+46    elif strategy == 'L2':
+47        res = old_spe.y
+48        res /= np.linalg.norm(res)
+49        new_spe.y = res
+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + normalize( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, /, strategy: Literal['unity', 'min_unity', 'unity_density', 'unity_area', 'minmax', 'L1', 'L2'] = 'minmax'): + + + +
+ +
12@add_spectrum_filter
+13@validate_call(config=dict(arbitrary_types_allowed=True))
+14def normalize(old_spe: Spectrum,
+15              new_spe: Spectrum, /,
+16              strategy: Literal['unity', 'min_unity', 'unity_density', 'unity_area', 'minmax',
+17                                'L1', 'L2'] = 'minmax'):
+18    """
+19    Normalize the spectrum.
+20
+21    Args:
+22        strategy:
+23            If `unity`: normalize to `sum(y)`. If `min_unity`: subtract the minimum and normalize to 'unity'. If
+24            `unity_density`: normalize to `Σ(y_i*Δx_i)`. If `unity_area`: same as `unity_density`. If `minmax`: scale
+25            amplitudes in range `[0, 1]`. If 'L1' or 'L2': L1 or L2 norm without subtracting the pedestal.
+26    """
+27    if strategy == 'unity':
+28        res = old_spe.y
+29        res /= np.sum(res)
+30        new_spe.y = res
+31    elif strategy == 'min_unity':
+32        res = old_spe.y - np.min(old_spe.y)
+33        res /= np.sum(res)
+34        new_spe.y = res
+35    if strategy == 'unity_density' or strategy == 'unity_area':
+36        res = old_spe.y
+37        res /= np.sum(res * np.diff(old_spe.x_bin_boundaries))
+38        new_spe.y = res
+39    elif strategy == 'minmax':
+40        res = old_spe.y - np.min(old_spe.y)
+41        res /= np.max(res)
+42        new_spe.y = res
+43    elif strategy == 'L1':
+44        res = old_spe.y
+45        res /= np.linalg.norm(res, 1)
+46        new_spe.y = res
+47    elif strategy == 'L2':
+48        res = old_spe.y
+49        res /= np.linalg.norm(res)
+50        new_spe.y = res
+
+ + +

Normalize the spectrum.

+ +
Arguments:
+ +
    +
  • strategy: If unity: normalize to sum(y). If min_unity: subtract the minimum and normalize to 'unity'. If +unity_density: normalize to Σ(y_i*Δx_i). If unity_area: same as unity_density. If minmax: scale +amplitudes in range [0, 1]. If 'L1' or 'L2': L1 or L2 norm without subtracting the pedestal.
  • +
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/calibration/scale_xaxis.html b/ramanchada2/spectrum/calibration/scale_xaxis.html new file mode 100644 index 00000000..f0675f99 --- /dev/null +++ b/ramanchada2/spectrum/calibration/scale_xaxis.html @@ -0,0 +1,445 @@ + + + + + + + ramanchada2.spectrum.calibration.scale_xaxis API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.calibration.scale_xaxis

+ + + + + + +
 1from typing import Callable, Union
+ 2
+ 3import numpy as np
+ 4import numpy.typing as npt
+ 5from pydantic import validate_call
+ 6
+ 7from ramanchada2.misc.spectrum_deco import add_spectrum_filter
+ 8
+ 9from ..spectrum import Spectrum
+10
+11
+12@add_spectrum_filter
+13@validate_call(config=dict(arbitrary_types_allowed=True))
+14def scale_xaxis_linear(old_spe: Spectrum,
+15                       new_spe: Spectrum, /,
+16                       factor: float = 1,
+17                       preserve_integral: bool = False):
+18    r"""
+19    Scale x-axis using a factor.
+20
+21    Args:
+22        old_spe: internal use only
+23        new_spe: internal use only
+24        factor: Defaults to 1.
+25            Multiply x-axis values with `factor`
+26        preserve_integral: optional. Defaults to False.
+27            If True, preserves the integral in sence
+28            $\sum y_{orig;\,i}*{\Delta x_{orig}}_i = \sum y_{new;\,i}*{\Delta x_{new}}_i = $
+29    Returns: Corrected spectrum
+30    """
+31    new_spe.x = old_spe.x * factor
+32    if preserve_integral:
+33        new_spe.y = old_spe.y / factor
+34
+35
+36@add_spectrum_filter
+37@validate_call(config=dict(arbitrary_types_allowed=True))
+38def scale_xaxis_fun(old_spe: Spectrum,
+39                    new_spe: Spectrum, /,
+40                    fun: Callable[[Union[int, npt.NDArray]], float],
+41                    args=[]):
+42    """
+43    Apply arbitrary calibration function to the x-axis values.
+44
+45    Args:
+46        old_spe: internal use only
+47        new_spe: internal use only
+48        fun: function to be applied
+49        args: Additional arguments to the provided functions
+50
+51    Returns: Corrected spectrum
+52
+53    Raises:
+54        ValueError: If the new x-values are not strictly monotonically increasing.
+55    """
+56    new_spe.x = fun(old_spe.x, *args)
+57    if (np.diff(new_spe.x) < 0).any():
+58        raise ValueError('The provided function is not a monoton increasing funciton.')
+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + scale_xaxis_linear( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, /, factor: float = 1, preserve_integral: bool = False): + + + +
+ +
13@add_spectrum_filter
+14@validate_call(config=dict(arbitrary_types_allowed=True))
+15def scale_xaxis_linear(old_spe: Spectrum,
+16                       new_spe: Spectrum, /,
+17                       factor: float = 1,
+18                       preserve_integral: bool = False):
+19    r"""
+20    Scale x-axis using a factor.
+21
+22    Args:
+23        old_spe: internal use only
+24        new_spe: internal use only
+25        factor: Defaults to 1.
+26            Multiply x-axis values with `factor`
+27        preserve_integral: optional. Defaults to False.
+28            If True, preserves the integral in sence
+29            $\sum y_{orig;\,i}*{\Delta x_{orig}}_i = \sum y_{new;\,i}*{\Delta x_{new}}_i = $
+30    Returns: Corrected spectrum
+31    """
+32    new_spe.x = old_spe.x * factor
+33    if preserve_integral:
+34        new_spe.y = old_spe.y / factor
+
+ + +

Scale x-axis using a factor.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • factor: Defaults to 1. +Multiply x-axis values with factor
  • +
  • preserve_integral: optional. Defaults to False. +If True, preserves the integral in sence +$\sum y_{orig;\,i}*{\Delta x_{orig}}_i = \sum y_{new;\,i}*{\Delta x_{new}}_i = $
  • +
+ +

Returns: Corrected spectrum

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + scale_xaxis_fun( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, /, fun: Callable[[Union[int, numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]]]], float], args=[]): + + + +
+ +
37@add_spectrum_filter
+38@validate_call(config=dict(arbitrary_types_allowed=True))
+39def scale_xaxis_fun(old_spe: Spectrum,
+40                    new_spe: Spectrum, /,
+41                    fun: Callable[[Union[int, npt.NDArray]], float],
+42                    args=[]):
+43    """
+44    Apply arbitrary calibration function to the x-axis values.
+45
+46    Args:
+47        old_spe: internal use only
+48        new_spe: internal use only
+49        fun: function to be applied
+50        args: Additional arguments to the provided functions
+51
+52    Returns: Corrected spectrum
+53
+54    Raises:
+55        ValueError: If the new x-values are not strictly monotonically increasing.
+56    """
+57    new_spe.x = fun(old_spe.x, *args)
+58    if (np.diff(new_spe.x) < 0).any():
+59        raise ValueError('The provided function is not a monoton increasing funciton.')
+
+ + +

Apply arbitrary calibration function to the x-axis values.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • fun: function to be applied
  • +
  • args: Additional arguments to the provided functions
  • +
+ +

Returns: Corrected spectrum

+ +
Raises:
+ +
    +
  • ValueError: If the new x-values are not strictly monotonically increasing.
  • +
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/calibration/scale_yaxis.html b/ramanchada2/spectrum/calibration/scale_yaxis.html new file mode 100644 index 00000000..2cf0e1bb --- /dev/null +++ b/ramanchada2/spectrum/calibration/scale_yaxis.html @@ -0,0 +1,345 @@ + + + + + + + ramanchada2.spectrum.calibration.scale_yaxis API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.calibration.scale_yaxis

+ + + + + + +
 1from pydantic import validate_call
+ 2
+ 3from ramanchada2.misc.spectrum_deco import add_spectrum_filter
+ 4
+ 5from ..spectrum import Spectrum
+ 6
+ 7
+ 8@add_spectrum_filter
+ 9@validate_call(config=dict(arbitrary_types_allowed=True))
+10def scale_yaxis_linear(old_spe: Spectrum,
+11                       new_spe: Spectrum,
+12                       factor: float = 1):
+13    """
+14    Scale y-axis values
+15
+16    This function provides the same result as `spe*const`
+17
+18    Args:
+19        old_spe: internal use only
+20        new_spe: internal use only
+21        factor optional. Defaults to 1.
+22            Y-values scaling factor
+23
+24    Returns: corrected spectrum
+25    """
+26    new_spe.y = old_spe.y * factor
+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + scale_yaxis_linear( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, factor: float = 1): + + + +
+ +
 9@add_spectrum_filter
+10@validate_call(config=dict(arbitrary_types_allowed=True))
+11def scale_yaxis_linear(old_spe: Spectrum,
+12                       new_spe: Spectrum,
+13                       factor: float = 1):
+14    """
+15    Scale y-axis values
+16
+17    This function provides the same result as `spe*const`
+18
+19    Args:
+20        old_spe: internal use only
+21        new_spe: internal use only
+22        factor optional. Defaults to 1.
+23            Y-values scaling factor
+24
+25    Returns: corrected spectrum
+26    """
+27    new_spe.y = old_spe.y * factor
+
+ + +

Scale y-axis values

+ +

This function provides the same result as spe*const

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • factor optional. Defaults to 1. +Y-values scaling factor
  • +
+ +

Returns: corrected spectrum

+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/calibration/set_new_xaxis.html b/ramanchada2/spectrum/calibration/set_new_xaxis.html new file mode 100644 index 00000000..a904bf78 --- /dev/null +++ b/ramanchada2/spectrum/calibration/set_new_xaxis.html @@ -0,0 +1,353 @@ + + + + + + + ramanchada2.spectrum.calibration.set_new_xaxis API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.calibration.set_new_xaxis

+ + + + + + +
 1import numpy.typing as npt
+ 2from pydantic import validate_call
+ 3
+ 4from ramanchada2.misc.spectrum_deco import add_spectrum_filter
+ 5
+ 6from ..spectrum import Spectrum
+ 7
+ 8
+ 9@add_spectrum_filter
+10@validate_call(config=dict(arbitrary_types_allowed=True))
+11def set_new_xaxis(old_spe: Spectrum,
+12                  new_spe: Spectrum, /,
+13                  xaxis: npt.NDArray):
+14    """
+15    Substitute x-axis values with new ones
+16
+17    Args:
+18        old_spe: internal use only
+19        new_spe: internal use only
+20        xaxis: new x-axis values
+21
+22    Returns: corrected spectrum
+23
+24    Raises:
+25        ValueError: If the provided array does not match the shape of the spectrum.
+26    """
+27    if old_spe.x.shape != xaxis.shape:
+28        raise ValueError('Shape of xaxis should match the shape of xaxis of the spectrum')
+29    new_spe.x = xaxis
+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + set_new_xaxis( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, /, xaxis: numpy.ndarray[typing.Any, numpy.dtype[+_ScalarType_co]]): + + + +
+ +
10@add_spectrum_filter
+11@validate_call(config=dict(arbitrary_types_allowed=True))
+12def set_new_xaxis(old_spe: Spectrum,
+13                  new_spe: Spectrum, /,
+14                  xaxis: npt.NDArray):
+15    """
+16    Substitute x-axis values with new ones
+17
+18    Args:
+19        old_spe: internal use only
+20        new_spe: internal use only
+21        xaxis: new x-axis values
+22
+23    Returns: corrected spectrum
+24
+25    Raises:
+26        ValueError: If the provided array does not match the shape of the spectrum.
+27    """
+28    if old_spe.x.shape != xaxis.shape:
+29        raise ValueError('Shape of xaxis should match the shape of xaxis of the spectrum')
+30    new_spe.x = xaxis
+
+ + +

Substitute x-axis values with new ones

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • xaxis: new x-axis values
  • +
+ +

Returns: corrected spectrum

+ +
Raises:
+ +
    +
  • ValueError: If the provided array does not match the shape of the spectrum.
  • +
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/creators.html b/ramanchada2/spectrum/creators.html new file mode 100644 index 00000000..589411e0 --- /dev/null +++ b/ramanchada2/spectrum/creators.html @@ -0,0 +1,281 @@ + + + + + + + ramanchada2.spectrum.creators API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.creators

+ + + + + + +
 1#!/usr/bin/env python3
+ 2
+ 3import os
+ 4import glob
+ 5
+ 6__all__ = [
+ 7    os.path.basename(f)[:-3]
+ 8    for f in glob.glob(os.path.dirname(__file__)+"/*.py")
+ 9    if os.path.isfile(f) and not os.path.basename(f).startswith('_')
+10]
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/creators/from_cache_or_calc.html b/ramanchada2/spectrum/creators/from_cache_or_calc.html new file mode 100644 index 00000000..c66b7de1 --- /dev/null +++ b/ramanchada2/spectrum/creators/from_cache_or_calc.html @@ -0,0 +1,443 @@ + + + + + + + ramanchada2.spectrum.creators.from_cache_or_calc API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.creators.from_cache_or_calc

+ + + + + + +
 1import logging
+ 2from typing import Optional
+ 3
+ 4from pydantic import validate_call
+ 5
+ 6import ramanchada2.misc.types.spectrum as spe_t
+ 7from ramanchada2.misc.spectrum_deco import add_spectrum_constructor
+ 8
+ 9from ..spectrum import Spectrum
+10
+11logger = logging.getLogger(__name__)
+12
+13
+14@add_spectrum_constructor(set_applied_processing=False)
+15@validate_call
+16def from_cache_or_calc(required_steps: spe_t.SpeProcessingListModel,
+17                       cachefile: Optional[str] = None):
+18    """
+19    Load spectrum from cache or calculate if needed.
+20
+21    The cache is a nested structure of spectra. All processings applied to
+22    a spectrum result to spectra of the initial one. If part of the requred
+23    processings are available, only the needed steps are calculated and added
+24    to the cache.
+25
+26    Args:
+27        required_steps: List of required steps in the form
+28            [{'proc': str, 'args': List[Any], 'kwargs': Dict[str, Any]}, ...]
+29        cachefile: optional. Defaults to None.
+30            Filename of the cache. If None no cache is used
+31    """
+32    def recall():
+33        if len(required_steps):
+34            last_proc = required_steps.pop()
+35            if last_proc.is_constructor:
+36                spe = Spectrum.apply_creator(last_proc, cachefile_=cachefile)
+37            else:
+38                spe = recur(required_steps=required_steps)
+39                spe._cachefile = cachefile
+40                spe = spe.apply_processing(last_proc)
+41            return spe
+42        else:
+43            raise Exception('no starting point')
+44
+45    def recur(required_steps: spe_t.SpeProcessingListModel):
+46        try:
+47            if cachefile:
+48                spe = get_cache()
+49            else:
+50                spe = recall()
+51        except Exception:
+52            spe = recall()
+53        spe._cachefile = cachefile
+54        return spe
+55
+56    def get_cache():
+57        try:
+58            cache_path = required_steps.cache_path()
+59            if cache_path:
+60                cache_path = '/cache/'+cache_path+'/_data'
+61            else:
+62                cache_path = 'raw'
+63            spe = Spectrum.from_chada(cachefile, cache_path)
+64            spe._applied_processings.extend_left(required_steps.root)
+65            return spe
+66        except Exception as e:
+67            logger.info(repr(e))
+68            raise e
+69
+70    return recur(required_steps)
+
+ + +
+
+
+ logger = +<Logger ramanchada2.spectrum.creators.from_cache_or_calc (WARNING)> + + +
+ + + + +
+
+ +
+
@add_spectrum_constructor(set_applied_processing=False)
+
@validate_call
+ + def + from_cache_or_calc( required_steps: ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel, cachefile: Optional[str] = None): + + + +
+ +
15@add_spectrum_constructor(set_applied_processing=False)
+16@validate_call
+17def from_cache_or_calc(required_steps: spe_t.SpeProcessingListModel,
+18                       cachefile: Optional[str] = None):
+19    """
+20    Load spectrum from cache or calculate if needed.
+21
+22    The cache is a nested structure of spectra. All processings applied to
+23    a spectrum result to spectra of the initial one. If part of the requred
+24    processings are available, only the needed steps are calculated and added
+25    to the cache.
+26
+27    Args:
+28        required_steps: List of required steps in the form
+29            [{'proc': str, 'args': List[Any], 'kwargs': Dict[str, Any]}, ...]
+30        cachefile: optional. Defaults to None.
+31            Filename of the cache. If None no cache is used
+32    """
+33    def recall():
+34        if len(required_steps):
+35            last_proc = required_steps.pop()
+36            if last_proc.is_constructor:
+37                spe = Spectrum.apply_creator(last_proc, cachefile_=cachefile)
+38            else:
+39                spe = recur(required_steps=required_steps)
+40                spe._cachefile = cachefile
+41                spe = spe.apply_processing(last_proc)
+42            return spe
+43        else:
+44            raise Exception('no starting point')
+45
+46    def recur(required_steps: spe_t.SpeProcessingListModel):
+47        try:
+48            if cachefile:
+49                spe = get_cache()
+50            else:
+51                spe = recall()
+52        except Exception:
+53            spe = recall()
+54        spe._cachefile = cachefile
+55        return spe
+56
+57    def get_cache():
+58        try:
+59            cache_path = required_steps.cache_path()
+60            if cache_path:
+61                cache_path = '/cache/'+cache_path+'/_data'
+62            else:
+63                cache_path = 'raw'
+64            spe = Spectrum.from_chada(cachefile, cache_path)
+65            spe._applied_processings.extend_left(required_steps.root)
+66            return spe
+67        except Exception as e:
+68            logger.info(repr(e))
+69            raise e
+70
+71    return recur(required_steps)
+
+ + +

Load spectrum from cache or calculate if needed.

+ +

The cache is a nested structure of spectra. All processings applied to +a spectrum result to spectra of the initial one. If part of the requred +processings are available, only the needed steps are calculated and added +to the cache.

+ +
Arguments:
+ +
    +
  • required_steps: List of required steps in the form +[{'proc': str, 'args': List[Any], 'kwargs': Dict[str, Any]}, ...]
  • +
  • cachefile: optional. Defaults to None. +Filename of the cache. If None no cache is used
  • +
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/creators/from_chada.html b/ramanchada2/spectrum/creators/from_chada.html new file mode 100644 index 00000000..3079dde6 --- /dev/null +++ b/ramanchada2/spectrum/creators/from_chada.html @@ -0,0 +1,303 @@ + + + + + + + ramanchada2.spectrum.creators.from_chada API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.creators.from_chada

+ + + + + + +
 1from pydantic import validate_call
+ 2
+ 3from ramanchada2.io.HSDS import read_cha
+ 4from ramanchada2.misc.spectrum_deco import add_spectrum_constructor
+ 5
+ 6from ..spectrum import Spectrum
+ 7
+ 8
+ 9@add_spectrum_constructor(set_applied_processing=False)
+10@validate_call
+11def from_chada(filename: str, dataset: str = '/raw', h5module=None):
+12    x, y, meta = read_cha(filename, dataset, h5module=h5module)
+13    return Spectrum(x=x, y=y, metadata=meta)  # type: ignore
+
+ + +
+
+ +
+
@add_spectrum_constructor(set_applied_processing=False)
+
@validate_call
+ + def + from_chada(filename: str, dataset: str = '/raw', h5module=None): + + + +
+ +
10@add_spectrum_constructor(set_applied_processing=False)
+11@validate_call
+12def from_chada(filename: str, dataset: str = '/raw', h5module=None):
+13    x, y, meta = read_cha(filename, dataset, h5module=h5module)
+14    return Spectrum(x=x, y=y, metadata=meta)  # type: ignore
+
+ + + + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/creators/from_delta_lines.html b/ramanchada2/spectrum/creators/from_delta_lines.html new file mode 100644 index 00000000..b82b89f1 --- /dev/null +++ b/ramanchada2/spectrum/creators/from_delta_lines.html @@ -0,0 +1,404 @@ + + + + + + + ramanchada2.spectrum.creators.from_delta_lines API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.creators.from_delta_lines

+ + + + + + +
 1#!/usr/bin/env python3
+ 2
+ 3from typing import Dict, Callable, Union
+ 4
+ 5import numpy as np
+ 6from pydantic import validate_call, PositiveInt
+ 7
+ 8from ..spectrum import Spectrum
+ 9from ramanchada2.misc.spectrum_deco import add_spectrum_constructor
+10
+11
+12@add_spectrum_constructor()
+13@validate_call(config=dict(arbitrary_types_allowed=True))
+14def from_delta_lines(
+15        deltas: Dict[float, float],
+16        xcal: Union[Callable[[float], float], None] = None,
+17        nbins: PositiveInt = 2000,
+18        **kwargs
+19        ):
+20    """
+21    Generate `Spectrum` with delta lines.
+22
+23    Args:
+24        deltas:
+25            Keys of the dictionary are the `x` positions of the deltas; values are the amplitudes of the corresponding
+26            deltas.
+27        xcal:
+28            Callable, optional. `x` axis calibration function.
+29        nbins:
+30            `int`, optional. Number of bins in the spectrum.
+31
+32    Example:
+33
+34    This will produce spectrum with 1000 bins in the range `[-1000, 2000)`:
+35    ```py
+36    xcal = lambda x: x*3 -1000, nbins=1000
+37    ```
+38    """
+39    if xcal is None:
+40        dk = list(deltas.keys())
+41        dkmin, dkmax = np.min(dk), np.max(dk)
+42        if dkmin == dkmax:
+43            dkmin, dkmax = dkmin*.8, dkmax*1.2
+44        else:
+45            dkmin -= (dkmax-dkmin) * .1
+46            dkmax += (dkmax-dkmin) * .1
+47        x = np.linspace(dkmin, dkmax, nbins, endpoint=False, dtype=float)
+48    else:
+49        x = np.linspace(xcal(0), xcal(nbins), nbins, endpoint=False)
+50    y = np.zeros_like(x)
+51    for pos, ampl in deltas.items():
+52        idx = np.argmin(np.abs(x - pos))
+53        y[idx] += ampl
+54    spe = Spectrum(x=x, y=y, **kwargs)
+55    return spe
+
+ + +
+
+ +
+
@add_spectrum_constructor()
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + from_delta_lines( deltas: Dict[float, float], xcal: Optional[Callable[[float], float]] = None, nbins: typing.Annotated[int, Gt(gt=0)] = 2000, **kwargs): + + + +
+ +
13@add_spectrum_constructor()
+14@validate_call(config=dict(arbitrary_types_allowed=True))
+15def from_delta_lines(
+16        deltas: Dict[float, float],
+17        xcal: Union[Callable[[float], float], None] = None,
+18        nbins: PositiveInt = 2000,
+19        **kwargs
+20        ):
+21    """
+22    Generate `Spectrum` with delta lines.
+23
+24    Args:
+25        deltas:
+26            Keys of the dictionary are the `x` positions of the deltas; values are the amplitudes of the corresponding
+27            deltas.
+28        xcal:
+29            Callable, optional. `x` axis calibration function.
+30        nbins:
+31            `int`, optional. Number of bins in the spectrum.
+32
+33    Example:
+34
+35    This will produce spectrum with 1000 bins in the range `[-1000, 2000)`:
+36    ```py
+37    xcal = lambda x: x*3 -1000, nbins=1000
+38    ```
+39    """
+40    if xcal is None:
+41        dk = list(deltas.keys())
+42        dkmin, dkmax = np.min(dk), np.max(dk)
+43        if dkmin == dkmax:
+44            dkmin, dkmax = dkmin*.8, dkmax*1.2
+45        else:
+46            dkmin -= (dkmax-dkmin) * .1
+47            dkmax += (dkmax-dkmin) * .1
+48        x = np.linspace(dkmin, dkmax, nbins, endpoint=False, dtype=float)
+49    else:
+50        x = np.linspace(xcal(0), xcal(nbins), nbins, endpoint=False)
+51    y = np.zeros_like(x)
+52    for pos, ampl in deltas.items():
+53        idx = np.argmin(np.abs(x - pos))
+54        y[idx] += ampl
+55    spe = Spectrum(x=x, y=y, **kwargs)
+56    return spe
+
+ + +

Generate Spectrum with delta lines.

+ +
Arguments:
+ +
    +
  • deltas: Keys of the dictionary are the x positions of the deltas; values are the amplitudes of the corresponding +deltas.
  • +
  • xcal: Callable, optional. x axis calibration function.
  • +
  • nbins: int, optional. Number of bins in the spectrum.
  • +
+ +

Example:

+ +

This will produce spectrum with 1000 bins in the range [-1000, 2000):

+ +
+
xcal = lambda x: x*3 -1000, nbins=1000
+
+
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/creators/from_local_file.html b/ramanchada2/spectrum/creators/from_local_file.html new file mode 100644 index 00000000..2c2b815a --- /dev/null +++ b/ramanchada2/spectrum/creators/from_local_file.html @@ -0,0 +1,449 @@ + + + + + + + ramanchada2.spectrum.creators.from_local_file API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.creators.from_local_file

+ +

Create spectrum from local files.

+
+ + + + + +
 1"""Create spectrum from local files."""
+ 2
+ 3import os
+ 4from typing import Literal, Union
+ 5
+ 6import spc_io
+ 7from pydantic import validate_call
+ 8
+ 9from ramanchada2.io.experimental import rc1_parser, read_csv, read_txt
+10from ramanchada2.misc.spectrum_deco import add_spectrum_constructor
+11from ramanchada2.misc.types import SpeMetadataModel
+12
+13from ..spectrum import Spectrum
+14
+15
+16@add_spectrum_constructor()
+17@validate_call(config=dict(arbitrary_types_allowed=True))
+18def from_local_file(
+19        in_file_name: str,
+20        filetype: Union[None, Literal['spc', 'sp', 'spa', '0', '1', '2',
+21                                      'wdf', 'ngs', 'jdx', 'dx',
+22                                      'txt', 'txtr', 'csv', 'prn', 'rruf']] = None,
+23        backend: Union[None, Literal['native', 'rc1_parser']] = None):
+24    """
+25    Read experimental spectrum from a local file.
+26
+27    Args:
+28        in_file_name:
+29            Path to a local file containing a spectrum.
+30        filetype:
+31            Specify the filetype. Filetype can be any of: `spc`, `sp`, `spa`, `0`, `1`, `2`, `wdf`, `ngs`, `jdx`, `dx`,
+32            `txt`, `txtr`, `csv`, `prn`, `rruf` or `None`. `None` used to determine by extension of the file.
+33        backend:
+34            `native`, `rc1_parser` or `None`. `None` means both.
+35
+36    Raises:
+37        ValueError:
+38            When called with unsupported file formats.
+39    """
+40    def load_native():
+41        if filetype is None:
+42            ft = os.path.splitext(in_file_name)[1][1:]
+43        else:
+44            ft = filetype
+45        if ft in {'txt', 'txtr', 'prn', 'rruf'}:
+46            with open(in_file_name) as fp:
+47                x, y, meta = read_txt(fp)
+48        elif ft in {'csv'}:
+49            with open(in_file_name) as fp:
+50                x, y, meta = read_csv(fp)
+51        elif ft in {'spc'}:
+52            with open(in_file_name, 'rb') as fp:
+53                spc = spc_io.SPC.from_bytes_io(fp)
+54                if len(spc) != 1:
+55                    raise ValueError(f'Single subfile SPCs are supported. {len(spc)} subfiles found')
+56                x = spc[0].xarray
+57                y = spc[0].yarray
+58                meta = spc.log_book.text
+59        else:
+60            raise ValueError(f'filetype {ft} not supported')
+61        meta["Original file"] = os.path.basename(in_file_name)
+62        spe = Spectrum(x=x, y=y, metadata=meta)  # type: ignore
+63        return spe
+64
+65    def load_rc1():
+66        x, y, meta = rc1_parser.parse(in_file_name, filetype)
+67        spe = Spectrum(x=x, y=y, metadata=SpeMetadataModel.model_validate(meta))
+68        return spe
+69
+70    if backend == 'native':
+71        spe = load_native()
+72    elif backend == 'rc1_parser':
+73        spe = load_rc1()
+74    elif backend is None:
+75        try:
+76            spe = load_native()
+77        except Exception:
+78            spe = load_rc1()
+79    spe._sort_x()
+80    return spe
+
+ + +
+
+ +
+
@add_spectrum_constructor()
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + from_local_file( in_file_name: str, filetype: Optional[Literal['spc', 'sp', 'spa', '0', '1', '2', 'wdf', 'ngs', 'jdx', 'dx', 'txt', 'txtr', 'csv', 'prn', 'rruf']] = None, backend: Optional[Literal['native', 'rc1_parser']] = None): + + + +
+ +
17@add_spectrum_constructor()
+18@validate_call(config=dict(arbitrary_types_allowed=True))
+19def from_local_file(
+20        in_file_name: str,
+21        filetype: Union[None, Literal['spc', 'sp', 'spa', '0', '1', '2',
+22                                      'wdf', 'ngs', 'jdx', 'dx',
+23                                      'txt', 'txtr', 'csv', 'prn', 'rruf']] = None,
+24        backend: Union[None, Literal['native', 'rc1_parser']] = None):
+25    """
+26    Read experimental spectrum from a local file.
+27
+28    Args:
+29        in_file_name:
+30            Path to a local file containing a spectrum.
+31        filetype:
+32            Specify the filetype. Filetype can be any of: `spc`, `sp`, `spa`, `0`, `1`, `2`, `wdf`, `ngs`, `jdx`, `dx`,
+33            `txt`, `txtr`, `csv`, `prn`, `rruf` or `None`. `None` used to determine by extension of the file.
+34        backend:
+35            `native`, `rc1_parser` or `None`. `None` means both.
+36
+37    Raises:
+38        ValueError:
+39            When called with unsupported file formats.
+40    """
+41    def load_native():
+42        if filetype is None:
+43            ft = os.path.splitext(in_file_name)[1][1:]
+44        else:
+45            ft = filetype
+46        if ft in {'txt', 'txtr', 'prn', 'rruf'}:
+47            with open(in_file_name) as fp:
+48                x, y, meta = read_txt(fp)
+49        elif ft in {'csv'}:
+50            with open(in_file_name) as fp:
+51                x, y, meta = read_csv(fp)
+52        elif ft in {'spc'}:
+53            with open(in_file_name, 'rb') as fp:
+54                spc = spc_io.SPC.from_bytes_io(fp)
+55                if len(spc) != 1:
+56                    raise ValueError(f'Single subfile SPCs are supported. {len(spc)} subfiles found')
+57                x = spc[0].xarray
+58                y = spc[0].yarray
+59                meta = spc.log_book.text
+60        else:
+61            raise ValueError(f'filetype {ft} not supported')
+62        meta["Original file"] = os.path.basename(in_file_name)
+63        spe = Spectrum(x=x, y=y, metadata=meta)  # type: ignore
+64        return spe
+65
+66    def load_rc1():
+67        x, y, meta = rc1_parser.parse(in_file_name, filetype)
+68        spe = Spectrum(x=x, y=y, metadata=SpeMetadataModel.model_validate(meta))
+69        return spe
+70
+71    if backend == 'native':
+72        spe = load_native()
+73    elif backend == 'rc1_parser':
+74        spe = load_rc1()
+75    elif backend is None:
+76        try:
+77            spe = load_native()
+78        except Exception:
+79            spe = load_rc1()
+80    spe._sort_x()
+81    return spe
+
+ + +

Read experimental spectrum from a local file.

+ +
Arguments:
+ +
    +
  • in_file_name: Path to a local file containing a spectrum.
  • +
  • filetype: Specify the filetype. Filetype can be any of: spc, sp, spa, 0, 1, 2, wdf, ngs, jdx, dx, +txt, txtr, csv, prn, rruf or None. None used to determine by extension of the file.
  • +
  • backend: native, rc1_parser or None. None means both.
  • +
+ +
Raises:
+ +
    +
  • ValueError: When called with unsupported file formats.
  • +
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/creators/from_simulation.html b/ramanchada2/spectrum/creators/from_simulation.html new file mode 100644 index 00000000..fe26b11b --- /dev/null +++ b/ramanchada2/spectrum/creators/from_simulation.html @@ -0,0 +1,412 @@ + + + + + + + ramanchada2.spectrum.creators.from_simulation API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.creators.from_simulation

+ +

Create spectrum from simulation output files.

+
+ + + + + +
 1"""Create spectrum from simulation output files."""
+ 2
+ 3from io import TextIOBase
+ 4import numpy as np
+ 5from typing import Dict, Literal, Union
+ 6
+ 7from pydantic import PositiveFloat, PositiveInt, validate_call
+ 8
+ 9from ramanchada2.io.simulated import read_simulated_lines
+10from ramanchada2.misc.spectrum_deco import add_spectrum_constructor
+11
+12from .from_delta_lines import from_delta_lines
+13
+14_DIRECTION_LITERALS = Literal['I_tot', 'I_perp', 'I_par', 'I_xx', 'I_xy', 'I_xz', 'I_yy', 'I_yz', 'I_zz']
+15
+16
+17@add_spectrum_constructor()
+18@validate_call(config=dict(arbitrary_types_allowed=True))
+19def from_simulation(in_file: Union[str, TextIOBase],
+20                    sim_type: Literal['vasp', 'crystal_out', 'crystal_dat', 'raw_dat'],
+21                    use: Union[_DIRECTION_LITERALS, Dict[_DIRECTION_LITERALS, PositiveFloat]] = 'I_tot',
+22                    nbins: PositiveInt = 2000,
+23                    ):
+24    """
+25    Generate spectrum from simulation file.
+26
+27    The returned spectrum has only few x/y pairs -- one for each simulated line. Values along
+28    the x-axis will not be uniform. To make it uniform, one needs to resample the spectrum.
+29
+30    Args:
+31        in_file:
+32            Path to a local file, or file-like object.
+33        sim_type:
+34            If `vasp`: `.dat` file from VASP simulation. If `crystal_out`: `.out` file from CRYSTAL simulation, not
+35            preferred. If `crystal_dat`: `.dat` file from CRYSTAL simulation.
+36        use:
+37            One of the directions `I_tot`, `I_perp`, `I_par`, `I_xx`, `I_xy`,
+38            `I_xz`, `I_yy`, `I_yz`, `I_zz`, `I_tot`, `I_perp`, `I_par` are
+39            available for both CRYSTAL and VASP. `I_xx`, `I_xy`, `I_xz`,
+40            `I_yy`, `I_yz`, `I_zz` are available only for CRYSTAL. If a Dict is
+41            passed, the key should be directions and values should be weighting factor.
+42            For example, `use={'I_perp': .1, 'I_par': .9}`
+43
+44    """
+45    if isinstance(use, str):
+46        use_directions = {use}
+47    else:
+48        use_directions = set(use.keys())
+49    if isinstance(in_file, TextIOBase):
+50        labels, x, ydict = read_simulated_lines(in_file, sim_type=sim_type, use=use_directions)
+51    else:
+52        with open(in_file) as f:
+53            labels, x, ydict = read_simulated_lines(f, sim_type=sim_type, use=use_directions)
+54    if isinstance(use, str):
+55        y = ydict[use]
+56    else:
+57        dirs = list(use.keys())
+58        fact = np.array(list(use.values()))
+59        y = np.transpose([ydict[i] for i in dirs]) @ fact
+60    spe = from_delta_lines(deltas=dict(zip(x, y)), nbins=nbins)
+61    return spe
+
+ + +
+
+ +
+
@add_spectrum_constructor()
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + from_simulation( in_file: Union[str, io.TextIOBase], sim_type: Literal['vasp', 'crystal_out', 'crystal_dat', 'raw_dat'], use: Union[Literal['I_tot', 'I_perp', 'I_par', 'I_xx', 'I_xy', 'I_xz', 'I_yy', 'I_yz', 'I_zz'], Dict[Literal['I_tot', 'I_perp', 'I_par', 'I_xx', 'I_xy', 'I_xz', 'I_yy', 'I_yz', 'I_zz'], Annotated[float, Gt(gt=0)]]] = 'I_tot', nbins: typing.Annotated[int, Gt(gt=0)] = 2000): + + + +
+ +
18@add_spectrum_constructor()
+19@validate_call(config=dict(arbitrary_types_allowed=True))
+20def from_simulation(in_file: Union[str, TextIOBase],
+21                    sim_type: Literal['vasp', 'crystal_out', 'crystal_dat', 'raw_dat'],
+22                    use: Union[_DIRECTION_LITERALS, Dict[_DIRECTION_LITERALS, PositiveFloat]] = 'I_tot',
+23                    nbins: PositiveInt = 2000,
+24                    ):
+25    """
+26    Generate spectrum from simulation file.
+27
+28    The returned spectrum has only few x/y pairs -- one for each simulated line. Values along
+29    the x-axis will not be uniform. To make it uniform, one needs to resample the spectrum.
+30
+31    Args:
+32        in_file:
+33            Path to a local file, or file-like object.
+34        sim_type:
+35            If `vasp`: `.dat` file from VASP simulation. If `crystal_out`: `.out` file from CRYSTAL simulation, not
+36            preferred. If `crystal_dat`: `.dat` file from CRYSTAL simulation.
+37        use:
+38            One of the directions `I_tot`, `I_perp`, `I_par`, `I_xx`, `I_xy`,
+39            `I_xz`, `I_yy`, `I_yz`, `I_zz`, `I_tot`, `I_perp`, `I_par` are
+40            available for both CRYSTAL and VASP. `I_xx`, `I_xy`, `I_xz`,
+41            `I_yy`, `I_yz`, `I_zz` are available only for CRYSTAL. If a Dict is
+42            passed, the key should be directions and values should be weighting factor.
+43            For example, `use={'I_perp': .1, 'I_par': .9}`
+44
+45    """
+46    if isinstance(use, str):
+47        use_directions = {use}
+48    else:
+49        use_directions = set(use.keys())
+50    if isinstance(in_file, TextIOBase):
+51        labels, x, ydict = read_simulated_lines(in_file, sim_type=sim_type, use=use_directions)
+52    else:
+53        with open(in_file) as f:
+54            labels, x, ydict = read_simulated_lines(f, sim_type=sim_type, use=use_directions)
+55    if isinstance(use, str):
+56        y = ydict[use]
+57    else:
+58        dirs = list(use.keys())
+59        fact = np.array(list(use.values()))
+60        y = np.transpose([ydict[i] for i in dirs]) @ fact
+61    spe = from_delta_lines(deltas=dict(zip(x, y)), nbins=nbins)
+62    return spe
+
+ + +

Generate spectrum from simulation file.

+ +

The returned spectrum has only few x/y pairs -- one for each simulated line. Values along +the x-axis will not be uniform. To make it uniform, one needs to resample the spectrum.

+ +
Arguments:
+ +
    +
  • in_file: Path to a local file, or file-like object.
  • +
  • sim_type: If vasp: .dat file from VASP simulation. If crystal_out: .out file from CRYSTAL simulation, not +preferred. If crystal_dat: .dat file from CRYSTAL simulation.
  • +
  • use: One of the directions I_tot, I_perp, I_par, I_xx, I_xy, +I_xz, I_yy, I_yz, I_zz, I_tot, I_perp, I_par are +available for both CRYSTAL and VASP. I_xx, I_xy, I_xz, +I_yy, I_yz, I_zz are available only for CRYSTAL. If a Dict is +passed, the key should be directions and values should be weighting factor. +For example, use={'I_perp': .1, 'I_par': .9}
  • +
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/creators/from_spectral_component_collection.html b/ramanchada2/spectrum/creators/from_spectral_component_collection.html new file mode 100644 index 00000000..518a1e5d --- /dev/null +++ b/ramanchada2/spectrum/creators/from_spectral_component_collection.html @@ -0,0 +1,339 @@ + + + + + + + ramanchada2.spectrum.creators.from_spectral_component_collection API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.creators.from_spectral_component_collection

+ + + + + + +
 1from pydantic import validate_call
+ 2
+ 3from ramanchada2.misc.spectrum_deco import add_spectrum_constructor
+ 4from ramanchada2.spectral_components.spectral_component_collection import \
+ 5    SpectralComponentCollection
+ 6
+ 7from ..spectrum import Spectrum
+ 8
+ 9
+10@add_spectrum_constructor()
+11@validate_call(config=dict(arbitrary_types_allowed=True))
+12def from_spectral_component_collection(
+13        spe_components: SpectralComponentCollection,
+14        x=2000):
+15    """
+16    from_spectral_component_collection
+17
+18    Args:
+19        spe_components:
+20            SpectralComponentCollection
+21        x:
+22            `int` or array-like, optional, default `2000`. `x` axis of the spectrum.
+23    """
+24
+25    spe = Spectrum(x=x, metadata={'origin': 'generated'})  # type: ignore
+26    spe.y = spe_components(spe.x)
+27    return spe
+
+ + +
+
+ +
+
@add_spectrum_constructor()
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + from_spectral_component_collection( spe_components: ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection, x=2000): + + + +
+ +
11@add_spectrum_constructor()
+12@validate_call(config=dict(arbitrary_types_allowed=True))
+13def from_spectral_component_collection(
+14        spe_components: SpectralComponentCollection,
+15        x=2000):
+16    """
+17    from_spectral_component_collection
+18
+19    Args:
+20        spe_components:
+21            SpectralComponentCollection
+22        x:
+23            `int` or array-like, optional, default `2000`. `x` axis of the spectrum.
+24    """
+25
+26    spe = Spectrum(x=x, metadata={'origin': 'generated'})  # type: ignore
+27    spe.y = spe_components(spe.x)
+28    return spe
+
+ + +

from_spectral_component_collection

+ +
Arguments:
+ +
    +
  • spe_components: SpectralComponentCollection
  • +
  • x: int or array-like, optional, default 2000. x axis of the spectrum.
  • +
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/creators/from_test_spe.html b/ramanchada2/spectrum/creators/from_test_spe.html new file mode 100644 index 00000000..595a380e --- /dev/null +++ b/ramanchada2/spectrum/creators/from_test_spe.html @@ -0,0 +1,344 @@ + + + + + + + ramanchada2.spectrum.creators.from_test_spe API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.creators.from_test_spe

+ +

Create spectrum from local files.

+
+ + + + + +
 1#!/usr/bin/env python3
+ 2"""Create spectrum from local files."""
+ 3
+ 4import random
+ 5
+ 6from ramanchada2.auxiliary.spectra.datasets2 import (get_filenames,
+ 7                                                     prepend_prefix)
+ 8from ramanchada2.misc.spectrum_deco import add_spectrum_constructor
+ 9
+10from ..spectrum import Spectrum
+11
+12
+13@add_spectrum_constructor()
+14def from_test_spe(index=None, **kwargs):
+15    """Create new spectrum from test data.
+16
+17    Args:
+18        index:
+19            `int` or `None`, optional, default is `None`. If `int`: will be used as an index of filtered list. If
+20            `None`: a random spectrum will be taken.
+21        **kwargs:
+22            The rest of the parameters will be used as filter.
+23    """
+24    filtered = prepend_prefix(get_filenames(**kwargs))
+25    if index is None:
+26        fn = random.sample(filtered, 1)[0]
+27    else:
+28        fn = filtered[index]
+29    spe = Spectrum.from_local_file(fn)
+30    return spe
+
+ + +
+
+ +
+
@add_spectrum_constructor()
+ + def + from_test_spe(index=None, **kwargs): + + + +
+ +
14@add_spectrum_constructor()
+15def from_test_spe(index=None, **kwargs):
+16    """Create new spectrum from test data.
+17
+18    Args:
+19        index:
+20            `int` or `None`, optional, default is `None`. If `int`: will be used as an index of filtered list. If
+21            `None`: a random spectrum will be taken.
+22        **kwargs:
+23            The rest of the parameters will be used as filter.
+24    """
+25    filtered = prepend_prefix(get_filenames(**kwargs))
+26    if index is None:
+27        fn = random.sample(filtered, 1)[0]
+28    else:
+29        fn = filtered[index]
+30    spe = Spectrum.from_local_file(fn)
+31    return spe
+
+ + +

Create new spectrum from test data.

+ +
Arguments:
+ +
    +
  • index: int or None, optional, default is None. If int: will be used as an index of filtered list. If +None: a random spectrum will be taken.
  • +
  • **kwargs: The rest of the parameters will be used as filter.
  • +
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/creators/from_theoretical_lines.html b/ramanchada2/spectrum/creators/from_theoretical_lines.html new file mode 100644 index 00000000..8215a0e6 --- /dev/null +++ b/ramanchada2/spectrum/creators/from_theoretical_lines.html @@ -0,0 +1,357 @@ + + + + + + + ramanchada2.spectrum.creators.from_theoretical_lines API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.creators.from_theoretical_lines

+ + + + + + +
 1from typing import Dict, List, Literal, Union
+ 2
+ 3import numpy as np
+ 4import numpy.typing as npt
+ 5from lmfit import lineshapes
+ 6from pydantic import validate_call
+ 7
+ 8from ramanchada2.misc.spectrum_deco import add_spectrum_constructor
+ 9
+10from ..spectrum import Spectrum
+11
+12
+13@add_spectrum_constructor()
+14@validate_call(config=dict(arbitrary_types_allowed=True))
+15def from_theoretical_lines(
+16        shapes: List[Literal[lineshapes.functions]],  # type: ignore
+17        params: List[Dict],
+18        x: Union[int, npt.NDArray[np.float64]] = 2000):
+19    """
+20    Generate spectrum from `lmfit` shapes.
+21
+22    Args:
+23        shapes:
+24            The shapes to be used for spectrum generation.
+25        params:
+26            Shape parameters to be applied to be used with shapes.
+27        x:
+28            Array with `x` values, by default `np.array(2000)`.
+29    """
+30    spe = Spectrum(x=x)
+31    x = spe.x
+32    y = np.zeros_like(x, dtype=float)
+33    for shape_name, pars in zip(shapes, params):
+34        shape = getattr(lineshapes, shape_name)
+35        y += shape(x=x, **pars)
+36    spe.y = y
+37    return spe
+
+ + +
+
+ +
+
@add_spectrum_constructor()
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + from_theoretical_lines( shapes: List[Literal['gaussian', 'gaussian2d', 'lorentzian', 'voigt', 'pvoigt', 'moffat', 'pearson4', 'pearson7', 'breit_wigner', 'damped_oscillator', 'dho', 'logistic', 'lognormal', 'students_t', 'expgaussian', 'doniach', 'skewed_gaussian', 'skewed_voigt', 'thermal_distribution', 'step', 'rectangle', 'exponential', 'powerlaw', 'linear', 'parabolic', 'sine', 'expsine', 'split_lorentzian']], params: List[Dict], x: Union[int, numpy.ndarray[Any, numpy.dtype[numpy.float64]]] = 2000): + + + +
+ +
14@add_spectrum_constructor()
+15@validate_call(config=dict(arbitrary_types_allowed=True))
+16def from_theoretical_lines(
+17        shapes: List[Literal[lineshapes.functions]],  # type: ignore
+18        params: List[Dict],
+19        x: Union[int, npt.NDArray[np.float64]] = 2000):
+20    """
+21    Generate spectrum from `lmfit` shapes.
+22
+23    Args:
+24        shapes:
+25            The shapes to be used for spectrum generation.
+26        params:
+27            Shape parameters to be applied to be used with shapes.
+28        x:
+29            Array with `x` values, by default `np.array(2000)`.
+30    """
+31    spe = Spectrum(x=x)
+32    x = spe.x
+33    y = np.zeros_like(x, dtype=float)
+34    for shape_name, pars in zip(shapes, params):
+35        shape = getattr(lineshapes, shape_name)
+36        y += shape(x=x, **pars)
+37    spe.y = y
+38    return spe
+
+ + +

Generate spectrum from lmfit shapes.

+ +
Arguments:
+ +
    +
  • shapes: The shapes to be used for spectrum generation.
  • +
  • params: Shape parameters to be applied to be used with shapes.
  • +
  • x: Array with x values, by default np.array(2000).
  • +
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/creators/hdr_from_multi_exposure.html b/ramanchada2/spectrum/creators/hdr_from_multi_exposure.html new file mode 100644 index 00000000..5a987548 --- /dev/null +++ b/ramanchada2/spectrum/creators/hdr_from_multi_exposure.html @@ -0,0 +1,348 @@ + + + + + + + ramanchada2.spectrum.creators.hdr_from_multi_exposure API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.creators.hdr_from_multi_exposure

+ + + + + + +
 1from typing import List
+ 2
+ 3import numpy as np
+ 4from pydantic import validate_call
+ 5
+ 6from ramanchada2.misc.spectrum_deco import add_spectrum_constructor
+ 7
+ 8from ..spectrum import Spectrum
+ 9
+10
+11@add_spectrum_constructor(set_applied_processing=True)
+12@validate_call(config=dict(arbitrary_types_allowed=True))
+13def hdr_from_multi_exposure(spes_in: List[Spectrum]):
+14    """Create an HDR spectrum from several spectra with different exposures.
+15
+16    The resulting spectrum will have the details in low-intensity peaks
+17    from long-exposure-time spectrum. As long-exposure-time
+18    spectrum might be sturated, the information for high-intensity
+19    peaks will be taken from short-exposure-time spectrum.
+20    This function will work on a very limited number of spectra,
+21    because we still do not have standardized metadata.
+22    """
+23
+24    spes = list(sorted(spes_in, key=lambda s: float(s.meta['intigration times(ms)'])))  # type: ignore
+25    if not np.all([spes[0].x == s.x for s in spes]):
+26        raise ValueError('x-axes of the spectra should be equal')
+27    spes_cpms = np.array([s.y / float(s.meta['intigration times(ms)']) for s in spes])  # type: ignore
+28    masks = np.array(list(map(lambda s: s.y > s.meta['yaxis_max'], spes)))  # type: ignore
+29    y = spes_cpms[0]
+30    for si in range(1, len(spes_cpms)):
+31        y[~masks[si]] = spes_cpms[si][~masks[si]]
+32    return Spectrum(x=spes[0].x, y=y)
+
+ + +
+
+ +
+
@add_spectrum_constructor(set_applied_processing=True)
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + hdr_from_multi_exposure(spes_in: List[ramanchada2.spectrum.spectrum.Spectrum]): + + + +
+ +
12@add_spectrum_constructor(set_applied_processing=True)
+13@validate_call(config=dict(arbitrary_types_allowed=True))
+14def hdr_from_multi_exposure(spes_in: List[Spectrum]):
+15    """Create an HDR spectrum from several spectra with different exposures.
+16
+17    The resulting spectrum will have the details in low-intensity peaks
+18    from long-exposure-time spectrum. As long-exposure-time
+19    spectrum might be sturated, the information for high-intensity
+20    peaks will be taken from short-exposure-time spectrum.
+21    This function will work on a very limited number of spectra,
+22    because we still do not have standardized metadata.
+23    """
+24
+25    spes = list(sorted(spes_in, key=lambda s: float(s.meta['intigration times(ms)'])))  # type: ignore
+26    if not np.all([spes[0].x == s.x for s in spes]):
+27        raise ValueError('x-axes of the spectra should be equal')
+28    spes_cpms = np.array([s.y / float(s.meta['intigration times(ms)']) for s in spes])  # type: ignore
+29    masks = np.array(list(map(lambda s: s.y > s.meta['yaxis_max'], spes)))  # type: ignore
+30    y = spes_cpms[0]
+31    for si in range(1, len(spes_cpms)):
+32        y[~masks[si]] = spes_cpms[si][~masks[si]]
+33    return Spectrum(x=spes[0].x, y=y)
+
+ + +

Create an HDR spectrum from several spectra with different exposures.

+ +

The resulting spectrum will have the details in low-intensity peaks +from long-exposure-time spectrum. As long-exposure-time +spectrum might be sturated, the information for high-intensity +peaks will be taken from short-exposure-time spectrum. +This function will work on a very limited number of spectra, +because we still do not have standardized metadata.

+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/filters.html b/ramanchada2/spectrum/filters.html new file mode 100644 index 00000000..c0f8bf8b --- /dev/null +++ b/ramanchada2/spectrum/filters.html @@ -0,0 +1,284 @@ + + + + + + + ramanchada2.spectrum.filters API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.filters

+ + + + + + +
 1#!/usr/bin/env python3
+ 2
+ 3import os
+ 4import glob
+ 5
+ 6__all__ = [
+ 7    os.path.basename(f)[:-3]
+ 8    for f in glob.glob(os.path.dirname(__file__)+"/*.py")
+ 9    if os.path.isfile(f) and not os.path.basename(f).startswith('_')
+10]
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/filters/add_gaussian_noise.html b/ramanchada2/spectrum/filters/add_gaussian_noise.html new file mode 100644 index 00000000..5b1c7996 --- /dev/null +++ b/ramanchada2/spectrum/filters/add_gaussian_noise.html @@ -0,0 +1,381 @@ + + + + + + + ramanchada2.spectrum.filters.add_gaussian_noise API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.filters.add_gaussian_noise

+ + + + + + +
 1import numpy as np
+ 2from pydantic import PositiveFloat, validate_call
+ 3
+ 4from ramanchada2.misc.spectrum_deco import add_spectrum_filter
+ 5
+ 6from ..spectrum import Spectrum
+ 7
+ 8
+ 9@add_spectrum_filter
+10@validate_call(config=dict(arbitrary_types_allowed=True))
+11def add_gaussian_noise(
+12        old_spe: Spectrum,
+13        new_spe: Spectrum, /,
+14        sigma: PositiveFloat,
+15        # validation for rng_seed is removed because
+16        # it makes in-place modification impossible
+17        rng_seed=None):
+18    r"""
+19    Add gaussian noise to the spectrum.
+20
+21    Random number i.i.d. $N(0, \sigma)$ is added to every sample
+22
+23    Args:
+24        old_spe: internal use only
+25        new_spe: internal use only
+26        sigma:
+27            Sigma of the gaussian noise.
+28        rng_seed:
+29            `int` or rng state, optional, seed for the random generator.
+30            If a state is provided, it is updated in-place.
+31
+32    Returns: modified Spectrum
+33    """
+34    if isinstance(rng_seed, dict):
+35        rng = np.random.default_rng()
+36        rng.bit_generator.state = rng_seed
+37    else:
+38        rng = np.random.default_rng(rng_seed)
+39    dat = old_spe.y + rng.normal(0., sigma, size=len(old_spe.y))
+40    if any(dat < 0):
+41        dat += abs(dat.min())
+42    if isinstance(rng_seed, dict):
+43        rng_seed.update(rng.bit_generator.state)
+44    new_spe.y = np.array(dat)
+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + add_gaussian_noise( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, /, sigma: typing.Annotated[float, Gt(gt=0)], rng_seed=None): + + + +
+ +
10@add_spectrum_filter
+11@validate_call(config=dict(arbitrary_types_allowed=True))
+12def add_gaussian_noise(
+13        old_spe: Spectrum,
+14        new_spe: Spectrum, /,
+15        sigma: PositiveFloat,
+16        # validation for rng_seed is removed because
+17        # it makes in-place modification impossible
+18        rng_seed=None):
+19    r"""
+20    Add gaussian noise to the spectrum.
+21
+22    Random number i.i.d. $N(0, \sigma)$ is added to every sample
+23
+24    Args:
+25        old_spe: internal use only
+26        new_spe: internal use only
+27        sigma:
+28            Sigma of the gaussian noise.
+29        rng_seed:
+30            `int` or rng state, optional, seed for the random generator.
+31            If a state is provided, it is updated in-place.
+32
+33    Returns: modified Spectrum
+34    """
+35    if isinstance(rng_seed, dict):
+36        rng = np.random.default_rng()
+37        rng.bit_generator.state = rng_seed
+38    else:
+39        rng = np.random.default_rng(rng_seed)
+40    dat = old_spe.y + rng.normal(0., sigma, size=len(old_spe.y))
+41    if any(dat < 0):
+42        dat += abs(dat.min())
+43    if isinstance(rng_seed, dict):
+44        rng_seed.update(rng.bit_generator.state)
+45    new_spe.y = np.array(dat)
+
+ + +

Add gaussian noise to the spectrum.

+ +

Random number i.i.d. $N(0, \sigma)$ is added to every sample

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • sigma: Sigma of the gaussian noise.
  • +
  • rng_seed: int or rng state, optional, seed for the random generator. +If a state is provided, it is updated in-place.
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/filters/add_gaussian_noise_drift.html b/ramanchada2/spectrum/filters/add_gaussian_noise_drift.html new file mode 100644 index 00000000..90a4f2a8 --- /dev/null +++ b/ramanchada2/spectrum/filters/add_gaussian_noise_drift.html @@ -0,0 +1,480 @@ + + + + + + + ramanchada2.spectrum.filters.add_gaussian_noise_drift API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.filters.add_gaussian_noise_drift

+ + + + + + +
 1import numpy as np
+ 2from pydantic import PositiveFloat, confloat, validate_call
+ 3
+ 4from ramanchada2.misc.spectrum_deco import add_spectrum_filter
+ 5
+ 6from ..spectrum import Spectrum
+ 7
+ 8
+ 9@validate_call(config=dict(arbitrary_types_allowed=True))
+10def generate_add_gaussian_noise_drift(y, /,
+11                                      sigma: PositiveFloat,
+12                                      coef: confloat(ge=0, le=1),  # type: ignore [valid-type]
+13                                      # validation for rng_seed is removed because
+14                                      # it makes in-place modification impossible
+15                                      rng_seed=None):
+16    if isinstance(rng_seed, dict):
+17        rng = np.random.default_rng()
+18        rng.bit_generator.state = rng_seed
+19    else:
+20        rng = np.random.default_rng(rng_seed)
+21    gaus = rng.normal(0., sigma+coef/np.sqrt(2), size=len(y))
+22    cs = np.cumsum(gaus)
+23    # coef*sum(cs[:i]) + (1-coef)*gaus is identical to
+24    # coef*sum(cs[:i-1]) + gaus
+25    noise = coef*cs + gaus*(1-coef)
+26    noise -= np.std(noise)
+27    dat = y + noise
+28    if any(dat < 0):
+29        dat += abs(dat.min())
+30    if isinstance(rng_seed, dict):
+31        rng_seed.update(rng.bit_generator.state)
+32    return np.array(dat)
+33
+34
+35@add_spectrum_filter
+36@validate_call(config=dict(arbitrary_types_allowed=True))
+37def add_gaussian_noise_drift(
+38        old_spe: Spectrum,
+39        new_spe: Spectrum, /,
+40        sigma: PositiveFloat,
+41        coef: confloat(ge=0, le=1),  # type: ignore [valid-type]
+42        # validation for rng_seed is removed because
+43        # it makes in-place modification impossible
+44        rng_seed=None):
+45    r"""
+46    Add cumulative gaussian noise to the spectrum.
+47
+48    Exponential-moving-average-like gaussian noise is added
+49    to each sample. The goal is to mimic the low-frequency noise
+50    (or random substructures in spectra).
+51    The additive noise is
+52    .. math::
+53        a_i = coef*\sum_{j=0}^{i-1}g_j + g_i,
+54    where
+55    .. math::
+56        g_i = \mathcal{N}(0, 1+\frac{coef}{\sqrt 2}).
+57    This way drifting is possible while keeping the
+58    .. math::
+59        \sigma(\Delta(a)) \approx 1.
+60
+61    Args:
+62        old_spe: internal use only
+63        new_spe: internal use only
+64        sigma:
+65            Sigma of the gaussian noise.
+66        coef:
+67            `float` in `[0, 1]`, drifting coefficient. If `coef == 0`,
+68            the result is identical to `add_gaussian_noise()`.
+69        rng_seed:
+70            `int` or rng state, optional. Seed for the random generator.
+71            If a state is provided, it is updated in-place.
+72
+73    Returns: modified Spectrum
+74    """
+75    new_spe.y = generate_add_gaussian_noise_drift(old_spe.y,
+76                                                  sigma=sigma,
+77                                                  coef=coef,
+78                                                  rng_seed=rng_seed)
+
+ + +
+
+ +
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + generate_add_gaussian_noise_drift( y, /, sigma: typing.Annotated[float, Gt(gt=0)], coef: typing.Annotated[float, None, Interval(gt=None, ge=0, lt=None, le=1), None, None], rng_seed=None): + + + +
+ +
10@validate_call(config=dict(arbitrary_types_allowed=True))
+11def generate_add_gaussian_noise_drift(y, /,
+12                                      sigma: PositiveFloat,
+13                                      coef: confloat(ge=0, le=1),  # type: ignore [valid-type]
+14                                      # validation for rng_seed is removed because
+15                                      # it makes in-place modification impossible
+16                                      rng_seed=None):
+17    if isinstance(rng_seed, dict):
+18        rng = np.random.default_rng()
+19        rng.bit_generator.state = rng_seed
+20    else:
+21        rng = np.random.default_rng(rng_seed)
+22    gaus = rng.normal(0., sigma+coef/np.sqrt(2), size=len(y))
+23    cs = np.cumsum(gaus)
+24    # coef*sum(cs[:i]) + (1-coef)*gaus is identical to
+25    # coef*sum(cs[:i-1]) + gaus
+26    noise = coef*cs + gaus*(1-coef)
+27    noise -= np.std(noise)
+28    dat = y + noise
+29    if any(dat < 0):
+30        dat += abs(dat.min())
+31    if isinstance(rng_seed, dict):
+32        rng_seed.update(rng.bit_generator.state)
+33    return np.array(dat)
+
+ + + + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + add_gaussian_noise_drift( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, /, sigma: typing.Annotated[float, Gt(gt=0)], coef: typing.Annotated[float, None, Interval(gt=None, ge=0, lt=None, le=1), None, None], rng_seed=None): + + + +
+ +
36@add_spectrum_filter
+37@validate_call(config=dict(arbitrary_types_allowed=True))
+38def add_gaussian_noise_drift(
+39        old_spe: Spectrum,
+40        new_spe: Spectrum, /,
+41        sigma: PositiveFloat,
+42        coef: confloat(ge=0, le=1),  # type: ignore [valid-type]
+43        # validation for rng_seed is removed because
+44        # it makes in-place modification impossible
+45        rng_seed=None):
+46    r"""
+47    Add cumulative gaussian noise to the spectrum.
+48
+49    Exponential-moving-average-like gaussian noise is added
+50    to each sample. The goal is to mimic the low-frequency noise
+51    (or random substructures in spectra).
+52    The additive noise is
+53    .. math::
+54        a_i = coef*\sum_{j=0}^{i-1}g_j + g_i,
+55    where
+56    .. math::
+57        g_i = \mathcal{N}(0, 1+\frac{coef}{\sqrt 2}).
+58    This way drifting is possible while keeping the
+59    .. math::
+60        \sigma(\Delta(a)) \approx 1.
+61
+62    Args:
+63        old_spe: internal use only
+64        new_spe: internal use only
+65        sigma:
+66            Sigma of the gaussian noise.
+67        coef:
+68            `float` in `[0, 1]`, drifting coefficient. If `coef == 0`,
+69            the result is identical to `add_gaussian_noise()`.
+70        rng_seed:
+71            `int` or rng state, optional. Seed for the random generator.
+72            If a state is provided, it is updated in-place.
+73
+74    Returns: modified Spectrum
+75    """
+76    new_spe.y = generate_add_gaussian_noise_drift(old_spe.y,
+77                                                  sigma=sigma,
+78                                                  coef=coef,
+79                                                  rng_seed=rng_seed)
+
+ + +

Add cumulative gaussian noise to the spectrum.

+ +

Exponential-moving-average-like gaussian noise is added +to each sample. The goal is to mimic the low-frequency noise +(or random substructures in spectra). +The additive noise is +$$a_i = coef*\sum_{j=0}^{i-1}g_j + g_i,$$

+ +

where +$$g_i = \mathcal{N}(0, 1+\frac{coef}{\sqrt 2}).$$

+ +

This way drifting is possible while keeping the +$$\sigma(\Delta(a)) \approx 1.$$

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • sigma: Sigma of the gaussian noise.
  • +
  • coef: float in [0, 1], drifting coefficient. If coef == 0, +the result is identical to add_gaussian_noise().
  • +
  • rng_seed: int or rng state, optional. Seed for the random generator. +If a state is provided, it is updated in-place.
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/filters/add_poisson_noise.html b/ramanchada2/spectrum/filters/add_poisson_noise.html new file mode 100644 index 00000000..ec01d5cf --- /dev/null +++ b/ramanchada2/spectrum/filters/add_poisson_noise.html @@ -0,0 +1,379 @@ + + + + + + + ramanchada2.spectrum.filters.add_poisson_noise API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.filters.add_poisson_noise

+ + + + + + +
 1import numpy as np
+ 2from pydantic import validate_call
+ 3
+ 4from ramanchada2.misc.spectrum_deco import add_spectrum_filter
+ 5
+ 6from ..spectrum import Spectrum
+ 7
+ 8
+ 9@add_spectrum_filter
+10@validate_call(config=dict(arbitrary_types_allowed=True))
+11def add_poisson_noise(
+12        old_spe: Spectrum,
+13        new_spe: Spectrum, /,
+14        scale: float = 1,
+15        # validation for rng_seed is removed because
+16        # it makes in-place modification impossible
+17        rng_seed=None):
+18    r"""
+19    Add poisson noise to the spectrum.
+20
+21    For each particular sample the noise is proportional to $\sqrt{scale*a_i}$.
+22
+23    Args:
+24        old_spe: internal use only
+25        new_spe: internal use only
+26        scale:
+27            `float`, optional, default is `1`. Scale the amplitude of the noise.
+28        rng_seed:
+29            `int` or rng state, optional. Seed for the random generator.
+30            If a state is provided, it is updated in-place.
+31
+32    Returns: modified Spectrum
+33    """
+34    if isinstance(rng_seed, dict):
+35        rng = np.random.default_rng()
+36        rng.bit_generator.state = rng_seed
+37    else:
+38        rng = np.random.default_rng(rng_seed)
+39    dat = old_spe.y + [rng.normal(0., np.sqrt(i*scale)) for i in old_spe.y]
+40    dat[dat < 0] = 0
+41    if isinstance(rng_seed, dict):
+42        rng_seed.update(rng.bit_generator.state)
+43    new_spe.y = np.array(dat)
+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + add_poisson_noise( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, /, scale: float = 1, rng_seed=None): + + + +
+ +
10@add_spectrum_filter
+11@validate_call(config=dict(arbitrary_types_allowed=True))
+12def add_poisson_noise(
+13        old_spe: Spectrum,
+14        new_spe: Spectrum, /,
+15        scale: float = 1,
+16        # validation for rng_seed is removed because
+17        # it makes in-place modification impossible
+18        rng_seed=None):
+19    r"""
+20    Add poisson noise to the spectrum.
+21
+22    For each particular sample the noise is proportional to $\sqrt{scale*a_i}$.
+23
+24    Args:
+25        old_spe: internal use only
+26        new_spe: internal use only
+27        scale:
+28            `float`, optional, default is `1`. Scale the amplitude of the noise.
+29        rng_seed:
+30            `int` or rng state, optional. Seed for the random generator.
+31            If a state is provided, it is updated in-place.
+32
+33    Returns: modified Spectrum
+34    """
+35    if isinstance(rng_seed, dict):
+36        rng = np.random.default_rng()
+37        rng.bit_generator.state = rng_seed
+38    else:
+39        rng = np.random.default_rng(rng_seed)
+40    dat = old_spe.y + [rng.normal(0., np.sqrt(i*scale)) for i in old_spe.y]
+41    dat[dat < 0] = 0
+42    if isinstance(rng_seed, dict):
+43        rng_seed.update(rng.bit_generator.state)
+44    new_spe.y = np.array(dat)
+
+ + +

Add poisson noise to the spectrum.

+ +

For each particular sample the noise is proportional to $\sqrt{scale*a_i}$.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • scale: float, optional, default is 1. Scale the amplitude of the noise.
  • +
  • rng_seed: int or rng state, optional. Seed for the random generator. +If a state is provided, it is updated in-place.
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/filters/convolve.html b/ramanchada2/spectrum/filters/convolve.html new file mode 100644 index 00000000..148e3e6d --- /dev/null +++ b/ramanchada2/spectrum/filters/convolve.html @@ -0,0 +1,403 @@ + + + + + + + ramanchada2.spectrum.filters.convolve API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.filters.convolve

+ + + + + + +
 1from typing import Callable, Literal, Union
+ 2
+ 3import lmfit
+ 4import numpy as np
+ 5import numpy.typing as npt
+ 6from numpy.typing import NDArray
+ 7from pydantic import validate_call
+ 8from scipy import signal
+ 9
+10from ramanchada2.misc.spectrum_deco import add_spectrum_filter
+11
+12from ..spectrum import Spectrum
+13
+14
+15@add_spectrum_filter
+16@validate_call(config=dict(arbitrary_types_allowed=True))
+17def convolve(
+18        old_spe: Spectrum,
+19        new_spe: Spectrum, /,
+20        lineshape: Union[Callable[[Union[float, NDArray]], float],
+21                         npt.NDArray,
+22                         Literal[
+23                              'gaussian', 'lorentzian',
+24                              'voigt', 'pvoigt', 'moffat',
+25                              'pearson4', 'pearson7'
+26                              ]],
+27        **kwargs):
+28    """
+29    Convole spectrum with arbitrary lineshape.
+30
+31    Args:
+32        old_spe: internal use only
+33        new_spe: internal use only
+34        lineshape:callable, `str` or `np.ndarray`.
+35             If callable: should have a single positional argument `x`, e.g.
+36            `lambda x: np.exp((x/5)**2)`.
+37            If predefined peak profile: can be `gaussian`, `lorentzian`, `voigt`,
+38            `pvoigt`, `moffat` or `pearson4`.
+39            If `np.ndarray`: lineshape in samples.
+40        **kwargs:
+41            Additional kwargs will be passed to lineshape function.
+42
+43    Returns: modified Spectrum
+44    """
+45
+46    if isinstance(lineshape, np.ndarray):
+47        new_spe.y = signal.convolve(old_spe.y, lineshape, mode='same')
+48    else:
+49        if callable(lineshape):
+50            shape_fun = lineshape
+51        else:
+52            shape_fun = getattr(lmfit.lineshapes, lineshape)
+53
+54        leny = len(old_spe.y)
+55        x = np.arange(-(leny-1)//2, (leny+1)//2, dtype=float)
+56        shape_val = shape_fun(x, **kwargs)
+57        new_spe.y = signal.convolve(old_spe.y, shape_val, mode='same')
+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + convolve( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, /, lineshape: Union[Callable[[Union[float, numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]]]], float], numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]], Literal['gaussian', 'lorentzian', 'voigt', 'pvoigt', 'moffat', 'pearson4', 'pearson7']], **kwargs): + + + +
+ +
16@add_spectrum_filter
+17@validate_call(config=dict(arbitrary_types_allowed=True))
+18def convolve(
+19        old_spe: Spectrum,
+20        new_spe: Spectrum, /,
+21        lineshape: Union[Callable[[Union[float, NDArray]], float],
+22                         npt.NDArray,
+23                         Literal[
+24                              'gaussian', 'lorentzian',
+25                              'voigt', 'pvoigt', 'moffat',
+26                              'pearson4', 'pearson7'
+27                              ]],
+28        **kwargs):
+29    """
+30    Convole spectrum with arbitrary lineshape.
+31
+32    Args:
+33        old_spe: internal use only
+34        new_spe: internal use only
+35        lineshape:callable, `str` or `np.ndarray`.
+36             If callable: should have a single positional argument `x`, e.g.
+37            `lambda x: np.exp((x/5)**2)`.
+38            If predefined peak profile: can be `gaussian`, `lorentzian`, `voigt`,
+39            `pvoigt`, `moffat` or `pearson4`.
+40            If `np.ndarray`: lineshape in samples.
+41        **kwargs:
+42            Additional kwargs will be passed to lineshape function.
+43
+44    Returns: modified Spectrum
+45    """
+46
+47    if isinstance(lineshape, np.ndarray):
+48        new_spe.y = signal.convolve(old_spe.y, lineshape, mode='same')
+49    else:
+50        if callable(lineshape):
+51            shape_fun = lineshape
+52        else:
+53            shape_fun = getattr(lmfit.lineshapes, lineshape)
+54
+55        leny = len(old_spe.y)
+56        x = np.arange(-(leny-1)//2, (leny+1)//2, dtype=float)
+57        shape_val = shape_fun(x, **kwargs)
+58        new_spe.y = signal.convolve(old_spe.y, shape_val, mode='same')
+
+ + +

Convole spectrum with arbitrary lineshape.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • lineshape: callable, str or np.ndarray. + If callable: should have a single positional argument x, e.g. +lambda x: np.exp((x/5)**2). +If predefined peak profile: can be gaussian, lorentzian, voigt, +pvoigt, moffat or pearson4. +If np.ndarray: lineshape in samples.
  • +
  • **kwargs: Additional kwargs will be passed to lineshape function.
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/filters/drop_spikes.html b/ramanchada2/spectrum/filters/drop_spikes.html new file mode 100644 index 00000000..71842d5f --- /dev/null +++ b/ramanchada2/spectrum/filters/drop_spikes.html @@ -0,0 +1,615 @@ + + + + + + + ramanchada2.spectrum.filters.drop_spikes API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.filters.drop_spikes

+ + + + + + +
  1import numpy as np
+  2from numpy.typing import NDArray
+  3from pydantic import PositiveFloat, validate_call
+  4
+  5from ramanchada2.misc.spectrum_deco import (add_spectrum_filter,
+  6                                            add_spectrum_method)
+  7
+  8from ..spectrum import Spectrum
+  9
+ 10
+ 11@add_spectrum_method
+ 12@validate_call(config=dict(arbitrary_types_allowed=True))
+ 13def spike_indices(spe: Spectrum, /, n_sigma: PositiveFloat) -> NDArray:
+ 14    """
+ 15    Find spikes in spectrum
+ 16
+ 17    Single-bin spikes are located using left and right successive
+ 18    differences. The threshold is based on the standart deviation
+ 19    of the metric which makes this algorithm less optimal.
+ 20
+ 21    Args:
+ 22        spe: internal use only
+ 23        n_sigma: Threshold value should be `n_sigma` times the standart
+ 24          deviation of the metric.
+ 25
+ 26    Returns: List of spike indices
+ 27    """
+ 28    yi = spe.y[1:-1]
+ 29    yi_1 = spe.y[:-2]
+ 30    yi1 = spe.y[2:]
+ 31    y_merit = np.abs(2*yi-yi_1-yi1) - np.abs(yi1-yi_1)
+ 32    spike_idx = y_merit > n_sigma * y_merit.std()
+ 33    spike_idx = np.concatenate(([False], spike_idx, [False]))
+ 34    return spike_idx
+ 35
+ 36
+ 37@add_spectrum_filter
+ 38@validate_call(config=dict(arbitrary_types_allowed=True))
+ 39def drop_spikes(old_spe: Spectrum,
+ 40                new_spe: Spectrum, /,
+ 41                n_sigma: PositiveFloat = 10):
+ 42    """
+ 43    Removes single-bin spikes.
+ 44
+ 45    Remove x, y pairs recognised as spikes using left and right
+ 46    successive differences and standard-deviation-based threshold.
+ 47
+ 48    Args:
+ 49        old_spe: internal use only
+ 50        new_spe: internal use only
+ 51        n_sigma: optional, default is `10`.
+ 52            Threshold is `n_sigma` times the standard deviation.
+ 53
+ 54    Returns: modified Spectrum
+ 55    """
+ 56    use_idx = ~spike_indices(old_spe, n_sigma=n_sigma)
+ 57    new_spe.x = old_spe.x[use_idx]
+ 58    new_spe.y = old_spe.y[use_idx]
+ 59
+ 60
+ 61@add_spectrum_filter
+ 62@validate_call(config=dict(arbitrary_types_allowed=True))
+ 63def recover_spikes(old_spe: Spectrum,
+ 64                   new_spe: Spectrum, /,
+ 65                   n_sigma: PositiveFloat = 10):
+ 66    """
+ 67    Recover single-bin spikes.
+ 68
+ 69    Recover x, y pairs recognised as spikes using left and right
+ 70    successive differences and standard-deviation-based threshold
+ 71    and linear interpolation.
+ 72
+ 73    Args:
+ 74        old_spe: internal use only
+ 75        new_spe: internal use only
+ 76        n_sigma: optional, default is `10`.
+ 77            Threshold is `n_sigma` times the standard deviation.
+ 78
+ 79    Returns: modified Spectrum
+ 80    """
+ 81    use_idx = ~spike_indices(old_spe, n_sigma=n_sigma)
+ 82    new_spe.y = np.interp(old_spe.x, old_spe.x[use_idx], old_spe.y[use_idx])
+ 83
+ 84
+ 85@add_spectrum_filter
+ 86@validate_call(config=dict(arbitrary_types_allowed=True))
+ 87def get_spikes(old_spe: Spectrum,
+ 88               new_spe: Spectrum, /,
+ 89               n_sigma: PositiveFloat = 10):
+ 90    """
+ 91    Get single-bin spikes only.
+ 92
+ 93    Get x, y pairs recognised as spikes using left and right
+ 94    successive differences and standard-deviation-based threshold
+ 95    and linear interpolation.
+ 96
+ 97    Args:
+ 98        old_spe: internal use only
+ 99        new_spe: internal use only
+100        n_sigma: optional, default is `10`.
+101            Threshold is `n_sigma` times the standard deviation.
+102
+103    Returns: modified Spectrum
+104    """
+105    spike_idx = spike_indices(old_spe, n_sigma=n_sigma)
+106    new_spe.x = old_spe.x[spike_idx]
+107    new_spe.y = old_spe.y[spike_idx]
+
+ + +
+
+ +
+
@add_spectrum_method
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + spike_indices( spe: ramanchada2.spectrum.spectrum.Spectrum, /, n_sigma: typing.Annotated[float, Gt(gt=0)]) -> numpy.ndarray[typing.Any, numpy.dtype[+_ScalarType_co]]: + + + +
+ +
12@add_spectrum_method
+13@validate_call(config=dict(arbitrary_types_allowed=True))
+14def spike_indices(spe: Spectrum, /, n_sigma: PositiveFloat) -> NDArray:
+15    """
+16    Find spikes in spectrum
+17
+18    Single-bin spikes are located using left and right successive
+19    differences. The threshold is based on the standart deviation
+20    of the metric which makes this algorithm less optimal.
+21
+22    Args:
+23        spe: internal use only
+24        n_sigma: Threshold value should be `n_sigma` times the standart
+25          deviation of the metric.
+26
+27    Returns: List of spike indices
+28    """
+29    yi = spe.y[1:-1]
+30    yi_1 = spe.y[:-2]
+31    yi1 = spe.y[2:]
+32    y_merit = np.abs(2*yi-yi_1-yi1) - np.abs(yi1-yi_1)
+33    spike_idx = y_merit > n_sigma * y_merit.std()
+34    spike_idx = np.concatenate(([False], spike_idx, [False]))
+35    return spike_idx
+
+ + +

Find spikes in spectrum

+ +

Single-bin spikes are located using left and right successive +differences. The threshold is based on the standart deviation +of the metric which makes this algorithm less optimal.

+ +
Arguments:
+ +
    +
  • spe: internal use only
  • +
  • n_sigma: Threshold value should be n_sigma times the standart +deviation of the metric.
  • +
+ +

Returns: List of spike indices

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + drop_spikes( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, /, n_sigma: typing.Annotated[float, Gt(gt=0)] = 10): + + + +
+ +
38@add_spectrum_filter
+39@validate_call(config=dict(arbitrary_types_allowed=True))
+40def drop_spikes(old_spe: Spectrum,
+41                new_spe: Spectrum, /,
+42                n_sigma: PositiveFloat = 10):
+43    """
+44    Removes single-bin spikes.
+45
+46    Remove x, y pairs recognised as spikes using left and right
+47    successive differences and standard-deviation-based threshold.
+48
+49    Args:
+50        old_spe: internal use only
+51        new_spe: internal use only
+52        n_sigma: optional, default is `10`.
+53            Threshold is `n_sigma` times the standard deviation.
+54
+55    Returns: modified Spectrum
+56    """
+57    use_idx = ~spike_indices(old_spe, n_sigma=n_sigma)
+58    new_spe.x = old_spe.x[use_idx]
+59    new_spe.y = old_spe.y[use_idx]
+
+ + +

Removes single-bin spikes.

+ +

Remove x, y pairs recognised as spikes using left and right +successive differences and standard-deviation-based threshold.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • n_sigma: optional, default is 10. +Threshold is n_sigma times the standard deviation.
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + recover_spikes( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, /, n_sigma: typing.Annotated[float, Gt(gt=0)] = 10): + + + +
+ +
62@add_spectrum_filter
+63@validate_call(config=dict(arbitrary_types_allowed=True))
+64def recover_spikes(old_spe: Spectrum,
+65                   new_spe: Spectrum, /,
+66                   n_sigma: PositiveFloat = 10):
+67    """
+68    Recover single-bin spikes.
+69
+70    Recover x, y pairs recognised as spikes using left and right
+71    successive differences and standard-deviation-based threshold
+72    and linear interpolation.
+73
+74    Args:
+75        old_spe: internal use only
+76        new_spe: internal use only
+77        n_sigma: optional, default is `10`.
+78            Threshold is `n_sigma` times the standard deviation.
+79
+80    Returns: modified Spectrum
+81    """
+82    use_idx = ~spike_indices(old_spe, n_sigma=n_sigma)
+83    new_spe.y = np.interp(old_spe.x, old_spe.x[use_idx], old_spe.y[use_idx])
+
+ + +

Recover single-bin spikes.

+ +

Recover x, y pairs recognised as spikes using left and right +successive differences and standard-deviation-based threshold +and linear interpolation.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • n_sigma: optional, default is 10. +Threshold is n_sigma times the standard deviation.
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + get_spikes( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, /, n_sigma: typing.Annotated[float, Gt(gt=0)] = 10): + + + +
+ +
 86@add_spectrum_filter
+ 87@validate_call(config=dict(arbitrary_types_allowed=True))
+ 88def get_spikes(old_spe: Spectrum,
+ 89               new_spe: Spectrum, /,
+ 90               n_sigma: PositiveFloat = 10):
+ 91    """
+ 92    Get single-bin spikes only.
+ 93
+ 94    Get x, y pairs recognised as spikes using left and right
+ 95    successive differences and standard-deviation-based threshold
+ 96    and linear interpolation.
+ 97
+ 98    Args:
+ 99        old_spe: internal use only
+100        new_spe: internal use only
+101        n_sigma: optional, default is `10`.
+102            Threshold is `n_sigma` times the standard deviation.
+103
+104    Returns: modified Spectrum
+105    """
+106    spike_idx = spike_indices(old_spe, n_sigma=n_sigma)
+107    new_spe.x = old_spe.x[spike_idx]
+108    new_spe.y = old_spe.y[spike_idx]
+
+ + +

Get single-bin spikes only.

+ +

Get x, y pairs recognised as spikes using left and right +successive differences and standard-deviation-based threshold +and linear interpolation.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • n_sigma: optional, default is 10. +Threshold is n_sigma times the standard deviation.
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/filters/moving_average.html b/ramanchada2/spectrum/filters/moving_average.html new file mode 100644 index 00000000..f3a21f98 --- /dev/null +++ b/ramanchada2/spectrum/filters/moving_average.html @@ -0,0 +1,414 @@ + + + + + + + ramanchada2.spectrum.filters.moving_average API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.filters.moving_average

+ + + + + + +
 1import numpy as np
+ 2from pydantic import PositiveInt, validate_call
+ 3from scipy import signal
+ 4
+ 5from ramanchada2.misc.spectrum_deco import add_spectrum_filter
+ 6
+ 7from ..spectrum import Spectrum
+ 8
+ 9
+10@add_spectrum_filter
+11@validate_call(config=dict(arbitrary_types_allowed=True))
+12def moving_average(old_spe: Spectrum,
+13                   new_spe: Spectrum, /,
+14                   window_size: PositiveInt = 10):
+15    """
+16    Moving average filter.
+17
+18    Args:
+19        old_spe: internal use only
+20        new_spe: internal use only
+21        window_size:
+22            `int`, optional, default is `10`.
+23
+24    Returns: modified Spectrum
+25    """
+26    y = [np.average(old_spe.y[i:min(i + window_size, len(old_spe.y))])
+27         for i in range(len(old_spe.y))]
+28    new_spe.y = np.array(y)
+29
+30
+31@add_spectrum_filter
+32@validate_call(config=dict(arbitrary_types_allowed=True))
+33def moving_average_convolve(old_spe: Spectrum,
+34                            new_spe: Spectrum, /,
+35                            window_size: PositiveInt = 10):
+36    """
+37    Moving average filter.
+38
+39    Args:
+40        old_spe: internal use only
+41        new_spe: internal use only
+42        window_size:
+43            `int`, optional, default is `10`.
+44
+45    Returns: modified Spectrum
+46    """
+47    new_spe.y = signal.convolve(old_spe.y, np.ones(window_size)/window_size, mode='same')
+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + moving_average( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, /, window_size: typing.Annotated[int, Gt(gt=0)] = 10): + + + +
+ +
11@add_spectrum_filter
+12@validate_call(config=dict(arbitrary_types_allowed=True))
+13def moving_average(old_spe: Spectrum,
+14                   new_spe: Spectrum, /,
+15                   window_size: PositiveInt = 10):
+16    """
+17    Moving average filter.
+18
+19    Args:
+20        old_spe: internal use only
+21        new_spe: internal use only
+22        window_size:
+23            `int`, optional, default is `10`.
+24
+25    Returns: modified Spectrum
+26    """
+27    y = [np.average(old_spe.y[i:min(i + window_size, len(old_spe.y))])
+28         for i in range(len(old_spe.y))]
+29    new_spe.y = np.array(y)
+
+ + +

Moving average filter.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • window_size: int, optional, default is 10.
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + moving_average_convolve( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, /, window_size: typing.Annotated[int, Gt(gt=0)] = 10): + + + +
+ +
32@add_spectrum_filter
+33@validate_call(config=dict(arbitrary_types_allowed=True))
+34def moving_average_convolve(old_spe: Spectrum,
+35                            new_spe: Spectrum, /,
+36                            window_size: PositiveInt = 10):
+37    """
+38    Moving average filter.
+39
+40    Args:
+41        old_spe: internal use only
+42        new_spe: internal use only
+43        window_size:
+44            `int`, optional, default is `10`.
+45
+46    Returns: modified Spectrum
+47    """
+48    new_spe.y = signal.convolve(old_spe.y, np.ones(window_size)/window_size, mode='same')
+
+ + +

Moving average filter.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • window_size: int, optional, default is 10.
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/filters/moving_median.html b/ramanchada2/spectrum/filters/moving_median.html new file mode 100644 index 00000000..229237e8 --- /dev/null +++ b/ramanchada2/spectrum/filters/moving_median.html @@ -0,0 +1,435 @@ + + + + + + + ramanchada2.spectrum.filters.moving_median API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.filters.moving_median

+ + + + + + +
 1import numpy as np
+ 2from pydantic import PositiveInt, validate_call
+ 3
+ 4from ramanchada2.misc.spectrum_deco import add_spectrum_filter
+ 5
+ 6from ..spectrum import Spectrum
+ 7
+ 8
+ 9@validate_call(config=dict(arbitrary_types_allowed=True))
+10def _moving_median(s,
+11                   window_size: PositiveInt = 10):
+12    y = ([np.median(s[:window_size]) for i in range(window_size)] +
+13         [np.median(s[i-window_size: i+window_size]) for i in range(window_size, len(s)-window_size)] +
+14         [np.median(s[-window_size:]) for i in range(window_size)]
+15         )
+16    return np.array(y)
+17
+18
+19@add_spectrum_filter
+20@validate_call(config=dict(arbitrary_types_allowed=True))
+21def moving_median(old_spe: Spectrum,
+22                  new_spe: Spectrum, /,
+23                  window_size: PositiveInt = 10):
+24    """
+25    Moving median filter.
+26
+27    The resultant spectrum is moving minimum of the input.
+28
+29    Args:
+30        old_spe: internal use only
+31        new_spe: internal use only
+32        window_size:
+33            `int`, optional, default is `10`.
+34
+35    Returns: modified Spectrum
+36    """
+37
+38    new_spe.y = _moving_median(old_spe.y, window_size)
+39
+40
+41@add_spectrum_filter
+42@validate_call(config=dict(arbitrary_types_allowed=True))
+43def subtract_moving_median(
+44        old_spe: Spectrum,
+45        new_spe: Spectrum,
+46        window_size: int):
+47    """
+48    Subtract moving median filter.
+49
+50    The resultant spectrum is moving minimum of the input subtracted from the input.
+51
+52    Args:
+53        old_spe: internal use only
+54        new_spe: internal use only
+55        window_size:
+56            `int`, optional, default is `10`.
+57
+58    Returns: modified Spectrum
+59    """
+60    new_spe.y = old_spe.y - _moving_median(old_spe.y, window_size)
+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + moving_median( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, /, window_size: typing.Annotated[int, Gt(gt=0)] = 10): + + + +
+ +
20@add_spectrum_filter
+21@validate_call(config=dict(arbitrary_types_allowed=True))
+22def moving_median(old_spe: Spectrum,
+23                  new_spe: Spectrum, /,
+24                  window_size: PositiveInt = 10):
+25    """
+26    Moving median filter.
+27
+28    The resultant spectrum is moving minimum of the input.
+29
+30    Args:
+31        old_spe: internal use only
+32        new_spe: internal use only
+33        window_size:
+34            `int`, optional, default is `10`.
+35
+36    Returns: modified Spectrum
+37    """
+38
+39    new_spe.y = _moving_median(old_spe.y, window_size)
+
+ + +

Moving median filter.

+ +

The resultant spectrum is moving minimum of the input.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • window_size: int, optional, default is 10.
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + subtract_moving_median( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, window_size: int): + + + +
+ +
42@add_spectrum_filter
+43@validate_call(config=dict(arbitrary_types_allowed=True))
+44def subtract_moving_median(
+45        old_spe: Spectrum,
+46        new_spe: Spectrum,
+47        window_size: int):
+48    """
+49    Subtract moving median filter.
+50
+51    The resultant spectrum is moving minimum of the input subtracted from the input.
+52
+53    Args:
+54        old_spe: internal use only
+55        new_spe: internal use only
+56        window_size:
+57            `int`, optional, default is `10`.
+58
+59    Returns: modified Spectrum
+60    """
+61    new_spe.y = old_spe.y - _moving_median(old_spe.y, window_size)
+
+ + +

Subtract moving median filter.

+ +

The resultant spectrum is moving minimum of the input subtracted from the input.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • window_size: int, optional, default is 10.
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/filters/pad_zeros.html b/ramanchada2/spectrum/filters/pad_zeros.html new file mode 100644 index 00000000..c7f3d96a --- /dev/null +++ b/ramanchada2/spectrum/filters/pad_zeros.html @@ -0,0 +1,367 @@ + + + + + + + ramanchada2.spectrum.filters.pad_zeros API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.filters.pad_zeros

+ + + + + + +
 1import numpy as np
+ 2from pydantic import validate_call
+ 3
+ 4from ramanchada2.misc.spectrum_deco import add_spectrum_filter
+ 5
+ 6from ..spectrum import Spectrum
+ 7
+ 8
+ 9@add_spectrum_filter
+10@validate_call(config=dict(arbitrary_types_allowed=True))
+11def pad_zeros(old_spe: Spectrum,
+12              new_spe: Spectrum, /):
+13    """
+14    Extend x-axis by 100% in both directions.
+15
+16    The x-axis of resultant spectrum will be:
+17    $[x_{lower}-(x_{upper}-x_{lower})..(x_{upper}+(x_{upper}-x_{lower}))]$.
+18    The length of the new spectrum is 3 times the original. The added values
+19    are with an uniform step. In the middle is the original spectrum with
+20    original x and y values. The coresponding y vallues for the newly added
+21    x-values are always zeros.
+22
+23    Args:
+24        old_spe: internal use only
+25        new_spe: internal use only
+26
+27    Returns: modified Spectrum
+28    """
+29    lenx = len(old_spe.x)
+30    minx = np.min(old_spe.x)
+31    maxx = np.max(old_spe.x)
+32    xl = np.linspace(minx-(maxx-minx), minx, lenx, endpoint=True)[:-1]
+33    xr = np.linspace(maxx, maxx+(maxx-minx), lenx, endpoint=True)[1:]
+34
+35    new_spe.y = np.concatenate((np.zeros(lenx-1), old_spe.y, np.zeros(lenx-1)))
+36    new_spe.x = np.concatenate((xl, old_spe.x, xr))
+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + pad_zeros( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, /): + + + +
+ +
10@add_spectrum_filter
+11@validate_call(config=dict(arbitrary_types_allowed=True))
+12def pad_zeros(old_spe: Spectrum,
+13              new_spe: Spectrum, /):
+14    """
+15    Extend x-axis by 100% in both directions.
+16
+17    The x-axis of resultant spectrum will be:
+18    $[x_{lower}-(x_{upper}-x_{lower})..(x_{upper}+(x_{upper}-x_{lower}))]$.
+19    The length of the new spectrum is 3 times the original. The added values
+20    are with an uniform step. In the middle is the original spectrum with
+21    original x and y values. The coresponding y vallues for the newly added
+22    x-values are always zeros.
+23
+24    Args:
+25        old_spe: internal use only
+26        new_spe: internal use only
+27
+28    Returns: modified Spectrum
+29    """
+30    lenx = len(old_spe.x)
+31    minx = np.min(old_spe.x)
+32    maxx = np.max(old_spe.x)
+33    xl = np.linspace(minx-(maxx-minx), minx, lenx, endpoint=True)[:-1]
+34    xr = np.linspace(maxx, maxx+(maxx-minx), lenx, endpoint=True)[1:]
+35
+36    new_spe.y = np.concatenate((np.zeros(lenx-1), old_spe.y, np.zeros(lenx-1)))
+37    new_spe.x = np.concatenate((xl, old_spe.x, xr))
+
+ + +

Extend x-axis by 100% in both directions.

+ +

The x-axis of resultant spectrum will be: +$[x_{lower}-(x_{upper}-x_{lower})..(x_{upper}+(x_{upper}-x_{lower}))]$. +The length of the new spectrum is 3 times the original. The added values +are with an uniform step. In the middle is the original spectrum with +original x and y values. The coresponding y vallues for the newly added +x-values are always zeros.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/filters/resampling.html b/ramanchada2/spectrum/filters/resampling.html new file mode 100644 index 00000000..f3810636 --- /dev/null +++ b/ramanchada2/spectrum/filters/resampling.html @@ -0,0 +1,857 @@ + + + + + + + ramanchada2.spectrum.filters.resampling API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.filters.resampling

+ + + + + + +
  1from typing import Any, Callable, Dict, Literal, Optional, Tuple, Union
+  2
+  3import numpy as np
+  4from pydantic import PositiveInt, validate_call
+  5from scipy import fft, signal
+  6from scipy.interpolate import (Akima1DInterpolator, CubicSpline,
+  7                               PchipInterpolator)
+  8
+  9from ramanchada2.misc.spectrum_deco import (add_spectrum_filter,
+ 10                                            add_spectrum_method)
+ 11
+ 12from ..spectrum import Spectrum
+ 13
+ 14
+ 15@add_spectrum_method
+ 16@validate_call(config=dict(arbitrary_types_allowed=True))
+ 17def resample_NUDFT(spe: Spectrum, /,
+ 18                   x_range: Tuple[float, float] = (0, 4000),
+ 19                   xnew_bins: PositiveInt = 100,
+ 20                   window: Optional[Union[Callable,
+ 21                                          Tuple[Any, ...],  # e.g. ('gaussian', sigma)
+ 22                                          Literal['barthann', 'bartlett', 'blackman', 'blackmanharris',
+ 23                                                  'bohman', 'boxcar', 'chebwin', 'cosine', 'dpss',
+ 24                                                  'exponential', 'flattop', 'gaussian', 'general_cosine',
+ 25                                                  'general_gaussian', 'general_hamming', 'hamming', 'hann',
+ 26                                                  'kaiser', 'nuttall', 'parzen', 'taylor', 'triang', 'tukey']
+ 27                                          ]] = None,
+ 28                   cumulative: bool = False):
+ 29    """
+ 30    Resample the spectrum using Non-uniform discrete fourier transform.
+ 31
+ 32    The x-axis of the result will be uniform. The corresponding y-values
+ 33    will be calculated with NUDFT and inverse FFT.
+ 34
+ 35    Args:
+ 36        spe: internal use only
+ 37        x_range: optional. Defaults to (0, 4000).
+ 38            The x_range of the new spectrum.
+ 39        xnew_bins: optional. Defaults to 100.
+ 40            Number of bins of the new spectrum
+ 41        window: optional, Defaults to None.
+ 42            The window to be used for lowpass filter. If None 'blackmanharris' is used.
+ 43            If no low-pass filter is required, one can use `window=lambda x: [1]*len(x)`.
+ 44        cumulative: optional. Defaults to False.
+ 45            If True, the resultant spectrum will be cumulative and normalized
+ 46            (in analogy with CDF).
+ 47
+ 48    Returns:
+ 49        (x_values, y_values)
+ 50    """
+ 51
+ 52    x_new = np.linspace(x_range[0], x_range[1], xnew_bins, endpoint=False)
+ 53    x = spe.x
+ 54    y = spe.y
+ 55    x = np.array(x)
+ 56    x_range = (np.min(x_range), np.max(x_range))
+ 57    y = y[(x >= x_range[0]) & (x < x_range[1])]
+ 58    x = x[(x >= x_range[0]) & (x < x_range[1])]
+ 59
+ 60    w = (x-x_range[0])/(x_range[1]-x_range[0])*np.pi*2
+ 61    x -= x_range[0]
+ 62
+ 63    k = np.arange(xnew_bins)
+ 64
+ 65    Y_new = np.sum([yi*np.exp(-1j*wi*k) for yi, wi in zip(y, w)], axis=0)
+ 66
+ 67    if window is None:
+ 68        window = 'blackmanharris'
+ 69
+ 70    if hasattr(window, '__call__'):
+ 71        h = (window(len(Y_new)*2))[len(Y_new):]  # type: ignore
+ 72    else:
+ 73        h = signal.windows.get_window(window, len(Y_new)*2)[len(Y_new):]
+ 74    Y_new *= h
+ 75
+ 76    y_new = fft.irfft(Y_new, n=xnew_bins)
+ 77    if cumulative:
+ 78        y_new = np.cumsum(y_new)
+ 79        y_new /= y_new[-1]
+ 80    return x_new, y_new
+ 81
+ 82
+ 83@add_spectrum_filter
+ 84@validate_call(config=dict(arbitrary_types_allowed=True))
+ 85def resample_NUDFT_filter(old_spe: Spectrum,
+ 86                          new_spe: Spectrum, /,
+ 87                          x_range: Tuple[float, float] = (0, 4000),
+ 88                          xnew_bins: PositiveInt = 100,
+ 89                          window=None,
+ 90                          cumulative: bool = False):
+ 91    """
+ 92    Resample the spectrum using Non-uniform discrete fourier transform.
+ 93
+ 94    The x-axis of the result will be uniform. The corresponding y-values
+ 95    will be calculated with NUDFT and inverse FFT.
+ 96
+ 97    Args:
+ 98        old_spe: internal use only
+ 99        new_spe: internal use only
+100        x_range: optional. Defaults to (0, 4000).
+101            The x_range of the new spectrum.
+102        xnew_bins: optional. Defaults to 100.
+103            Number of bins of the new spectrum
+104        window: optional, Defaults to None.
+105            The window to be used for lowpass filter. If None 'blackmanharris' is used.
+106            If no low-pass filter is required, one can use `window=lambda x: [1]*len(x)`.
+107        cumulative: optional. Defaults to False.
+108            If True, the resultant spectrum will be cumulative and normalized
+109            (in analogy with CDF).
+110
+111    Returns: modified Spectrum
+112    """
+113    new_spe.x, new_spe.y = resample_NUDFT(old_spe,
+114                                          x_range=x_range,
+115                                          xnew_bins=xnew_bins,
+116                                          window=window,
+117                                          cumulative=cumulative)
+118
+119
+120@add_spectrum_method
+121@validate_call(config=dict(arbitrary_types_allowed=True))
+122def resample_spline(spe: Spectrum, /,
+123                    x_range: Tuple[float, float] = (0, 4000),
+124                    xnew_bins: PositiveInt = 100,
+125                    spline: Literal['pchip', 'akima', 'makima', 'cubic_spline'] = 'pchip',
+126                    interp_kw_args: Optional[Dict] = None,
+127                    cumulative: bool = False):
+128    """
+129    Resample the spectrum using spline interpolation.
+130
+131    The x-axis of the result will be uniform. The corresponding y-values
+132    will be calculated with spline interpolation.
+133
+134    Args:
+135        spe: internal use only
+136        x_range: optional. Defaults to (0, 4000).
+137            The x_range of the new spectrum.
+138        xnew_bins: optional. Defaults to 100.
+139            Number of bins of the new spectrum
+140        spline: optional, Defaults to 'pchip'.
+141            Name of the spline funcion to be used.
+142        cumulative: optional. Defaults to False.
+143            If True, the resultant spectrum will be cumulative and normalized
+144            (in analogy with CDF).
+145
+146    Returns:
+147        (x_values, y_values)
+148    """
+149
+150    kw_args: Dict[str, Any] = {}
+151    if spline == 'pchip':
+152        spline_fn = PchipInterpolator
+153        kw_args['extrapolate'] = False
+154    elif spline == 'akima':
+155        spline_fn = Akima1DInterpolator
+156    elif spline == 'makima':
+157        spline_fn = Akima1DInterpolator
+158        kw_args['method'] = 'makima'
+159    elif spline == 'cubic_spline':
+160        spline_fn = CubicSpline
+161        kw_args['bc_type'] = 'natural'
+162        kw_args['extrapolate'] = False
+163
+164    if interp_kw_args is not None:
+165        kw_args.update(interp_kw_args)
+166
+167    x_new = np.linspace(x_range[0], x_range[1], xnew_bins, endpoint=False)
+168    y_new = spline_fn(spe.x, spe.y, **kw_args)(x_new)
+169
+170    y_new[np.isnan(y_new)] = 0
+171    if cumulative:
+172        y_new = np.cumsum(y_new)
+173        y_new /= y_new[-1]
+174
+175    return x_new, y_new
+176
+177
+178@add_spectrum_filter
+179@validate_call(config=dict(arbitrary_types_allowed=True))
+180def resample_spline_filter(old_spe: Spectrum,
+181                           new_spe: Spectrum, /,
+182                           x_range: Tuple[float, float] = (0, 4000),
+183                           xnew_bins: PositiveInt = 100,
+184                           spline: Literal['pchip', 'akima', 'makima', 'cubic_spline'] = 'pchip',
+185                           interp_kw_args: Optional[Dict] = None,
+186                           cumulative: bool = False):
+187    """
+188    Resample the spectrum using spline interpolation.
+189
+190    The x-axis of the result will be uniform. The corresponding y-values
+191    will be calculated with spline interpolation.
+192
+193    Args:
+194        old_spe: internal use only
+195        new_spe: internal use only
+196        x_range: optional. Defaults to (0, 4000).
+197            The x_range of the new spectrum.
+198        xnew_bins: optional. Defaults to 100.
+199            Number of bins of the new spectrum
+200        spline: optional, Defaults to 'pchip'.
+201            Name of the spline funcion to be used.
+202        cumulative: optional. Defaults to False.
+203            If True, the resultant spectrum will be cumulative and normalized
+204            (in analogy with CDF).
+205
+206    Returns: modified Spectrum
+207    """
+208    new_spe.x, new_spe.y = resample_spline(old_spe,
+209                                           x_range=x_range,
+210                                           xnew_bins=xnew_bins,
+211                                           spline=spline,
+212                                           interp_kw_args=interp_kw_args,
+213                                           cumulative=cumulative)
+
+ + +
+
+ +
+
@add_spectrum_method
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + resample_NUDFT( spe: ramanchada2.spectrum.spectrum.Spectrum, /, x_range: Tuple[float, float] = (0, 4000), xnew_bins: typing.Annotated[int, Gt(gt=0)] = 100, window: Union[Callable, Tuple[Any, ...], Literal['barthann', 'bartlett', 'blackman', 'blackmanharris', 'bohman', 'boxcar', 'chebwin', 'cosine', 'dpss', 'exponential', 'flattop', 'gaussian', 'general_cosine', 'general_gaussian', 'general_hamming', 'hamming', 'hann', 'kaiser', 'nuttall', 'parzen', 'taylor', 'triang', 'tukey'], NoneType] = None, cumulative: bool = False): + + + +
+ +
16@add_spectrum_method
+17@validate_call(config=dict(arbitrary_types_allowed=True))
+18def resample_NUDFT(spe: Spectrum, /,
+19                   x_range: Tuple[float, float] = (0, 4000),
+20                   xnew_bins: PositiveInt = 100,
+21                   window: Optional[Union[Callable,
+22                                          Tuple[Any, ...],  # e.g. ('gaussian', sigma)
+23                                          Literal['barthann', 'bartlett', 'blackman', 'blackmanharris',
+24                                                  'bohman', 'boxcar', 'chebwin', 'cosine', 'dpss',
+25                                                  'exponential', 'flattop', 'gaussian', 'general_cosine',
+26                                                  'general_gaussian', 'general_hamming', 'hamming', 'hann',
+27                                                  'kaiser', 'nuttall', 'parzen', 'taylor', 'triang', 'tukey']
+28                                          ]] = None,
+29                   cumulative: bool = False):
+30    """
+31    Resample the spectrum using Non-uniform discrete fourier transform.
+32
+33    The x-axis of the result will be uniform. The corresponding y-values
+34    will be calculated with NUDFT and inverse FFT.
+35
+36    Args:
+37        spe: internal use only
+38        x_range: optional. Defaults to (0, 4000).
+39            The x_range of the new spectrum.
+40        xnew_bins: optional. Defaults to 100.
+41            Number of bins of the new spectrum
+42        window: optional, Defaults to None.
+43            The window to be used for lowpass filter. If None 'blackmanharris' is used.
+44            If no low-pass filter is required, one can use `window=lambda x: [1]*len(x)`.
+45        cumulative: optional. Defaults to False.
+46            If True, the resultant spectrum will be cumulative and normalized
+47            (in analogy with CDF).
+48
+49    Returns:
+50        (x_values, y_values)
+51    """
+52
+53    x_new = np.linspace(x_range[0], x_range[1], xnew_bins, endpoint=False)
+54    x = spe.x
+55    y = spe.y
+56    x = np.array(x)
+57    x_range = (np.min(x_range), np.max(x_range))
+58    y = y[(x >= x_range[0]) & (x < x_range[1])]
+59    x = x[(x >= x_range[0]) & (x < x_range[1])]
+60
+61    w = (x-x_range[0])/(x_range[1]-x_range[0])*np.pi*2
+62    x -= x_range[0]
+63
+64    k = np.arange(xnew_bins)
+65
+66    Y_new = np.sum([yi*np.exp(-1j*wi*k) for yi, wi in zip(y, w)], axis=0)
+67
+68    if window is None:
+69        window = 'blackmanharris'
+70
+71    if hasattr(window, '__call__'):
+72        h = (window(len(Y_new)*2))[len(Y_new):]  # type: ignore
+73    else:
+74        h = signal.windows.get_window(window, len(Y_new)*2)[len(Y_new):]
+75    Y_new *= h
+76
+77    y_new = fft.irfft(Y_new, n=xnew_bins)
+78    if cumulative:
+79        y_new = np.cumsum(y_new)
+80        y_new /= y_new[-1]
+81    return x_new, y_new
+
+ + +

Resample the spectrum using Non-uniform discrete fourier transform.

+ +

The x-axis of the result will be uniform. The corresponding y-values +will be calculated with NUDFT and inverse FFT.

+ +
Arguments:
+ +
    +
  • spe: internal use only
  • +
  • x_range: optional. Defaults to (0, 4000). +The x_range of the new spectrum.
  • +
  • xnew_bins: optional. Defaults to 100. +Number of bins of the new spectrum
  • +
  • window: optional, Defaults to None. +The window to be used for lowpass filter. If None 'blackmanharris' is used. +If no low-pass filter is required, one can use window=lambda x: [1]*len(x).
  • +
  • cumulative: optional. Defaults to False. +If True, the resultant spectrum will be cumulative and normalized +(in analogy with CDF).
  • +
+ +
Returns:
+ +
+

(x_values, y_values)

+
+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + resample_NUDFT_filter( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, /, x_range: Tuple[float, float] = (0, 4000), xnew_bins: typing.Annotated[int, Gt(gt=0)] = 100, window=None, cumulative: bool = False): + + + +
+ +
 84@add_spectrum_filter
+ 85@validate_call(config=dict(arbitrary_types_allowed=True))
+ 86def resample_NUDFT_filter(old_spe: Spectrum,
+ 87                          new_spe: Spectrum, /,
+ 88                          x_range: Tuple[float, float] = (0, 4000),
+ 89                          xnew_bins: PositiveInt = 100,
+ 90                          window=None,
+ 91                          cumulative: bool = False):
+ 92    """
+ 93    Resample the spectrum using Non-uniform discrete fourier transform.
+ 94
+ 95    The x-axis of the result will be uniform. The corresponding y-values
+ 96    will be calculated with NUDFT and inverse FFT.
+ 97
+ 98    Args:
+ 99        old_spe: internal use only
+100        new_spe: internal use only
+101        x_range: optional. Defaults to (0, 4000).
+102            The x_range of the new spectrum.
+103        xnew_bins: optional. Defaults to 100.
+104            Number of bins of the new spectrum
+105        window: optional, Defaults to None.
+106            The window to be used for lowpass filter. If None 'blackmanharris' is used.
+107            If no low-pass filter is required, one can use `window=lambda x: [1]*len(x)`.
+108        cumulative: optional. Defaults to False.
+109            If True, the resultant spectrum will be cumulative and normalized
+110            (in analogy with CDF).
+111
+112    Returns: modified Spectrum
+113    """
+114    new_spe.x, new_spe.y = resample_NUDFT(old_spe,
+115                                          x_range=x_range,
+116                                          xnew_bins=xnew_bins,
+117                                          window=window,
+118                                          cumulative=cumulative)
+
+ + +

Resample the spectrum using Non-uniform discrete fourier transform.

+ +

The x-axis of the result will be uniform. The corresponding y-values +will be calculated with NUDFT and inverse FFT.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • x_range: optional. Defaults to (0, 4000). +The x_range of the new spectrum.
  • +
  • xnew_bins: optional. Defaults to 100. +Number of bins of the new spectrum
  • +
  • window: optional, Defaults to None. +The window to be used for lowpass filter. If None 'blackmanharris' is used. +If no low-pass filter is required, one can use window=lambda x: [1]*len(x).
  • +
  • cumulative: optional. Defaults to False. +If True, the resultant spectrum will be cumulative and normalized +(in analogy with CDF).
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ +
+
@add_spectrum_method
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + resample_spline( spe: ramanchada2.spectrum.spectrum.Spectrum, /, x_range: Tuple[float, float] = (0, 4000), xnew_bins: typing.Annotated[int, Gt(gt=0)] = 100, spline: Literal['pchip', 'akima', 'makima', 'cubic_spline'] = 'pchip', interp_kw_args: Optional[Dict] = None, cumulative: bool = False): + + + +
+ +
121@add_spectrum_method
+122@validate_call(config=dict(arbitrary_types_allowed=True))
+123def resample_spline(spe: Spectrum, /,
+124                    x_range: Tuple[float, float] = (0, 4000),
+125                    xnew_bins: PositiveInt = 100,
+126                    spline: Literal['pchip', 'akima', 'makima', 'cubic_spline'] = 'pchip',
+127                    interp_kw_args: Optional[Dict] = None,
+128                    cumulative: bool = False):
+129    """
+130    Resample the spectrum using spline interpolation.
+131
+132    The x-axis of the result will be uniform. The corresponding y-values
+133    will be calculated with spline interpolation.
+134
+135    Args:
+136        spe: internal use only
+137        x_range: optional. Defaults to (0, 4000).
+138            The x_range of the new spectrum.
+139        xnew_bins: optional. Defaults to 100.
+140            Number of bins of the new spectrum
+141        spline: optional, Defaults to 'pchip'.
+142            Name of the spline funcion to be used.
+143        cumulative: optional. Defaults to False.
+144            If True, the resultant spectrum will be cumulative and normalized
+145            (in analogy with CDF).
+146
+147    Returns:
+148        (x_values, y_values)
+149    """
+150
+151    kw_args: Dict[str, Any] = {}
+152    if spline == 'pchip':
+153        spline_fn = PchipInterpolator
+154        kw_args['extrapolate'] = False
+155    elif spline == 'akima':
+156        spline_fn = Akima1DInterpolator
+157    elif spline == 'makima':
+158        spline_fn = Akima1DInterpolator
+159        kw_args['method'] = 'makima'
+160    elif spline == 'cubic_spline':
+161        spline_fn = CubicSpline
+162        kw_args['bc_type'] = 'natural'
+163        kw_args['extrapolate'] = False
+164
+165    if interp_kw_args is not None:
+166        kw_args.update(interp_kw_args)
+167
+168    x_new = np.linspace(x_range[0], x_range[1], xnew_bins, endpoint=False)
+169    y_new = spline_fn(spe.x, spe.y, **kw_args)(x_new)
+170
+171    y_new[np.isnan(y_new)] = 0
+172    if cumulative:
+173        y_new = np.cumsum(y_new)
+174        y_new /= y_new[-1]
+175
+176    return x_new, y_new
+
+ + +

Resample the spectrum using spline interpolation.

+ +

The x-axis of the result will be uniform. The corresponding y-values +will be calculated with spline interpolation.

+ +
Arguments:
+ +
    +
  • spe: internal use only
  • +
  • x_range: optional. Defaults to (0, 4000). +The x_range of the new spectrum.
  • +
  • xnew_bins: optional. Defaults to 100. +Number of bins of the new spectrum
  • +
  • spline: optional, Defaults to 'pchip'. +Name of the spline funcion to be used.
  • +
  • cumulative: optional. Defaults to False. +If True, the resultant spectrum will be cumulative and normalized +(in analogy with CDF).
  • +
+ +
Returns:
+ +
+

(x_values, y_values)

+
+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + resample_spline_filter( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, /, x_range: Tuple[float, float] = (0, 4000), xnew_bins: typing.Annotated[int, Gt(gt=0)] = 100, spline: Literal['pchip', 'akima', 'makima', 'cubic_spline'] = 'pchip', interp_kw_args: Optional[Dict] = None, cumulative: bool = False): + + + +
+ +
179@add_spectrum_filter
+180@validate_call(config=dict(arbitrary_types_allowed=True))
+181def resample_spline_filter(old_spe: Spectrum,
+182                           new_spe: Spectrum, /,
+183                           x_range: Tuple[float, float] = (0, 4000),
+184                           xnew_bins: PositiveInt = 100,
+185                           spline: Literal['pchip', 'akima', 'makima', 'cubic_spline'] = 'pchip',
+186                           interp_kw_args: Optional[Dict] = None,
+187                           cumulative: bool = False):
+188    """
+189    Resample the spectrum using spline interpolation.
+190
+191    The x-axis of the result will be uniform. The corresponding y-values
+192    will be calculated with spline interpolation.
+193
+194    Args:
+195        old_spe: internal use only
+196        new_spe: internal use only
+197        x_range: optional. Defaults to (0, 4000).
+198            The x_range of the new spectrum.
+199        xnew_bins: optional. Defaults to 100.
+200            Number of bins of the new spectrum
+201        spline: optional, Defaults to 'pchip'.
+202            Name of the spline funcion to be used.
+203        cumulative: optional. Defaults to False.
+204            If True, the resultant spectrum will be cumulative and normalized
+205            (in analogy with CDF).
+206
+207    Returns: modified Spectrum
+208    """
+209    new_spe.x, new_spe.y = resample_spline(old_spe,
+210                                           x_range=x_range,
+211                                           xnew_bins=xnew_bins,
+212                                           spline=spline,
+213                                           interp_kw_args=interp_kw_args,
+214                                           cumulative=cumulative)
+
+ + +

Resample the spectrum using spline interpolation.

+ +

The x-axis of the result will be uniform. The corresponding y-values +will be calculated with spline interpolation.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • x_range: optional. Defaults to (0, 4000). +The x_range of the new spectrum.
  • +
  • xnew_bins: optional. Defaults to 100. +Number of bins of the new spectrum
  • +
  • spline: optional, Defaults to 'pchip'. +Name of the spline funcion to be used.
  • +
  • cumulative: optional. Defaults to False. +If True, the resultant spectrum will be cumulative and normalized +(in analogy with CDF).
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/filters/sharpen_lines.html b/ramanchada2/spectrum/filters/sharpen_lines.html new file mode 100644 index 00000000..7f0e3ec5 --- /dev/null +++ b/ramanchada2/spectrum/filters/sharpen_lines.html @@ -0,0 +1,593 @@ + + + + + + + ramanchada2.spectrum.filters.sharpen_lines API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.filters.sharpen_lines

+ + + + + + +
  1from typing import List
+  2
+  3import emd
+  4import numpy as np
+  5from pydantic import PositiveInt, confloat, validate_call
+  6from scipy import fft, signal
+  7
+  8from ramanchada2.misc.spectrum_deco import add_spectrum_filter
+  9
+ 10from ..spectrum import Spectrum
+ 11
+ 12
+ 13@add_spectrum_filter
+ 14@validate_call(config=dict(arbitrary_types_allowed=True))
+ 15def derivative_sharpening(old_spe: Spectrum,
+ 16                          new_spe: Spectrum, /,
+ 17                          filter_fraction: confloat(gt=0, le=1) = .6,  # type: ignore
+ 18                          sig_width: confloat(ge=0) = .25,  # type: ignore
+ 19                          der2_factor: float = 1,
+ 20                          der4_factor: float = .1
+ 21                          ):
+ 22    """
+ 23    Derivative-based sharpening.
+ 24
+ 25    Sharpen the spectrum subtracting second derivative and add fourth derivative.
+ 26
+ 27    Args:
+ 28        old_spe: internal use only
+ 29        new_spe: internal use only
+ 30        filter_fraction `float` in (0; 1]: Default is 0.6
+ 31            Depth of filtration
+ 32        signal_width: The width of features to be enhanced in sample count
+ 33        der2_factor: Second derivative scaling factor
+ 34        der4_factor: Fourth derivative scaling factor
+ 35
+ 36    Returns: modified Spectrum
+ 37    """
+ 38    leny = len(old_spe.y)
+ 39    Y = fft.rfft(old_spe.y, n=leny)
+ 40    h = signal.windows.hann(int(len(Y)*filter_fraction))
+ 41    h = h[(len(h))//2-1:]
+ 42    h = np.concatenate((h, np.zeros(len(Y)-len(h))))
+ 43    der = np.arange(len(Y))
+ 44    der = 1j*np.pi*der/der[-1]
+ 45    Y *= h
+ 46    Y2 = Y*der**2
+ 47    Y4 = Y2*der**2
+ 48    y0 = fft.irfft(Y, n=leny)
+ 49    y2 = fft.irfft(Y2, n=leny)
+ 50    y4 = fft.irfft(Y4, n=leny)
+ 51    new_spe.y = y0 - y2/sig_width**2*der2_factor + y4/sig_width**4*der4_factor
+ 52
+ 53
+ 54@add_spectrum_filter
+ 55@validate_call(config=dict(arbitrary_types_allowed=True))
+ 56def hht_sharpening(old_spe: Spectrum,
+ 57                   new_spe: Spectrum, /,
+ 58                   movmin=100
+ 59                   ):
+ 60    """
+ 61    Hilbert-Huang based sharpening.
+ 62
+ 63    In order to reduce the overshooting, moving minimum is subtracted from the result
+ 64
+ 65    Args:
+ 66        old_spe: internal use only
+ 67        new_spe: internal use only
+ 68        movmin: optional. Default is 100
+ 69            Window size for moving minimum
+ 70
+ 71    Returns: modified Spectrum
+ 72    """
+ 73    imfs = emd.sift.sift(old_spe.y).T
+ 74    freq_list = list()
+ 75    for ansig in signal.hilbert(imfs):
+ 76        freq_list.append(emd.spectra.freq_from_phase(
+ 77            emd.spectra.phase_from_complex_signal(ansig, ret_phase='unwrapped'), 1))
+ 78    freq = np.array(freq_list)
+ 79    freq[freq < 0] = 0
+ 80    freq[np.isnan(freq)] = 0
+ 81    imfsall = imfs.copy()
+ 82    imfsall[np.isnan(imfsall)] = 0
+ 83    imfsall[freq > .3] = 0
+ 84    imfsall *= freq**.5
+ 85    ynew = np.sum(imfsall, axis=0)
+ 86    new_spe.y = ynew
+ 87    new_spe.y = new_spe.subtract_moving_minimum(movmin).normalize().y  # type: ignore
+ 88    new_spe.y = new_spe.y * old_spe.y.max() + old_spe.y.min()
+ 89
+ 90
+ 91@add_spectrum_filter
+ 92@validate_call(config=dict(arbitrary_types_allowed=True))
+ 93def hht_sharpening_chain(old_spe: Spectrum,
+ 94                         new_spe: Spectrum, /,
+ 95                         movmin: List[PositiveInt] = [150, 50]
+ 96                         ):
+ 97    """
+ 98    Hilbert-Huang based chain sharpening.
+ 99
+100    Sequence of Hilbert-Huang sharpening procedures are performed.
+101
+102    Args:
+103        old_spe: internal use only
+104        new_spe: internal use only
+105        movmin: List[int], optional. Default is [150, 50]
+106            The numer of values in the list defines how many iterations
+107            of HHT_sharpening will be performed and the values define
+108            the moving minimum window sizes for the corresponding operations.
+109
+110    Returns: modified Spectrum
+111    """
+112    spe = old_spe
+113    for mm in movmin:
+114        spe = spe.hht_sharpening(movmin=mm)  # type: ignore
+115    new_spe.y = spe.y
+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + derivative_sharpening( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, /, filter_fraction: typing.Annotated[float, None, Interval(gt=0, ge=None, lt=None, le=1), None, None] = 0.6, sig_width: typing.Annotated[float, None, Interval(gt=None, ge=0, lt=None, le=None), None, None] = 0.25, der2_factor: float = 1, der4_factor: float = 0.1): + + + +
+ +
14@add_spectrum_filter
+15@validate_call(config=dict(arbitrary_types_allowed=True))
+16def derivative_sharpening(old_spe: Spectrum,
+17                          new_spe: Spectrum, /,
+18                          filter_fraction: confloat(gt=0, le=1) = .6,  # type: ignore
+19                          sig_width: confloat(ge=0) = .25,  # type: ignore
+20                          der2_factor: float = 1,
+21                          der4_factor: float = .1
+22                          ):
+23    """
+24    Derivative-based sharpening.
+25
+26    Sharpen the spectrum subtracting second derivative and add fourth derivative.
+27
+28    Args:
+29        old_spe: internal use only
+30        new_spe: internal use only
+31        filter_fraction `float` in (0; 1]: Default is 0.6
+32            Depth of filtration
+33        signal_width: The width of features to be enhanced in sample count
+34        der2_factor: Second derivative scaling factor
+35        der4_factor: Fourth derivative scaling factor
+36
+37    Returns: modified Spectrum
+38    """
+39    leny = len(old_spe.y)
+40    Y = fft.rfft(old_spe.y, n=leny)
+41    h = signal.windows.hann(int(len(Y)*filter_fraction))
+42    h = h[(len(h))//2-1:]
+43    h = np.concatenate((h, np.zeros(len(Y)-len(h))))
+44    der = np.arange(len(Y))
+45    der = 1j*np.pi*der/der[-1]
+46    Y *= h
+47    Y2 = Y*der**2
+48    Y4 = Y2*der**2
+49    y0 = fft.irfft(Y, n=leny)
+50    y2 = fft.irfft(Y2, n=leny)
+51    y4 = fft.irfft(Y4, n=leny)
+52    new_spe.y = y0 - y2/sig_width**2*der2_factor + y4/sig_width**4*der4_factor
+
+ + +

Derivative-based sharpening.

+ +

Sharpen the spectrum subtracting second derivative and add fourth derivative.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • filter_fraction float in (0; 1]: Default is 0.6 +Depth of filtration
  • +
  • signal_width: The width of features to be enhanced in sample count
  • +
  • der2_factor: Second derivative scaling factor
  • +
  • der4_factor: Fourth derivative scaling factor
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + hht_sharpening( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, /, movmin=100): + + + +
+ +
55@add_spectrum_filter
+56@validate_call(config=dict(arbitrary_types_allowed=True))
+57def hht_sharpening(old_spe: Spectrum,
+58                   new_spe: Spectrum, /,
+59                   movmin=100
+60                   ):
+61    """
+62    Hilbert-Huang based sharpening.
+63
+64    In order to reduce the overshooting, moving minimum is subtracted from the result
+65
+66    Args:
+67        old_spe: internal use only
+68        new_spe: internal use only
+69        movmin: optional. Default is 100
+70            Window size for moving minimum
+71
+72    Returns: modified Spectrum
+73    """
+74    imfs = emd.sift.sift(old_spe.y).T
+75    freq_list = list()
+76    for ansig in signal.hilbert(imfs):
+77        freq_list.append(emd.spectra.freq_from_phase(
+78            emd.spectra.phase_from_complex_signal(ansig, ret_phase='unwrapped'), 1))
+79    freq = np.array(freq_list)
+80    freq[freq < 0] = 0
+81    freq[np.isnan(freq)] = 0
+82    imfsall = imfs.copy()
+83    imfsall[np.isnan(imfsall)] = 0
+84    imfsall[freq > .3] = 0
+85    imfsall *= freq**.5
+86    ynew = np.sum(imfsall, axis=0)
+87    new_spe.y = ynew
+88    new_spe.y = new_spe.subtract_moving_minimum(movmin).normalize().y  # type: ignore
+89    new_spe.y = new_spe.y * old_spe.y.max() + old_spe.y.min()
+
+ + +

Hilbert-Huang based sharpening.

+ +

In order to reduce the overshooting, moving minimum is subtracted from the result

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • movmin: optional. Default is 100 +Window size for moving minimum
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + hht_sharpening_chain( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, /, movmin: List[Annotated[int, Gt(gt=0)]] = [150, 50]): + + + +
+ +
 92@add_spectrum_filter
+ 93@validate_call(config=dict(arbitrary_types_allowed=True))
+ 94def hht_sharpening_chain(old_spe: Spectrum,
+ 95                         new_spe: Spectrum, /,
+ 96                         movmin: List[PositiveInt] = [150, 50]
+ 97                         ):
+ 98    """
+ 99    Hilbert-Huang based chain sharpening.
+100
+101    Sequence of Hilbert-Huang sharpening procedures are performed.
+102
+103    Args:
+104        old_spe: internal use only
+105        new_spe: internal use only
+106        movmin: List[int], optional. Default is [150, 50]
+107            The numer of values in the list defines how many iterations
+108            of HHT_sharpening will be performed and the values define
+109            the moving minimum window sizes for the corresponding operations.
+110
+111    Returns: modified Spectrum
+112    """
+113    spe = old_spe
+114    for mm in movmin:
+115        spe = spe.hht_sharpening(movmin=mm)  # type: ignore
+116    new_spe.y = spe.y
+
+ + +

Hilbert-Huang based chain sharpening.

+ +

Sequence of Hilbert-Huang sharpening procedures are performed.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • movmin: List[int], optional. Default is [150, 50] +The numer of values in the list defines how many iterations +of HHT_sharpening will be performed and the values define +the moving minimum window sizes for the corresponding operations.
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/filters/smoothing.html b/ramanchada2/spectrum/filters/smoothing.html new file mode 100644 index 00000000..3fbcf879 --- /dev/null +++ b/ramanchada2/spectrum/filters/smoothing.html @@ -0,0 +1,401 @@ + + + + + + + ramanchada2.spectrum.filters.smoothing API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.filters.smoothing

+ + + + + + +
 1from typing import Literal
+ 2
+ 3import numpy as np
+ 4import statsmodels.api as sm
+ 5from pydantic import validate_call
+ 6from scipy.ndimage import gaussian_filter1d
+ 7from scipy.signal import medfilt, savgol_filter, wiener
+ 8from scipy.signal.windows import boxcar
+ 9
+10from ramanchada2.misc.spectrum_deco import add_spectrum_filter
+11
+12from ..spectrum import Spectrum
+13
+14
+15@add_spectrum_filter
+16@validate_call(config=dict(arbitrary_types_allowed=True))
+17def smoothing_RC1(old_spe: Spectrum,
+18                  new_spe: Spectrum, /, *args,
+19                  method: Literal['savgol', 'sg',
+20                                  'wiener',
+21                                  'median',
+22                                  'gauss', 'gaussian',
+23                                  'lowess',
+24                                  'boxcar'],
+25                  **kwargs):
+26    """
+27    Smooth the spectrum.
+28
+29    The spectrum will be smoothed using the specified filter.
+30    This method is inherited from ramanchada1 for compatibility reasons.
+31
+32    Args:
+33        old_spe: internal use only
+34        new_spe: internal use only
+35        method: method to be used
+36        **kwargs: keyword arguments to be passed to the selected method
+37
+38    Returns: modified Spectrum
+39    """
+40    if method == 'savgol' or method == 'sg':
+41        new_spe.y = savgol_filter(old_spe.y, **kwargs)  # window_length, polyorder
+42    elif method == 'wiener':
+43        new_spe.y = wiener(old_spe.y, **kwargs)
+44    elif method == 'gaussian' or method == 'gauss':
+45        new_spe.y = gaussian_filter1d(old_spe.y, **kwargs)  # sigma
+46    elif method == 'median':
+47        new_spe.y = medfilt(old_spe.y, **kwargs)
+48    elif method == 'lowess':
+49        kw = dict(span=11)
+50        kw.update(kwargs)
+51        x = np.linspace(0, 1, len(old_spe.y))
+52        new_spe.y = sm.nonparametric.lowess(old_spe.y, x, frac=(5*kw['span'] / len(old_spe.y)), return_sorted=False)
+53    elif method == 'boxcar':
+54        kw = dict(box_pts=11)
+55        kw.update(kwargs)
+56        box = boxcar(**kwargs, sym=True)
+57        new_spe.y = np.convolve(old_spe.y, box, mode='same')
+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + smoothing_RC1( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, /, *args, method: Literal['savgol', 'sg', 'wiener', 'median', 'gauss', 'gaussian', 'lowess', 'boxcar'], **kwargs): + + + +
+ +
16@add_spectrum_filter
+17@validate_call(config=dict(arbitrary_types_allowed=True))
+18def smoothing_RC1(old_spe: Spectrum,
+19                  new_spe: Spectrum, /, *args,
+20                  method: Literal['savgol', 'sg',
+21                                  'wiener',
+22                                  'median',
+23                                  'gauss', 'gaussian',
+24                                  'lowess',
+25                                  'boxcar'],
+26                  **kwargs):
+27    """
+28    Smooth the spectrum.
+29
+30    The spectrum will be smoothed using the specified filter.
+31    This method is inherited from ramanchada1 for compatibility reasons.
+32
+33    Args:
+34        old_spe: internal use only
+35        new_spe: internal use only
+36        method: method to be used
+37        **kwargs: keyword arguments to be passed to the selected method
+38
+39    Returns: modified Spectrum
+40    """
+41    if method == 'savgol' or method == 'sg':
+42        new_spe.y = savgol_filter(old_spe.y, **kwargs)  # window_length, polyorder
+43    elif method == 'wiener':
+44        new_spe.y = wiener(old_spe.y, **kwargs)
+45    elif method == 'gaussian' or method == 'gauss':
+46        new_spe.y = gaussian_filter1d(old_spe.y, **kwargs)  # sigma
+47    elif method == 'median':
+48        new_spe.y = medfilt(old_spe.y, **kwargs)
+49    elif method == 'lowess':
+50        kw = dict(span=11)
+51        kw.update(kwargs)
+52        x = np.linspace(0, 1, len(old_spe.y))
+53        new_spe.y = sm.nonparametric.lowess(old_spe.y, x, frac=(5*kw['span'] / len(old_spe.y)), return_sorted=False)
+54    elif method == 'boxcar':
+55        kw = dict(box_pts=11)
+56        kw.update(kwargs)
+57        box = boxcar(**kwargs, sym=True)
+58        new_spe.y = np.convolve(old_spe.y, box, mode='same')
+
+ + +

Smooth the spectrum.

+ +

The spectrum will be smoothed using the specified filter. +This method is inherited from ramanchada1 for compatibility reasons.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • method: method to be used
  • +
  • **kwargs: keyword arguments to be passed to the selected method
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/filters/trim_axes.html b/ramanchada2/spectrum/filters/trim_axes.html new file mode 100644 index 00000000..848e3ee8 --- /dev/null +++ b/ramanchada2/spectrum/filters/trim_axes.html @@ -0,0 +1,366 @@ + + + + + + + ramanchada2.spectrum.filters.trim_axes API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.filters.trim_axes

+ + + + + + +
 1from typing import Literal, Tuple
+ 2
+ 3import numpy as np
+ 4from pydantic import validate_call
+ 5
+ 6from ramanchada2.misc.spectrum_deco import add_spectrum_filter
+ 7
+ 8from ..spectrum import Spectrum
+ 9
+10
+11@add_spectrum_filter
+12@validate_call(config=dict(arbitrary_types_allowed=True))
+13def trim_axes(old_spe: Spectrum,
+14              new_spe: Spectrum, /,
+15              method: Literal['x-axis', 'bins'],
+16              boundaries: Tuple[float, float],
+17              ):
+18    """
+19    Trim axes of the spectrum.
+20
+21    Args:
+22        old_spe: internal use only
+23        new_spe: internal use only
+24        method: 'x-axis' or 'bins'
+25            If 'x-axis' boundaries will be interpreted as x-axis values.
+26            If 'bins' boundaries will be interpreted as indices.
+27        boundaries: lower and upper boundary for the trimming.
+28
+29    Returns: modified Spectrum
+30    """
+31    if method == 'bins':
+32        lb = int(boundaries[0])
+33        rb = int(boundaries[1])
+34    elif method == 'x-axis':
+35        lb = int(np.argmin(np.abs(old_spe.x - boundaries[0])))
+36        rb = int(np.argmin(np.abs(old_spe.x - boundaries[1])))
+37    new_spe.x = old_spe.x[lb:rb]
+38    new_spe.y = old_spe.y[lb:rb]
+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + trim_axes( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, /, method: Literal['x-axis', 'bins'], boundaries: Tuple[float, float]): + + + +
+ +
12@add_spectrum_filter
+13@validate_call(config=dict(arbitrary_types_allowed=True))
+14def trim_axes(old_spe: Spectrum,
+15              new_spe: Spectrum, /,
+16              method: Literal['x-axis', 'bins'],
+17              boundaries: Tuple[float, float],
+18              ):
+19    """
+20    Trim axes of the spectrum.
+21
+22    Args:
+23        old_spe: internal use only
+24        new_spe: internal use only
+25        method: 'x-axis' or 'bins'
+26            If 'x-axis' boundaries will be interpreted as x-axis values.
+27            If 'bins' boundaries will be interpreted as indices.
+28        boundaries: lower and upper boundary for the trimming.
+29
+30    Returns: modified Spectrum
+31    """
+32    if method == 'bins':
+33        lb = int(boundaries[0])
+34        rb = int(boundaries[1])
+35    elif method == 'x-axis':
+36        lb = int(np.argmin(np.abs(old_spe.x - boundaries[0])))
+37        rb = int(np.argmin(np.abs(old_spe.x - boundaries[1])))
+38    new_spe.x = old_spe.x[lb:rb]
+39    new_spe.y = old_spe.y[lb:rb]
+
+ + +

Trim axes of the spectrum.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • method: 'x-axis' or 'bins' +If 'x-axis' boundaries will be interpreted as x-axis values. +If 'bins' boundaries will be interpreted as indices.
  • +
  • boundaries: lower and upper boundary for the trimming.
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/peaks.html b/ramanchada2/spectrum/peaks.html new file mode 100644 index 00000000..c8a3f5ba --- /dev/null +++ b/ramanchada2/spectrum/peaks.html @@ -0,0 +1,276 @@ + + + + + + + ramanchada2.spectrum.peaks API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.peaks

+ + + + + + +
 1#!/usr/bin/env python3
+ 2
+ 3import os
+ 4import glob
+ 5
+ 6__all__ = [
+ 7    os.path.basename(f)[:-3]
+ 8    for f in glob.glob(os.path.dirname(__file__)+"/*.py")
+ 9    if os.path.isfile(f) and not os.path.basename(f).startswith('_')
+10]
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/peaks/find_peaks.html b/ramanchada2/spectrum/peaks/find_peaks.html new file mode 100644 index 00000000..a4771baa --- /dev/null +++ b/ramanchada2/spectrum/peaks/find_peaks.html @@ -0,0 +1,768 @@ + + + + + + + ramanchada2.spectrum.peaks.find_peaks API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.peaks.find_peaks

+ + + + + + +
  1from typing import List, Literal, Tuple, Union
+  2
+  3import numpy as np
+  4from pydantic import (NonNegativeFloat, NonNegativeInt, PositiveInt,
+  5                      validate_call)
+  6from scipy import signal
+  7from scipy.signal import find_peaks_cwt
+  8
+  9from ramanchada2.misc.spectrum_deco import (add_spectrum_filter,
+ 10                                            add_spectrum_method)
+ 11from ramanchada2.misc.types.peak_candidates import ListPeakCandidateMultiModel
+ 12
+ 13from ..spectrum import Spectrum
+ 14
+ 15
+ 16def peak_boundaries(spe, wlen, width, prominence):
+ 17    peaks = signal.find_peaks(spe.y, prominence=prominence, width=width, wlen=wlen)
+ 18    larr = peaks[1]['left_bases'][:]
+ 19    rarr = peaks[1]['right_bases'][:]
+ 20    lb = 0
+ 21    lbounds = list()
+ 22    rbounds = list()
+ 23    while len(larr):
+ 24        lbargmin = np.argmin(larr)
+ 25        lb = larr[lbargmin]
+ 26        rb = rarr[lbargmin]
+ 27        while True:
+ 28            group_bool = larr < rb
+ 29            if group_bool.any():
+ 30                rb = np.max(rarr[group_bool])
+ 31                rarr = rarr[~group_bool]
+ 32                larr = larr[~group_bool]
+ 33                continue
+ 34            break
+ 35        lbounds.append(lb)
+ 36        rbounds.append(rb)
+ 37    return np.array(list(zip(lbounds, rbounds)))
+ 38
+ 39
+ 40@add_spectrum_method
+ 41@validate_call(config=dict(arbitrary_types_allowed=True))
+ 42def find_peak_multipeak(
+ 43        spe: Spectrum, /,
+ 44        prominence: Union[NonNegativeFloat, None] = None,
+ 45        wlen: Union[NonNegativeInt, None] = None,
+ 46        width: Union[int, Tuple[int, int], None] = None,
+ 47        hht_chain: Union[List[PositiveInt], None] = None,
+ 48        bgm_kwargs={},
+ 49        sharpening: Union[Literal['hht'], None] = None,
+ 50        strategy: Literal['topo', 'bayesian_gaussian_mixture', 'bgm', 'cwt'] = 'topo'
+ 51        ) -> ListPeakCandidateMultiModel:
+ 52    """
+ 53    Find groups of peaks in spectrum.
+ 54
+ 55    Args:
+ 56        spe: internal use only
+ 57        prominence: Optional. Defaults to None
+ 58            If None the prominence value will be `spe.y_nose`. Reasonable value for
+ 59            promience is `const * spe.y_noise_MAD`.
+ 60        wlen: optional. Defaults to None.
+ 61            wlen value used in `scipy.signal.find_peaks`. If wlen is None, 200 will be used.
+ 62        width: optional. Defaults to None.
+ 63            width value used in `scipy.signal.find_peaks`. If width is None, 2 will be used.
+ 64        hht_chain: optional. Defaults to None.
+ 65            List of hht_chain window sizes. If None, no hht sharpening is performed.
+ 66        bgm_kwargs: kwargs for bayesian_gaussian_mixture
+ 67        sharpening 'hht' or None. Defaults to None.
+ 68            If 'hht' hht sharpening will be performed before finding peaks.
+ 69        strategy: optional. Defauts to 'topo'.
+ 70            Peakfinding method
+ 71
+ 72    Returns:
+ 73        ListPeakCandidateMultiModel: Located peak groups
+ 74    """
+ 75
+ 76    if prominence is None:
+ 77        prominence = spe.y_noise
+ 78    if not wlen:
+ 79        wlen = 200
+ 80    if width is None:
+ 81        width = 2
+ 82
+ 83    if sharpening == 'hht':
+ 84        if hht_chain is None:
+ 85            hht_chain = [20]
+ 86        sharp_spe = spe.hht_sharpening_chain(movmin=hht_chain)  # type: ignore
+ 87    else:
+ 88        sharp_spe = spe
+ 89
+ 90    x_arr = sharp_spe.x
+ 91    y_arr = sharp_spe.y
+ 92
+ 93    def interpolate(x):
+ 94        x1 = int(x)
+ 95        x2 = x1 + 1
+ 96        y1 = x_arr[x1]
+ 97        y2 = x_arr[x2]
+ 98        return (y2-y1)/(x2-x1)*(x-x1)+y1
+ 99
+100    boundaries = peak_boundaries(spe, prominence=prominence, width=width, wlen=wlen)
+101    boundaries = [(li, ri) for li, ri in boundaries if (ri-li) > 4]
+102
+103    peaks, props = signal.find_peaks(y_arr,
+104                                     prominence=prominence,
+105                                     width=width,
+106                                     wlen=wlen)
+107    peak_groups = list()
+108
+109    if strategy in {'bgm', 'bayesian_gaussian_mixture'}:
+110        bgm = sharp_spe.bayesian_gaussian_mixture(**bgm_kwargs)
+111
+112        bgm_peaks = [[mean[0], np.sqrt(cov[0][0]), weight]
+113                     for mean, cov, weight in
+114                     zip(bgm.means_, bgm.covariances_, bgm.weights_)]
+115        bgm_peaks = sorted(bgm_peaks, key=lambda x: x[2], reverse=True)
+116        integral = np.sum(y_arr)
+117        n_peaks = (np.round(bgm.weights_, 2) > 0).sum()
+118        bgm_peaks = bgm_peaks[:n_peaks]
+119
+120        peak_list = list()
+121        for mean, sigma, weight in bgm_peaks:
+122            peak_list.append(dict(amplitude=weight*integral*2/sigma,
+123                                  position=mean,
+124                                  sigma=sigma,
+125                                  ))
+126        for li, ri in boundaries:
+127            peak_group = list()
+128            for peak in peak_list:
+129                if li < peak['position'] < ri:
+130                    peak_group.append(dict(position=peak['position'],
+131                                           amplitude=peak['amplitude'],
+132                                           sigma=peak['sigma'])
+133                                      )
+134            if peak_group:
+135                peak_groups.append(dict(boundaries=(x_arr[li], x_arr[ri]),
+136                                        peaks=peak_group))
+137    elif strategy == 'cwt':
+138        # TODO: cwt_args tbd
+139        peaks = find_peaks_cwt(spe.y, **bgm_kwargs)
+140        peak_list = list()
+141        for peak_index in peaks:
+142            half_max = spe.y[peak_index] / 2.0
+143            left_index = np.where(spe.y[:peak_index] <= half_max)[0][-1]
+144            right_index = np.where(spe.y[peak_index:] <= half_max)[0][0] + peak_index
+145            fwhm = spe.x[right_index] - spe.x[left_index]
+146            # rough sigma estimation based on fwhm
+147            sqrt2ln2 = 2 * np.sqrt(2 * np.log(2))
+148            # print(spe.x[peak_index], spe.y[peak_index], fwhm / sqrt2ln2 )
+149            peak_list.append(dict(amplitude=spe.y[peak_index],
+150                                  position=spe.x[peak_index],
+151                                  sigma=fwhm / sqrt2ln2,
+152                                  fwhm=fwhm))
+153        for li, ri in boundaries:
+154            peak_group = list()
+155            for peak in peak_list:
+156                if li < peak['position'] < ri:
+157                    peak_group.append(dict(position=peak['position'],
+158                                           amplitude=peak['amplitude'],
+159                                           sigma=peak['sigma']))
+160            if peak_group:
+161                peak_groups.append(dict(boundaries=(x_arr[li], x_arr[ri]),
+162                                        peaks=peak_group))
+163    elif strategy == 'topo':
+164        for li, ri in boundaries:
+165            peak_group = list()
+166            x1 = spe.x[li]
+167            x2 = spe.x[ri]
+168            y1 = spe.y[li]
+169            y2 = spe.y[ri]
+170            slope = (y2-y1)/(x2-x1)
+171            intercept = -slope*x1+y1
+172            for peak_i, peak_pos in enumerate(peaks):
+173                if li < peak_pos < ri:
+174                    pos_maximum = x_arr[peak_pos]
+175                    amplitude = props['prominences'][peak_i]
+176                    lwhm = pos_maximum - interpolate(props['left_ips'][peak_i])
+177                    rwhm = interpolate(props['right_ips'][peak_i]) - pos_maximum
+178                    fwhm = lwhm + rwhm
+179                    sigma = fwhm/2.355
+180                    skew = (rwhm-lwhm)/(rwhm+lwhm)
+181                    peak_group.append(dict(position=pos_maximum,
+182                                           amplitude=amplitude,
+183                                           sigma=sigma,
+184                                           skew=skew)
+185                                      )
+186            if peak_group:
+187                peak_groups.append(dict(base_intercept=intercept,
+188                                        base_slope=slope,
+189                                        boundaries=(x_arr[li], x_arr[ri]),
+190                                        peaks=peak_group))
+191
+192    candidates = ListPeakCandidateMultiModel.model_validate(peak_groups)
+193    return candidates
+194
+195
+196@add_spectrum_filter
+197@validate_call(config=dict(arbitrary_types_allowed=True))
+198def find_peak_multipeak_filter(
+199        old_spe: Spectrum,
+200        new_spe: Spectrum, /,
+201        *args, **kwargs):
+202    """
+203    Same as `find_peak_multipeak` but the result is stored as metadata in the returned spectrum.
+204
+205    Args:
+206        old_spe: internal use only
+207        new_spe: internal use only
+208        *args, **kwargs: same as `find_peak_multipeak`
+209    """
+210    res = old_spe.find_peak_multipeak(*args, **kwargs)  # type: ignore
+211    new_spe.result = res.model_dump()
+
+ + +
+
+ +
+ + def + peak_boundaries(spe, wlen, width, prominence): + + + +
+ +
17def peak_boundaries(spe, wlen, width, prominence):
+18    peaks = signal.find_peaks(spe.y, prominence=prominence, width=width, wlen=wlen)
+19    larr = peaks[1]['left_bases'][:]
+20    rarr = peaks[1]['right_bases'][:]
+21    lb = 0
+22    lbounds = list()
+23    rbounds = list()
+24    while len(larr):
+25        lbargmin = np.argmin(larr)
+26        lb = larr[lbargmin]
+27        rb = rarr[lbargmin]
+28        while True:
+29            group_bool = larr < rb
+30            if group_bool.any():
+31                rb = np.max(rarr[group_bool])
+32                rarr = rarr[~group_bool]
+33                larr = larr[~group_bool]
+34                continue
+35            break
+36        lbounds.append(lb)
+37        rbounds.append(rb)
+38    return np.array(list(zip(lbounds, rbounds)))
+
+ + + + +
+
+ +
+
@add_spectrum_method
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + find_peak_multipeak( spe: ramanchada2.spectrum.spectrum.Spectrum, /, prominence: Optional[Annotated[float, Ge(ge=0)]] = None, wlen: Optional[Annotated[int, Ge(ge=0)]] = None, width: Union[int, Tuple[int, int], NoneType] = None, hht_chain: Optional[List[Annotated[int, Gt(gt=0)]]] = None, bgm_kwargs={}, sharpening: Optional[Literal['hht']] = None, strategy: Literal['topo', 'bayesian_gaussian_mixture', 'bgm', 'cwt'] = 'topo') -> ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel: + + + +
+ +
 41@add_spectrum_method
+ 42@validate_call(config=dict(arbitrary_types_allowed=True))
+ 43def find_peak_multipeak(
+ 44        spe: Spectrum, /,
+ 45        prominence: Union[NonNegativeFloat, None] = None,
+ 46        wlen: Union[NonNegativeInt, None] = None,
+ 47        width: Union[int, Tuple[int, int], None] = None,
+ 48        hht_chain: Union[List[PositiveInt], None] = None,
+ 49        bgm_kwargs={},
+ 50        sharpening: Union[Literal['hht'], None] = None,
+ 51        strategy: Literal['topo', 'bayesian_gaussian_mixture', 'bgm', 'cwt'] = 'topo'
+ 52        ) -> ListPeakCandidateMultiModel:
+ 53    """
+ 54    Find groups of peaks in spectrum.
+ 55
+ 56    Args:
+ 57        spe: internal use only
+ 58        prominence: Optional. Defaults to None
+ 59            If None the prominence value will be `spe.y_nose`. Reasonable value for
+ 60            promience is `const * spe.y_noise_MAD`.
+ 61        wlen: optional. Defaults to None.
+ 62            wlen value used in `scipy.signal.find_peaks`. If wlen is None, 200 will be used.
+ 63        width: optional. Defaults to None.
+ 64            width value used in `scipy.signal.find_peaks`. If width is None, 2 will be used.
+ 65        hht_chain: optional. Defaults to None.
+ 66            List of hht_chain window sizes. If None, no hht sharpening is performed.
+ 67        bgm_kwargs: kwargs for bayesian_gaussian_mixture
+ 68        sharpening 'hht' or None. Defaults to None.
+ 69            If 'hht' hht sharpening will be performed before finding peaks.
+ 70        strategy: optional. Defauts to 'topo'.
+ 71            Peakfinding method
+ 72
+ 73    Returns:
+ 74        ListPeakCandidateMultiModel: Located peak groups
+ 75    """
+ 76
+ 77    if prominence is None:
+ 78        prominence = spe.y_noise
+ 79    if not wlen:
+ 80        wlen = 200
+ 81    if width is None:
+ 82        width = 2
+ 83
+ 84    if sharpening == 'hht':
+ 85        if hht_chain is None:
+ 86            hht_chain = [20]
+ 87        sharp_spe = spe.hht_sharpening_chain(movmin=hht_chain)  # type: ignore
+ 88    else:
+ 89        sharp_spe = spe
+ 90
+ 91    x_arr = sharp_spe.x
+ 92    y_arr = sharp_spe.y
+ 93
+ 94    def interpolate(x):
+ 95        x1 = int(x)
+ 96        x2 = x1 + 1
+ 97        y1 = x_arr[x1]
+ 98        y2 = x_arr[x2]
+ 99        return (y2-y1)/(x2-x1)*(x-x1)+y1
+100
+101    boundaries = peak_boundaries(spe, prominence=prominence, width=width, wlen=wlen)
+102    boundaries = [(li, ri) for li, ri in boundaries if (ri-li) > 4]
+103
+104    peaks, props = signal.find_peaks(y_arr,
+105                                     prominence=prominence,
+106                                     width=width,
+107                                     wlen=wlen)
+108    peak_groups = list()
+109
+110    if strategy in {'bgm', 'bayesian_gaussian_mixture'}:
+111        bgm = sharp_spe.bayesian_gaussian_mixture(**bgm_kwargs)
+112
+113        bgm_peaks = [[mean[0], np.sqrt(cov[0][0]), weight]
+114                     for mean, cov, weight in
+115                     zip(bgm.means_, bgm.covariances_, bgm.weights_)]
+116        bgm_peaks = sorted(bgm_peaks, key=lambda x: x[2], reverse=True)
+117        integral = np.sum(y_arr)
+118        n_peaks = (np.round(bgm.weights_, 2) > 0).sum()
+119        bgm_peaks = bgm_peaks[:n_peaks]
+120
+121        peak_list = list()
+122        for mean, sigma, weight in bgm_peaks:
+123            peak_list.append(dict(amplitude=weight*integral*2/sigma,
+124                                  position=mean,
+125                                  sigma=sigma,
+126                                  ))
+127        for li, ri in boundaries:
+128            peak_group = list()
+129            for peak in peak_list:
+130                if li < peak['position'] < ri:
+131                    peak_group.append(dict(position=peak['position'],
+132                                           amplitude=peak['amplitude'],
+133                                           sigma=peak['sigma'])
+134                                      )
+135            if peak_group:
+136                peak_groups.append(dict(boundaries=(x_arr[li], x_arr[ri]),
+137                                        peaks=peak_group))
+138    elif strategy == 'cwt':
+139        # TODO: cwt_args tbd
+140        peaks = find_peaks_cwt(spe.y, **bgm_kwargs)
+141        peak_list = list()
+142        for peak_index in peaks:
+143            half_max = spe.y[peak_index] / 2.0
+144            left_index = np.where(spe.y[:peak_index] <= half_max)[0][-1]
+145            right_index = np.where(spe.y[peak_index:] <= half_max)[0][0] + peak_index
+146            fwhm = spe.x[right_index] - spe.x[left_index]
+147            # rough sigma estimation based on fwhm
+148            sqrt2ln2 = 2 * np.sqrt(2 * np.log(2))
+149            # print(spe.x[peak_index], spe.y[peak_index], fwhm / sqrt2ln2 )
+150            peak_list.append(dict(amplitude=spe.y[peak_index],
+151                                  position=spe.x[peak_index],
+152                                  sigma=fwhm / sqrt2ln2,
+153                                  fwhm=fwhm))
+154        for li, ri in boundaries:
+155            peak_group = list()
+156            for peak in peak_list:
+157                if li < peak['position'] < ri:
+158                    peak_group.append(dict(position=peak['position'],
+159                                           amplitude=peak['amplitude'],
+160                                           sigma=peak['sigma']))
+161            if peak_group:
+162                peak_groups.append(dict(boundaries=(x_arr[li], x_arr[ri]),
+163                                        peaks=peak_group))
+164    elif strategy == 'topo':
+165        for li, ri in boundaries:
+166            peak_group = list()
+167            x1 = spe.x[li]
+168            x2 = spe.x[ri]
+169            y1 = spe.y[li]
+170            y2 = spe.y[ri]
+171            slope = (y2-y1)/(x2-x1)
+172            intercept = -slope*x1+y1
+173            for peak_i, peak_pos in enumerate(peaks):
+174                if li < peak_pos < ri:
+175                    pos_maximum = x_arr[peak_pos]
+176                    amplitude = props['prominences'][peak_i]
+177                    lwhm = pos_maximum - interpolate(props['left_ips'][peak_i])
+178                    rwhm = interpolate(props['right_ips'][peak_i]) - pos_maximum
+179                    fwhm = lwhm + rwhm
+180                    sigma = fwhm/2.355
+181                    skew = (rwhm-lwhm)/(rwhm+lwhm)
+182                    peak_group.append(dict(position=pos_maximum,
+183                                           amplitude=amplitude,
+184                                           sigma=sigma,
+185                                           skew=skew)
+186                                      )
+187            if peak_group:
+188                peak_groups.append(dict(base_intercept=intercept,
+189                                        base_slope=slope,
+190                                        boundaries=(x_arr[li], x_arr[ri]),
+191                                        peaks=peak_group))
+192
+193    candidates = ListPeakCandidateMultiModel.model_validate(peak_groups)
+194    return candidates
+
+ + +

Find groups of peaks in spectrum.

+ +
Arguments:
+ +
    +
  • spe: internal use only
  • +
  • prominence: Optional. Defaults to None +If None the prominence value will be spe.y_nose. Reasonable value for +promience is const * spe.y_noise_MAD.
  • +
  • wlen: optional. Defaults to None. +wlen value used in scipy.signal.find_peaks. If wlen is None, 200 will be used.
  • +
  • width: optional. Defaults to None. +width value used in scipy.signal.find_peaks. If width is None, 2 will be used.
  • +
  • hht_chain: optional. Defaults to None. +List of hht_chain window sizes. If None, no hht sharpening is performed.
  • +
  • bgm_kwargs: kwargs for bayesian_gaussian_mixture
  • +
  • sharpening 'hht' or None. Defaults to None. +If 'hht' hht sharpening will be performed before finding peaks.
  • +
  • strategy: optional. Defauts to 'topo'. +Peakfinding method
  • +
+ +
Returns:
+ +
+

ListPeakCandidateMultiModel: Located peak groups

+
+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + find_peak_multipeak_filter( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, /, *args, **kwargs): + + + +
+ +
197@add_spectrum_filter
+198@validate_call(config=dict(arbitrary_types_allowed=True))
+199def find_peak_multipeak_filter(
+200        old_spe: Spectrum,
+201        new_spe: Spectrum, /,
+202        *args, **kwargs):
+203    """
+204    Same as `find_peak_multipeak` but the result is stored as metadata in the returned spectrum.
+205
+206    Args:
+207        old_spe: internal use only
+208        new_spe: internal use only
+209        *args, **kwargs: same as `find_peak_multipeak`
+210    """
+211    res = old_spe.find_peak_multipeak(*args, **kwargs)  # type: ignore
+212    new_spe.result = res.model_dump()
+
+ + +

Same as find_peak_multipeak but the result is stored as metadata in the returned spectrum.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • args, *kwargs: same as find_peak_multipeak
  • +
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/peaks/find_peaks_BayesianGaussianMixture.html b/ramanchada2/spectrum/peaks/find_peaks_BayesianGaussianMixture.html new file mode 100644 index 00000000..6a65b629 --- /dev/null +++ b/ramanchada2/spectrum/peaks/find_peaks_BayesianGaussianMixture.html @@ -0,0 +1,401 @@ + + + + + + + ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture

+ + + + + + +
 1from typing import Optional, Tuple, Union
+ 2
+ 3from pydantic import PositiveInt, validate_call
+ 4from sklearn.mixture import BayesianGaussianMixture
+ 5
+ 6from ramanchada2.misc.spectrum_deco import add_spectrum_method
+ 7
+ 8from ..spectrum import Spectrum
+ 9
+10
+11@add_spectrum_method
+12@validate_call(config=dict(arbitrary_types_allowed=True))
+13def bayesian_gaussian_mixture(spe: Spectrum, /,
+14                              n_samples: PositiveInt = 5000,
+15                              n_components: PositiveInt = 50,
+16                              max_iter: PositiveInt = 100,
+17                              moving_minimum_window: Union[PositiveInt, None] = None,
+18                              random_state=None,
+19                              trim_range: Optional[Tuple[float, float]] = None,
+20                              ) -> BayesianGaussianMixture:
+21    """
+22    Decompose the spectrum to Bayesian Gaussian Mixture
+23
+24    Args:
+25        spe: internal use only
+26        n_samples: optional. Defaults to 5000.
+27            Resampled dataset size
+28        n_components: optional. Defaults to 50.
+29            Number of expected gaussian components
+30        max_iter: optional. Defaults to 100.
+31            Maximal number of iterations.
+32        moving_minimum_window: optional. Defaults to None.
+33            If None no moving minimum is subtracted, otherwise as specified.
+34        random_state: optional. Defaults to None.
+35            Random generator seed to be used.
+36        trim_range: optional. Defaults to None:
+37            If None ignore trimming, otherwise trim range is in x-axis values.
+38
+39    Returns:
+40        BayesianGaussianMixture: Fitted Bayesian Gaussian Mixture
+41    """
+42    if moving_minimum_window is not None:
+43        spe = spe.subtract_moving_minimum(moving_minimum_window)  # type: ignore
+44    samp = spe.gen_samples(size=n_samples, trim_range=trim_range)
+45    X = [[i] for i in samp]
+46    bgm = BayesianGaussianMixture(n_components=n_components,
+47                                  random_state=random_state,
+48                                  max_iter=max_iter
+49                                  ).fit(X)
+50    return bgm
+
+ + +
+
+ +
+
@add_spectrum_method
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + bayesian_gaussian_mixture( spe: ramanchada2.spectrum.spectrum.Spectrum, /, n_samples: typing.Annotated[int, Gt(gt=0)] = 5000, n_components: typing.Annotated[int, Gt(gt=0)] = 50, max_iter: typing.Annotated[int, Gt(gt=0)] = 100, moving_minimum_window: Optional[Annotated[int, Gt(gt=0)]] = None, random_state=None, trim_range: Optional[Tuple[float, float]] = None) -> sklearn.mixture._bayesian_mixture.BayesianGaussianMixture: + + + +
+ +
12@add_spectrum_method
+13@validate_call(config=dict(arbitrary_types_allowed=True))
+14def bayesian_gaussian_mixture(spe: Spectrum, /,
+15                              n_samples: PositiveInt = 5000,
+16                              n_components: PositiveInt = 50,
+17                              max_iter: PositiveInt = 100,
+18                              moving_minimum_window: Union[PositiveInt, None] = None,
+19                              random_state=None,
+20                              trim_range: Optional[Tuple[float, float]] = None,
+21                              ) -> BayesianGaussianMixture:
+22    """
+23    Decompose the spectrum to Bayesian Gaussian Mixture
+24
+25    Args:
+26        spe: internal use only
+27        n_samples: optional. Defaults to 5000.
+28            Resampled dataset size
+29        n_components: optional. Defaults to 50.
+30            Number of expected gaussian components
+31        max_iter: optional. Defaults to 100.
+32            Maximal number of iterations.
+33        moving_minimum_window: optional. Defaults to None.
+34            If None no moving minimum is subtracted, otherwise as specified.
+35        random_state: optional. Defaults to None.
+36            Random generator seed to be used.
+37        trim_range: optional. Defaults to None:
+38            If None ignore trimming, otherwise trim range is in x-axis values.
+39
+40    Returns:
+41        BayesianGaussianMixture: Fitted Bayesian Gaussian Mixture
+42    """
+43    if moving_minimum_window is not None:
+44        spe = spe.subtract_moving_minimum(moving_minimum_window)  # type: ignore
+45    samp = spe.gen_samples(size=n_samples, trim_range=trim_range)
+46    X = [[i] for i in samp]
+47    bgm = BayesianGaussianMixture(n_components=n_components,
+48                                  random_state=random_state,
+49                                  max_iter=max_iter
+50                                  ).fit(X)
+51    return bgm
+
+ + +

Decompose the spectrum to Bayesian Gaussian Mixture

+ +
Arguments:
+ +
    +
  • spe: internal use only
  • +
  • n_samples: optional. Defaults to 5000. +Resampled dataset size
  • +
  • n_components: optional. Defaults to 50. +Number of expected gaussian components
  • +
  • max_iter: optional. Defaults to 100. +Maximal number of iterations.
  • +
  • moving_minimum_window: optional. Defaults to None. +If None no moving minimum is subtracted, otherwise as specified.
  • +
  • random_state: optional. Defaults to None. +Random generator seed to be used.
  • +
  • trim_range: optional. Defaults to None: +If None ignore trimming, otherwise trim range is in x-axis values.
  • +
+ +
Returns:
+ +
+

BayesianGaussianMixture: Fitted Bayesian Gaussian Mixture

+
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/peaks/fit_peaks.html b/ramanchada2/spectrum/peaks/fit_peaks.html new file mode 100644 index 00000000..72e2e7e2 --- /dev/null +++ b/ramanchada2/spectrum/peaks/fit_peaks.html @@ -0,0 +1,690 @@ + + + + + + + ramanchada2.spectrum.peaks.fit_peaks API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.peaks.fit_peaks

+ + + + + + +
  1import logging
+  2from typing import List, Literal, Union
+  3
+  4import numpy as np
+  5from lmfit.models import LinearModel, lmfit_models
+  6from pydantic import validate_call
+  7
+  8from ramanchada2.misc.spectrum_deco import (add_spectrum_filter,
+  9                                            add_spectrum_method)
+ 10from ramanchada2.misc.types.fit_peaks_result import FitPeaksResult
+ 11from ramanchada2.misc.types.peak_candidates import (
+ 12    ListPeakCandidateMultiModel, PeakCandidateMultiModel)
+ 13
+ 14from ..spectrum import Spectrum
+ 15
+ 16logger = logging.getLogger(__name__)
+ 17available_models = ['Gaussian', 'Lorentzian', 'Moffat', 'Voigt', 'PseudoVoigt', 'Pearson4', 'Pearson7']
+ 18available_models_type = Literal['Gaussian', 'Lorentzian', 'Moffat', 'Voigt', 'PseudoVoigt', 'Pearson4', 'Pearson7']
+ 19
+ 20
+ 21@validate_call(config=dict(arbitrary_types_allowed=True))
+ 22def build_multipeak_model_params(profile: Union[available_models_type, List[available_models_type]],
+ 23                                 candidates: PeakCandidateMultiModel,
+ 24                                 baseline_model: Literal['linear', None] = 'linear',
+ 25                                 ):
+ 26    mod_list = list()
+ 27    if baseline_model == 'linear':
+ 28        mod_list.append(LinearModel(name='baseline', prefix='bl_'))
+ 29    for peak_i, peak in enumerate(candidates.peaks):
+ 30        mod_list.append(lmfit_models[profile](name=f'p{peak_i}', prefix=f'p{peak_i}_'))
+ 31    fit_model = np.sum(mod_list)
+ 32    fit_params = fit_model.make_params()
+ 33    if baseline_model == 'linear':
+ 34        fit_params['bl_slope'].set(value=candidates.base_slope, vary=False)
+ 35        fit_params['bl_intercept'].set(value=candidates.base_intercept, vary=False)
+ 36
+ 37    for peak_i, peak in enumerate(candidates.peaks):
+ 38        if profile == 'Moffat':
+ 39            fwhm_factor = 2.
+ 40            height_factor = 2./peak.sigma**.5
+ 41            fit_params[f'p{peak_i}_amplitude'].set(value=peak.amplitude/height_factor)
+ 42            fit_params[f'p{peak_i}_beta'].set(value=1, min=1e-4, max=10)
+ 43            fit_params[f'p{peak_i}_sigma'].set(value=peak.sigma)
+ 44
+ 45        elif profile == 'Voigt':
+ 46            fwhm_factor = 3.6013
+ 47            height_factor = 1/peak.sigma/2
+ 48            fit_params[f'p{peak_i}_amplitude'].set(value=peak.amplitude/height_factor)
+ 49            fit_params[f'p{peak_i}_gamma'].set(value=peak.sigma/fwhm_factor, vary=True)
+ 50            fit_params[f'p{peak_i}_sigma'].set(value=peak.sigma/fwhm_factor)
+ 51
+ 52        elif profile == 'PseudoVoigt':
+ 53            fwhm_factor = lmfit_models[profile].fwhm_factor
+ 54            height_factor = 1/np.pi/np.sqrt(peak.sigma)/2
+ 55            fit_params[f'p{peak_i}_amplitude'].set(value=peak.amplitude/height_factor)
+ 56            fit_params[f'p{peak_i}_sigma'].set(value=peak.sigma/fwhm_factor)
+ 57
+ 58        elif profile == 'Pearson4':
+ 59            fwhm_factor = 1
+ 60            # p{peak_i}_amplitude or p{peak_i}_height
+ 61            fit_params[f'p{peak_i}_amplitude'].set(value=peak.amplitude)
+ 62            fit_params[f'p{peak_i}_sigma'].set(value=peak.sigma/fwhm_factor)
+ 63
+ 64        elif profile == 'Pearson7':
+ 65            fwhm_factor = 1
+ 66            height_factor = 1/2/peak.sigma
+ 67            fit_params[f'p{peak_i}_amplitude'].set(value=peak.amplitude/height_factor)
+ 68            fit_params[f'p{peak_i}_sigma'].set(value=peak.sigma/fwhm_factor)
+ 69
+ 70        else:
+ 71            fwhm_factor = lmfit_models[profile].fwhm_factor
+ 72            height_factor = lmfit_models[profile].height_factor/peak.sigma/2
+ 73            fit_params[f'p{peak_i}_amplitude'].set(value=peak.amplitude/height_factor)
+ 74            fit_params[f'p{peak_i}_sigma'].set(value=peak.sigma)
+ 75
+ 76        fit_params[f'p{peak_i}_amplitude'].set(min=0)
+ 77        fit_params[f'p{peak_i}_fwhm'].set(min=peak.fwhm*.4, max=peak.fwhm*2)
+ 78        fit_params[f'p{peak_i}_height'].set(min=peak.amplitude*.1, max=peak.amplitude*20)
+ 79        fit_params[f'p{peak_i}_center'].set(value=peak.position)
+ 80
+ 81    return fit_model, fit_params
+ 82
+ 83
+ 84@add_spectrum_method
+ 85@validate_call(config=dict(arbitrary_types_allowed=True))
+ 86def fit_peak_multimodel(spe, /, *,
+ 87                        profile: Union[available_models_type, List[available_models_type]],
+ 88                        candidates: ListPeakCandidateMultiModel,
+ 89                        no_fit=False,
+ 90                        should_break=[False],
+ 91                        kwargs_fit={},
+ 92                        vary_baseline: bool = False,
+ 93                        ) -> FitPeaksResult:
+ 94    """
+ 95    Fit a model based on candidates to the spectrum.
+ 96
+ 97    Args:
+ 98        spe: internal use only
+ 99        profile: str or List[str]
+100            possible values are: ["""+str(available_models)+"""]
+101        candidates: as provided from find_peak_multipeak
+102        no_fit: optional. Defaults to False.
+103            If true, do not perform a fit. Result will be the inital guess,
+104            based on the data from peak candidates.
+105        should_break: optional. Defaults to [False].
+106            Use mutability of the python list type to be able to externaly
+107            break the minimization procedure.
+108        kwargs_fit: optional
+109            kwargs for fit function
+110        vary_baseline: optional. Defaults to False.
+111            If False baseline will not be a free parameter and its amplitude
+112            will be taken from the peak candidates.
+113
+114    Returns:
+115        FitPeaksResult: groups of fitted peaks
+116    """
+117
+118    def iter_cb(params, iter, resid, *args, **kws):
+119        return should_break[0]
+120    if no_fit:
+121        kwargs_fit = dict(kwargs_fit)
+122        kwargs_fit['max_nfev'] = 1
+123    fit_res = FitPeaksResult()
+124    for group in candidates.root:
+125        mod, par = build_multipeak_model_params(profile=profile, candidates=group)
+126        idx = (group.boundaries[0] < spe.x) & (spe.x < group.boundaries[1])
+127        x = spe.x[idx]
+128        y = spe.y[idx]
+129        for i in range(len(group.peaks)):
+130            par[f'p{i}_center'].set(vary=False)
+131        fr = mod.fit(y, x=x, params=par, iter_cb=iter_cb,  **kwargs_fit)
+132        for i in range(len(group.peaks)):
+133            par[f'p{i}_center'].set(vary=True)
+134        if vary_baseline:
+135            par['bl_slope'].set(vary=True)
+136            par['bl_intercept'].set(vary=True)
+137        fr = mod.fit(y, x=x, params=par, iter_cb=iter_cb, **kwargs_fit)
+138        fit_res.append(fr)
+139    return fit_res
+140
+141
+142@add_spectrum_filter
+143@validate_call(config=dict(arbitrary_types_allowed=True))
+144def fit_peaks_filter(
+145        old_spe: Spectrum,
+146        new_spe: Spectrum, /, *args,
+147        should_break=[False],
+148        kwargs_fit={},
+149        **kwargs,
+150        ):
+151    """
+152    Same as `fit_peak_multipeak` but the result is stored as metadata in the returned spectrum.
+153
+154    Args:
+155        old_spe: internal use only
+156        new_spe: internal use only
+157        should_break: same as in fit_peaks_multipeak
+158        *args, **kwargs: same as `fit_peaks_multipeak`
+159    """
+160    cand_groups = ListPeakCandidateMultiModel.model_validate(old_spe.result)
+161    new_spe.result = old_spe.fit_peak_multimodel(*args,  # type: ignore
+162                                                 candidates=cand_groups,
+163                                                 should_break=should_break,
+164                                                 kwargs_fit=kwargs_fit,
+165                                                 **kwargs).dumps()
+
+ + +
+
+
+ logger = +<Logger ramanchada2.spectrum.peaks.fit_peaks (WARNING)> + + +
+ + + + +
+
+
+ available_models = +['Gaussian', 'Lorentzian', 'Moffat', 'Voigt', 'PseudoVoigt', 'Pearson4', 'Pearson7'] + + +
+ + + + +
+
+
+ available_models_type = +typing.Literal['Gaussian', 'Lorentzian', 'Moffat', 'Voigt', 'PseudoVoigt', 'Pearson4', 'Pearson7'] + + +
+ + + + +
+
+ +
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + build_multipeak_model_params( profile: Union[Literal['Gaussian', 'Lorentzian', 'Moffat', 'Voigt', 'PseudoVoigt', 'Pearson4', 'Pearson7'], List[Literal['Gaussian', 'Lorentzian', 'Moffat', 'Voigt', 'PseudoVoigt', 'Pearson4', 'Pearson7']]], candidates: ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel, baseline_model: Literal['linear', None] = 'linear'): + + + +
+ +
22@validate_call(config=dict(arbitrary_types_allowed=True))
+23def build_multipeak_model_params(profile: Union[available_models_type, List[available_models_type]],
+24                                 candidates: PeakCandidateMultiModel,
+25                                 baseline_model: Literal['linear', None] = 'linear',
+26                                 ):
+27    mod_list = list()
+28    if baseline_model == 'linear':
+29        mod_list.append(LinearModel(name='baseline', prefix='bl_'))
+30    for peak_i, peak in enumerate(candidates.peaks):
+31        mod_list.append(lmfit_models[profile](name=f'p{peak_i}', prefix=f'p{peak_i}_'))
+32    fit_model = np.sum(mod_list)
+33    fit_params = fit_model.make_params()
+34    if baseline_model == 'linear':
+35        fit_params['bl_slope'].set(value=candidates.base_slope, vary=False)
+36        fit_params['bl_intercept'].set(value=candidates.base_intercept, vary=False)
+37
+38    for peak_i, peak in enumerate(candidates.peaks):
+39        if profile == 'Moffat':
+40            fwhm_factor = 2.
+41            height_factor = 2./peak.sigma**.5
+42            fit_params[f'p{peak_i}_amplitude'].set(value=peak.amplitude/height_factor)
+43            fit_params[f'p{peak_i}_beta'].set(value=1, min=1e-4, max=10)
+44            fit_params[f'p{peak_i}_sigma'].set(value=peak.sigma)
+45
+46        elif profile == 'Voigt':
+47            fwhm_factor = 3.6013
+48            height_factor = 1/peak.sigma/2
+49            fit_params[f'p{peak_i}_amplitude'].set(value=peak.amplitude/height_factor)
+50            fit_params[f'p{peak_i}_gamma'].set(value=peak.sigma/fwhm_factor, vary=True)
+51            fit_params[f'p{peak_i}_sigma'].set(value=peak.sigma/fwhm_factor)
+52
+53        elif profile == 'PseudoVoigt':
+54            fwhm_factor = lmfit_models[profile].fwhm_factor
+55            height_factor = 1/np.pi/np.sqrt(peak.sigma)/2
+56            fit_params[f'p{peak_i}_amplitude'].set(value=peak.amplitude/height_factor)
+57            fit_params[f'p{peak_i}_sigma'].set(value=peak.sigma/fwhm_factor)
+58
+59        elif profile == 'Pearson4':
+60            fwhm_factor = 1
+61            # p{peak_i}_amplitude or p{peak_i}_height
+62            fit_params[f'p{peak_i}_amplitude'].set(value=peak.amplitude)
+63            fit_params[f'p{peak_i}_sigma'].set(value=peak.sigma/fwhm_factor)
+64
+65        elif profile == 'Pearson7':
+66            fwhm_factor = 1
+67            height_factor = 1/2/peak.sigma
+68            fit_params[f'p{peak_i}_amplitude'].set(value=peak.amplitude/height_factor)
+69            fit_params[f'p{peak_i}_sigma'].set(value=peak.sigma/fwhm_factor)
+70
+71        else:
+72            fwhm_factor = lmfit_models[profile].fwhm_factor
+73            height_factor = lmfit_models[profile].height_factor/peak.sigma/2
+74            fit_params[f'p{peak_i}_amplitude'].set(value=peak.amplitude/height_factor)
+75            fit_params[f'p{peak_i}_sigma'].set(value=peak.sigma)
+76
+77        fit_params[f'p{peak_i}_amplitude'].set(min=0)
+78        fit_params[f'p{peak_i}_fwhm'].set(min=peak.fwhm*.4, max=peak.fwhm*2)
+79        fit_params[f'p{peak_i}_height'].set(min=peak.amplitude*.1, max=peak.amplitude*20)
+80        fit_params[f'p{peak_i}_center'].set(value=peak.position)
+81
+82    return fit_model, fit_params
+
+ + + + +
+
+ +
+
@add_spectrum_method
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + fit_peak_multimodel( spe, /, *, profile: Union[Literal['Gaussian', 'Lorentzian', 'Moffat', 'Voigt', 'PseudoVoigt', 'Pearson4', 'Pearson7'], List[Literal['Gaussian', 'Lorentzian', 'Moffat', 'Voigt', 'PseudoVoigt', 'Pearson4', 'Pearson7']]], candidates: ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel, no_fit=False, should_break=[False], kwargs_fit={}, vary_baseline: bool = False) -> ramanchada2.misc.types.fit_peaks_result.FitPeaksResult: + + + +
+ +
 85@add_spectrum_method
+ 86@validate_call(config=dict(arbitrary_types_allowed=True))
+ 87def fit_peak_multimodel(spe, /, *,
+ 88                        profile: Union[available_models_type, List[available_models_type]],
+ 89                        candidates: ListPeakCandidateMultiModel,
+ 90                        no_fit=False,
+ 91                        should_break=[False],
+ 92                        kwargs_fit={},
+ 93                        vary_baseline: bool = False,
+ 94                        ) -> FitPeaksResult:
+ 95    """
+ 96    Fit a model based on candidates to the spectrum.
+ 97
+ 98    Args:
+ 99        spe: internal use only
+100        profile: str or List[str]
+101            possible values are: ["""+str(available_models)+"""]
+102        candidates: as provided from find_peak_multipeak
+103        no_fit: optional. Defaults to False.
+104            If true, do not perform a fit. Result will be the inital guess,
+105            based on the data from peak candidates.
+106        should_break: optional. Defaults to [False].
+107            Use mutability of the python list type to be able to externaly
+108            break the minimization procedure.
+109        kwargs_fit: optional
+110            kwargs for fit function
+111        vary_baseline: optional. Defaults to False.
+112            If False baseline will not be a free parameter and its amplitude
+113            will be taken from the peak candidates.
+114
+115    Returns:
+116        FitPeaksResult: groups of fitted peaks
+117    """
+118
+119    def iter_cb(params, iter, resid, *args, **kws):
+120        return should_break[0]
+121    if no_fit:
+122        kwargs_fit = dict(kwargs_fit)
+123        kwargs_fit['max_nfev'] = 1
+124    fit_res = FitPeaksResult()
+125    for group in candidates.root:
+126        mod, par = build_multipeak_model_params(profile=profile, candidates=group)
+127        idx = (group.boundaries[0] < spe.x) & (spe.x < group.boundaries[1])
+128        x = spe.x[idx]
+129        y = spe.y[idx]
+130        for i in range(len(group.peaks)):
+131            par[f'p{i}_center'].set(vary=False)
+132        fr = mod.fit(y, x=x, params=par, iter_cb=iter_cb,  **kwargs_fit)
+133        for i in range(len(group.peaks)):
+134            par[f'p{i}_center'].set(vary=True)
+135        if vary_baseline:
+136            par['bl_slope'].set(vary=True)
+137            par['bl_intercept'].set(vary=True)
+138        fr = mod.fit(y, x=x, params=par, iter_cb=iter_cb, **kwargs_fit)
+139        fit_res.append(fr)
+140    return fit_res
+
+ + + + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + fit_peaks_filter( old_spe: ramanchada2.spectrum.spectrum.Spectrum, new_spe: ramanchada2.spectrum.spectrum.Spectrum, /, *args, should_break=[False], kwargs_fit={}, **kwargs): + + + +
+ +
143@add_spectrum_filter
+144@validate_call(config=dict(arbitrary_types_allowed=True))
+145def fit_peaks_filter(
+146        old_spe: Spectrum,
+147        new_spe: Spectrum, /, *args,
+148        should_break=[False],
+149        kwargs_fit={},
+150        **kwargs,
+151        ):
+152    """
+153    Same as `fit_peak_multipeak` but the result is stored as metadata in the returned spectrum.
+154
+155    Args:
+156        old_spe: internal use only
+157        new_spe: internal use only
+158        should_break: same as in fit_peaks_multipeak
+159        *args, **kwargs: same as `fit_peaks_multipeak`
+160    """
+161    cand_groups = ListPeakCandidateMultiModel.model_validate(old_spe.result)
+162    new_spe.result = old_spe.fit_peak_multimodel(*args,  # type: ignore
+163                                                 candidates=cand_groups,
+164                                                 should_break=should_break,
+165                                                 kwargs_fit=kwargs_fit,
+166                                                 **kwargs).dumps()
+
+ + +

Same as fit_peak_multipeak but the result is stored as metadata in the returned spectrum.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • should_break: same as in fit_peaks_multipeak
  • +
  • args, *kwargs: same as fit_peaks_multipeak
  • +
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/peaks/get_fitted_peaks.html b/ramanchada2/spectrum/peaks/get_fitted_peaks.html new file mode 100644 index 00000000..a67490d6 --- /dev/null +++ b/ramanchada2/spectrum/peaks/get_fitted_peaks.html @@ -0,0 +1,431 @@ + + + + + + + ramanchada2.spectrum.peaks.get_fitted_peaks API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.peaks.get_fitted_peaks

+ + + + + + +
 1import logging
+ 2from typing import Dict
+ 3
+ 4from pydantic import validate_call
+ 5
+ 6from ramanchada2.misc.spectrum_deco import add_spectrum_method
+ 7
+ 8from ..spectrum import Spectrum
+ 9
+10logger = logging.getLogger(__name__)
+11
+12
+13@add_spectrum_method
+14@validate_call(config=dict(arbitrary_types_allowed=True))
+15def fit_peak_positions(spe: Spectrum, /, *,
+16                       mov_min=40,
+17                       center_err_threshold=.5,
+18                       find_peaks_kw={},
+19                       fit_peaks_kw={},
+20                       ) -> Dict[float, float]:
+21    """
+22    Calculate peak positions and amplitudes.
+23
+24    Sequence of multiple processings:
+25    - `subtract_moving_minimum`
+26    - `find_peak_multipeak`
+27    - filter peaks with x-location better than threshold
+28
+29    Args:
+30        spe: internal use only
+31        mov_min: optional. Defaults to 40
+32            subtract moving_minimum with the specified window.
+33        center_err_threshold: optional. Defaults to 0.5.
+34            threshold for centroid standard deviation. Only peaks
+35            with better uncertainty will be returned.
+36
+37        find_peaks_kw: optional
+38            keyword arguments to be used with find_peak_multipeak
+39        fit_peaks_kw: optional
+40            keyword arguments to be used with fit_peaks_multipeak
+41
+42    Returns:
+43        Dict[float, float]: {positions: amplitudes}
+44    """
+45    ss = spe.subtract_moving_minimum(mov_min)  # type: ignore
+46    find_kw = dict(sharpening=None)
+47    find_kw.update(find_peaks_kw)
+48    cand = ss.find_peak_multipeak(**find_kw)
+49
+50    fit_kw = dict(profile='Gaussian')
+51    fit_kw.update(fit_peaks_kw)
+52    fit_res = spe.fit_peak_multimodel(candidates=cand, **fit_kw)  # type: ignore
+53
+54    pos, amp = fit_res.center_amplitude(threshold=center_err_threshold)
+55
+56    return dict(zip(pos, amp))
+
+ + +
+
+
+ logger = +<Logger ramanchada2.spectrum.peaks.get_fitted_peaks (WARNING)> + + +
+ + + + +
+
+ +
+
@add_spectrum_method
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + fit_peak_positions( spe: ramanchada2.spectrum.spectrum.Spectrum, /, *, mov_min=40, center_err_threshold=0.5, find_peaks_kw={}, fit_peaks_kw={}) -> Dict[float, float]: + + + +
+ +
14@add_spectrum_method
+15@validate_call(config=dict(arbitrary_types_allowed=True))
+16def fit_peak_positions(spe: Spectrum, /, *,
+17                       mov_min=40,
+18                       center_err_threshold=.5,
+19                       find_peaks_kw={},
+20                       fit_peaks_kw={},
+21                       ) -> Dict[float, float]:
+22    """
+23    Calculate peak positions and amplitudes.
+24
+25    Sequence of multiple processings:
+26    - `subtract_moving_minimum`
+27    - `find_peak_multipeak`
+28    - filter peaks with x-location better than threshold
+29
+30    Args:
+31        spe: internal use only
+32        mov_min: optional. Defaults to 40
+33            subtract moving_minimum with the specified window.
+34        center_err_threshold: optional. Defaults to 0.5.
+35            threshold for centroid standard deviation. Only peaks
+36            with better uncertainty will be returned.
+37
+38        find_peaks_kw: optional
+39            keyword arguments to be used with find_peak_multipeak
+40        fit_peaks_kw: optional
+41            keyword arguments to be used with fit_peaks_multipeak
+42
+43    Returns:
+44        Dict[float, float]: {positions: amplitudes}
+45    """
+46    ss = spe.subtract_moving_minimum(mov_min)  # type: ignore
+47    find_kw = dict(sharpening=None)
+48    find_kw.update(find_peaks_kw)
+49    cand = ss.find_peak_multipeak(**find_kw)
+50
+51    fit_kw = dict(profile='Gaussian')
+52    fit_kw.update(fit_peaks_kw)
+53    fit_res = spe.fit_peak_multimodel(candidates=cand, **fit_kw)  # type: ignore
+54
+55    pos, amp = fit_res.center_amplitude(threshold=center_err_threshold)
+56
+57    return dict(zip(pos, amp))
+
+ + +

Calculate peak positions and amplitudes.

+ +

Sequence of multiple processings:

+ +
    +
  • subtract_moving_minimum
  • +
  • find_peak_multipeak
  • +
  • filter peaks with x-location better than threshold
  • +
+ +
Arguments:
+ +
    +
  • spe: internal use only
  • +
  • mov_min: optional. Defaults to 40 +subtract moving_minimum with the specified window.
  • +
  • center_err_threshold: optional. Defaults to 0.5. +threshold for centroid standard deviation. Only peaks +with better uncertainty will be returned.
  • +
  • find_peaks_kw: optional +keyword arguments to be used with find_peak_multipeak
  • +
  • fit_peaks_kw: optional +keyword arguments to be used with fit_peaks_multipeak
  • +
+ +
Returns:
+ +
+

Dict[float, float]: {positions: amplitudes}

+
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/spectrum/spectrum.html b/ramanchada2/spectrum/spectrum.html new file mode 100644 index 00000000..0cf0d6e2 --- /dev/null +++ b/ramanchada2/spectrum/spectrum.html @@ -0,0 +1,5142 @@ + + + + + + + ramanchada2.spectrum.spectrum API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.spectrum.spectrum

+ + + + + + +
  1from __future__ import annotations
+  2
+  3import logging
+  4from copy import deepcopy
+  5from typing import Dict, List, Optional, Set, Tuple, Union
+  6
+  7import numpy as np
+  8import numpy.typing as npt
+  9from pydantic import PositiveInt, validate_call
+ 10from scipy.signal import convolve, savgol_coeffs, savgol_filter
+ 11from scipy.stats import median_abs_deviation, rv_histogram
+ 12
+ 13from ramanchada2.io.HSDS import write_cha, write_nexus
+ 14from ramanchada2.io.output.write_csv import write_csv as io_write_csv
+ 15from ramanchada2.misc.plottable import Plottable
+ 16from ramanchada2.misc.types import PositiveOddInt, SpeMetadataModel
+ 17from ramanchada2.misc.types.spectrum import (SpeProcessingListModel,
+ 18                                             SpeProcessingModel)
+ 19
+ 20logger = logging.getLogger(__name__)
+ 21
+ 22
+ 23class Spectrum(Plottable):
+ 24    _available_processings: Set[str] = set()
+ 25
+ 26    @validate_call(config=dict(arbitrary_types_allowed=True))
+ 27    def __init__(self,
+ 28                 x: Union[npt.NDArray, int, None] = None,
+ 29                 y: Union[npt.NDArray, None] = None,
+ 30                 cachefile: Optional[str] = None,
+ 31                 metadata: Union[SpeMetadataModel, None] = None,
+ 32                 applied_processings: Union[SpeProcessingListModel, None] = None):
+ 33        super(Plottable, self).__init__()
+ 34        if x is not None:
+ 35            if isinstance(x, int):
+ 36                self.x = np.arange(x)
+ 37            else:
+ 38                self.x = x
+ 39        if y is not None:
+ 40            self.y = y
+ 41
+ 42        self._x_err: Union[npt.NDArray, None] = None
+ 43        self._y_err: Union[npt.NDArray, None] = None
+ 44
+ 45        sort_idx = np.argsort(self.x)
+ 46        if (np.diff(sort_idx) != 1).any():
+ 47            self.x = self.x[sort_idx]
+ 48            if self.y is not None:
+ 49                self.y = self.y[sort_idx]
+ 50
+ 51        self._cachefile = cachefile
+ 52        self._metadata = deepcopy(metadata or SpeMetadataModel(root={}))
+ 53        self._applied_processings = deepcopy(applied_processings or SpeProcessingListModel(root=[]))
+ 54
+ 55    def __copy__(self):
+ 56        return Spectrum(
+ 57            x=self.x,
+ 58            y=self.y,
+ 59            cachefile=self._cachefile,
+ 60            metadata=self._metadata,
+ 61            applied_processings=self._applied_processings,
+ 62        )
+ 63
+ 64    def __repr__(self):
+ 65        return self._applied_processings.repr()
+ 66
+ 67    def applied_processings_dict(self):
+ 68        return self._applied_processings.to_list()
+ 69
+ 70    def __str__(self):
+ 71        return str(self._applied_processings.to_list())
+ 72
+ 73    def write_csv(self, filename, delimiter=',', newline='\n'):
+ 74        csv = io_write_csv(self.x, self.y, delimiter=delimiter)
+ 75        with open(filename, 'w', newline=newline) as f:
+ 76            for c in csv:
+ 77                f.write(c)
+ 78
+ 79    def write_cha(self, chafile, dataset):
+ 80        write_cha(chafile, dataset, self.x, self.y, self.meta.serialize())
+ 81
+ 82    def write_nexus(self, chafile, dataset):
+ 83        write_nexus(chafile, dataset, self.x, self.y, self.meta.serialize())
+ 84
+ 85    def write_cache(self):
+ 86        if self._cachefile:
+ 87            self.write_cha(
+ 88                self._cachefile,
+ 89                '/cache/'+self._applied_processings.cache_path()+'/_data')
+ 90
+ 91    def process(self, algorithm: str, **kwargs):
+ 92        if algorithm not in self._available_processings:
+ 93            raise ValueError('Unknown algorithm {algorithm}')
+ 94        return getattr(self, algorithm)(**kwargs)
+ 95
+ 96    @classmethod
+ 97    @validate_call(config=dict(arbitrary_types_allowed=True))
+ 98    def apply_creator(cls, step: SpeProcessingModel, cachefile_=None):
+ 99        proc = getattr(cls, step.proc)
+100        spe = proc(*step.args, **step.kwargs, cachefile_=cachefile_)
+101        return spe
+102
+103    @validate_call(config=dict(arbitrary_types_allowed=True))
+104    def apply_processing(self, step: SpeProcessingModel):
+105        proc = getattr(self, step.proc)
+106        spe = proc(*step.args, **step.kwargs)
+107        return spe
+108
+109    def _plot(self, ax, *args, **kwargs):
+110        ax.errorbar(
+111            self.x,
+112            self.y,
+113            xerr=self.x_err,
+114            yerr=self.y_err,
+115            **kwargs
+116        )
+117
+118    def _sort_x(self):
+119        idx = np.argsort(self.x)
+120        self.x = self.x[idx]
+121        self.y = self.y[idx]
+122
+123    @property
+124    def x(self): return np.array(self._xdata)
+125
+126    @x.setter
+127    def x(self, val: npt.NDArray[np.float64]):
+128        self._xdata = val
+129        self._xdata.flags.writeable = False
+130
+131    @property
+132    def x_bin_boundaries(self):
+133        return np.concatenate((
+134            [(3*self.x[0] - self.x[1])/2],
+135            (self.x[1:] + self.x[:-1])/2,
+136            [(3*self.x[-1] - self.x[-2])/2]
+137        ))
+138
+139    @property
+140    def y(self) -> npt.NDArray[np.float64]:
+141        return np.array(self._ydata)
+142
+143    @y.setter
+144    def y(self, val: npt.NDArray[np.float64]):
+145        self._ydata = val
+146        self._ydata.flags.writeable = False
+147
+148    @property
+149    def y_noise(self):
+150        return self.y_noise_savgol()
+151
+152    def y_noise_MAD(self):
+153        return median_abs_deviation(np.diff(self.y))
+154
+155    @validate_call(config=dict(validate_default=True))
+156    def y_noise_savgol_DL(self, order: PositiveOddInt = 1):
+157        npts = order + 2
+158        ydata = self.y - np.min(self.y)
+159        summ = np.sum((ydata - savgol_filter(ydata, npts, order))**2)
+160        coeff = savgol_coeffs(npts, order)
+161        coeff[(len(coeff) - 1) // 2] -= 1
+162        scale = np.sqrt(np.sum(coeff**2))
+163        return np.sqrt(summ/len(ydata))/scale
+164
+165    @validate_call(config=dict(validate_default=True))
+166    def y_noise_savgol(self, order: PositiveOddInt = 1):
+167        npts = order + 2
+168
+169        # subtract smoothed signal from original
+170        coeff = - savgol_coeffs(npts, order)
+171        coeff[(len(coeff)-1)//2] += 1
+172
+173        # normalize coefficients so that `sum(coeff**2) == 1`
+174        coeff /= np.sqrt(np.sum(coeff**2))
+175
+176        # remove the common floor
+177        ydata = self.y - np.min(self.y)
+178        return np.std(convolve(ydata, coeff, mode='same'))
+179
+180    @property
+181    def x_err(self):
+182        if self._x_err is None:
+183            return np.zeros_like(self._xdata)
+184        else:
+185            return self._x_err
+186
+187    @x_err.setter
+188    def x_err(self, val: Union[npt.NDArray, None]):
+189        if val is not None:
+190            if val.shape != self._xdata.shape:
+191                raise ValueError(
+192                    'x_err should have same shape as xdata, expected {self._xdata.shape}, got {val.shape}')
+193        self._x_err = val
+194
+195    @property
+196    def y_err(self):
+197        if self._y_err is None:
+198            return np.zeros_like(self._ydata)
+199        else:
+200            return self._y_err
+201
+202    @y_err.setter
+203    def y_err(self, val: Union[npt.NDArray, None]):
+204        if val is not None:
+205            if val.shape != self._ydata.shape:
+206                raise ValueError(
+207                    'y_err should have same shape as ydata, expected {self._ydata.shape}, got {val.shape}')
+208        self._y_err = val
+209
+210    @property
+211    def meta(self) -> SpeMetadataModel:
+212        return self._metadata
+213
+214    @meta.setter
+215    @validate_call(config=dict(arbitrary_types_allowed=True))
+216    def meta(self, val: Union[Dict, SpeMetadataModel]):
+217        if isinstance(val, dict):
+218            self._metadata = SpeMetadataModel.model_validate(val)
+219        else:
+220            self._metadata = val
+221
+222    @property
+223    def result(self):
+224        return self.meta['ramanchada2_filter_result']
+225
+226    @result.setter
+227    def result(self, res: Union[Dict, List]):
+228        return self.meta._update(dict(ramanchada2_filter_result=res))
+229
+230    @validate_call(config=dict(arbitrary_types_allowed=True))
+231    def spe_distribution(self, trim_range: Union[Tuple[float, float], None] = None):
+232        x_all = self.x_bin_boundaries
+233        if trim_range is not None:
+234            l_idx = int(np.argmin(np.abs(x_all - trim_range[0])))
+235            r_idx = int(np.argmin(np.abs(x_all - trim_range[1])))
+236            spe_dist = rv_histogram((self.y[l_idx:r_idx], x_all[l_idx:r_idx+1]))
+237        else:
+238            spe_dist = rv_histogram((self.y, x_all))
+239        return spe_dist
+240
+241    @validate_call(config=dict(arbitrary_types_allowed=True))
+242    def gen_samples(self, size: PositiveInt, trim_range=None):
+243        spe_dist = self.spe_distribution(trim_range=trim_range)
+244        samps = spe_dist.rvs(size=size)
+245        return samps
+
+ + +
+
+
+ logger = +<Logger ramanchada2.spectrum.spectrum (WARNING)> + + +
+ + + + +
+
+ +
+ + class + Spectrum(ramanchada2.misc.plottable.Plottable): + + + +
+ +
 24class Spectrum(Plottable):
+ 25    _available_processings: Set[str] = set()
+ 26
+ 27    @validate_call(config=dict(arbitrary_types_allowed=True))
+ 28    def __init__(self,
+ 29                 x: Union[npt.NDArray, int, None] = None,
+ 30                 y: Union[npt.NDArray, None] = None,
+ 31                 cachefile: Optional[str] = None,
+ 32                 metadata: Union[SpeMetadataModel, None] = None,
+ 33                 applied_processings: Union[SpeProcessingListModel, None] = None):
+ 34        super(Plottable, self).__init__()
+ 35        if x is not None:
+ 36            if isinstance(x, int):
+ 37                self.x = np.arange(x)
+ 38            else:
+ 39                self.x = x
+ 40        if y is not None:
+ 41            self.y = y
+ 42
+ 43        self._x_err: Union[npt.NDArray, None] = None
+ 44        self._y_err: Union[npt.NDArray, None] = None
+ 45
+ 46        sort_idx = np.argsort(self.x)
+ 47        if (np.diff(sort_idx) != 1).any():
+ 48            self.x = self.x[sort_idx]
+ 49            if self.y is not None:
+ 50                self.y = self.y[sort_idx]
+ 51
+ 52        self._cachefile = cachefile
+ 53        self._metadata = deepcopy(metadata or SpeMetadataModel(root={}))
+ 54        self._applied_processings = deepcopy(applied_processings or SpeProcessingListModel(root=[]))
+ 55
+ 56    def __copy__(self):
+ 57        return Spectrum(
+ 58            x=self.x,
+ 59            y=self.y,
+ 60            cachefile=self._cachefile,
+ 61            metadata=self._metadata,
+ 62            applied_processings=self._applied_processings,
+ 63        )
+ 64
+ 65    def __repr__(self):
+ 66        return self._applied_processings.repr()
+ 67
+ 68    def applied_processings_dict(self):
+ 69        return self._applied_processings.to_list()
+ 70
+ 71    def __str__(self):
+ 72        return str(self._applied_processings.to_list())
+ 73
+ 74    def write_csv(self, filename, delimiter=',', newline='\n'):
+ 75        csv = io_write_csv(self.x, self.y, delimiter=delimiter)
+ 76        with open(filename, 'w', newline=newline) as f:
+ 77            for c in csv:
+ 78                f.write(c)
+ 79
+ 80    def write_cha(self, chafile, dataset):
+ 81        write_cha(chafile, dataset, self.x, self.y, self.meta.serialize())
+ 82
+ 83    def write_nexus(self, chafile, dataset):
+ 84        write_nexus(chafile, dataset, self.x, self.y, self.meta.serialize())
+ 85
+ 86    def write_cache(self):
+ 87        if self._cachefile:
+ 88            self.write_cha(
+ 89                self._cachefile,
+ 90                '/cache/'+self._applied_processings.cache_path()+'/_data')
+ 91
+ 92    def process(self, algorithm: str, **kwargs):
+ 93        if algorithm not in self._available_processings:
+ 94            raise ValueError('Unknown algorithm {algorithm}')
+ 95        return getattr(self, algorithm)(**kwargs)
+ 96
+ 97    @classmethod
+ 98    @validate_call(config=dict(arbitrary_types_allowed=True))
+ 99    def apply_creator(cls, step: SpeProcessingModel, cachefile_=None):
+100        proc = getattr(cls, step.proc)
+101        spe = proc(*step.args, **step.kwargs, cachefile_=cachefile_)
+102        return spe
+103
+104    @validate_call(config=dict(arbitrary_types_allowed=True))
+105    def apply_processing(self, step: SpeProcessingModel):
+106        proc = getattr(self, step.proc)
+107        spe = proc(*step.args, **step.kwargs)
+108        return spe
+109
+110    def _plot(self, ax, *args, **kwargs):
+111        ax.errorbar(
+112            self.x,
+113            self.y,
+114            xerr=self.x_err,
+115            yerr=self.y_err,
+116            **kwargs
+117        )
+118
+119    def _sort_x(self):
+120        idx = np.argsort(self.x)
+121        self.x = self.x[idx]
+122        self.y = self.y[idx]
+123
+124    @property
+125    def x(self): return np.array(self._xdata)
+126
+127    @x.setter
+128    def x(self, val: npt.NDArray[np.float64]):
+129        self._xdata = val
+130        self._xdata.flags.writeable = False
+131
+132    @property
+133    def x_bin_boundaries(self):
+134        return np.concatenate((
+135            [(3*self.x[0] - self.x[1])/2],
+136            (self.x[1:] + self.x[:-1])/2,
+137            [(3*self.x[-1] - self.x[-2])/2]
+138        ))
+139
+140    @property
+141    def y(self) -> npt.NDArray[np.float64]:
+142        return np.array(self._ydata)
+143
+144    @y.setter
+145    def y(self, val: npt.NDArray[np.float64]):
+146        self._ydata = val
+147        self._ydata.flags.writeable = False
+148
+149    @property
+150    def y_noise(self):
+151        return self.y_noise_savgol()
+152
+153    def y_noise_MAD(self):
+154        return median_abs_deviation(np.diff(self.y))
+155
+156    @validate_call(config=dict(validate_default=True))
+157    def y_noise_savgol_DL(self, order: PositiveOddInt = 1):
+158        npts = order + 2
+159        ydata = self.y - np.min(self.y)
+160        summ = np.sum((ydata - savgol_filter(ydata, npts, order))**2)
+161        coeff = savgol_coeffs(npts, order)
+162        coeff[(len(coeff) - 1) // 2] -= 1
+163        scale = np.sqrt(np.sum(coeff**2))
+164        return np.sqrt(summ/len(ydata))/scale
+165
+166    @validate_call(config=dict(validate_default=True))
+167    def y_noise_savgol(self, order: PositiveOddInt = 1):
+168        npts = order + 2
+169
+170        # subtract smoothed signal from original
+171        coeff = - savgol_coeffs(npts, order)
+172        coeff[(len(coeff)-1)//2] += 1
+173
+174        # normalize coefficients so that `sum(coeff**2) == 1`
+175        coeff /= np.sqrt(np.sum(coeff**2))
+176
+177        # remove the common floor
+178        ydata = self.y - np.min(self.y)
+179        return np.std(convolve(ydata, coeff, mode='same'))
+180
+181    @property
+182    def x_err(self):
+183        if self._x_err is None:
+184            return np.zeros_like(self._xdata)
+185        else:
+186            return self._x_err
+187
+188    @x_err.setter
+189    def x_err(self, val: Union[npt.NDArray, None]):
+190        if val is not None:
+191            if val.shape != self._xdata.shape:
+192                raise ValueError(
+193                    'x_err should have same shape as xdata, expected {self._xdata.shape}, got {val.shape}')
+194        self._x_err = val
+195
+196    @property
+197    def y_err(self):
+198        if self._y_err is None:
+199            return np.zeros_like(self._ydata)
+200        else:
+201            return self._y_err
+202
+203    @y_err.setter
+204    def y_err(self, val: Union[npt.NDArray, None]):
+205        if val is not None:
+206            if val.shape != self._ydata.shape:
+207                raise ValueError(
+208                    'y_err should have same shape as ydata, expected {self._ydata.shape}, got {val.shape}')
+209        self._y_err = val
+210
+211    @property
+212    def meta(self) -> SpeMetadataModel:
+213        return self._metadata
+214
+215    @meta.setter
+216    @validate_call(config=dict(arbitrary_types_allowed=True))
+217    def meta(self, val: Union[Dict, SpeMetadataModel]):
+218        if isinstance(val, dict):
+219            self._metadata = SpeMetadataModel.model_validate(val)
+220        else:
+221            self._metadata = val
+222
+223    @property
+224    def result(self):
+225        return self.meta['ramanchada2_filter_result']
+226
+227    @result.setter
+228    def result(self, res: Union[Dict, List]):
+229        return self.meta._update(dict(ramanchada2_filter_result=res))
+230
+231    @validate_call(config=dict(arbitrary_types_allowed=True))
+232    def spe_distribution(self, trim_range: Union[Tuple[float, float], None] = None):
+233        x_all = self.x_bin_boundaries
+234        if trim_range is not None:
+235            l_idx = int(np.argmin(np.abs(x_all - trim_range[0])))
+236            r_idx = int(np.argmin(np.abs(x_all - trim_range[1])))
+237            spe_dist = rv_histogram((self.y[l_idx:r_idx], x_all[l_idx:r_idx+1]))
+238        else:
+239            spe_dist = rv_histogram((self.y, x_all))
+240        return spe_dist
+241
+242    @validate_call(config=dict(arbitrary_types_allowed=True))
+243    def gen_samples(self, size: PositiveInt, trim_range=None):
+244        spe_dist = self.spe_distribution(trim_range=trim_range)
+245        samps = spe_dist.rvs(size=size)
+246        return samps
+
+ + +

Helper class that provides a standard way to create an ABC using +inheritance.

+
+ + +
+ +
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + Spectrum( x: Union[numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]], int, NoneType] = None, y: Optional[numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]]] = None, cachefile: Optional[str] = None, metadata: Optional[ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel] = None, applied_processings: Optional[ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel] = None) + + + +
+ +
27    @validate_call(config=dict(arbitrary_types_allowed=True))
+28    def __init__(self,
+29                 x: Union[npt.NDArray, int, None] = None,
+30                 y: Union[npt.NDArray, None] = None,
+31                 cachefile: Optional[str] = None,
+32                 metadata: Union[SpeMetadataModel, None] = None,
+33                 applied_processings: Union[SpeProcessingListModel, None] = None):
+34        super(Plottable, self).__init__()
+35        if x is not None:
+36            if isinstance(x, int):
+37                self.x = np.arange(x)
+38            else:
+39                self.x = x
+40        if y is not None:
+41            self.y = y
+42
+43        self._x_err: Union[npt.NDArray, None] = None
+44        self._y_err: Union[npt.NDArray, None] = None
+45
+46        sort_idx = np.argsort(self.x)
+47        if (np.diff(sort_idx) != 1).any():
+48            self.x = self.x[sort_idx]
+49            if self.y is not None:
+50                self.y = self.y[sort_idx]
+51
+52        self._cachefile = cachefile
+53        self._metadata = deepcopy(metadata or SpeMetadataModel(root={}))
+54        self._applied_processings = deepcopy(applied_processings or SpeProcessingListModel(root=[]))
+
+ + + + +
+
+ +
+ + def + applied_processings_dict(self): + + + +
+ +
68    def applied_processings_dict(self):
+69        return self._applied_processings.to_list()
+
+ + + + +
+
+ +
+ + def + write_csv(self, filename, delimiter=',', newline='\n'): + + + +
+ +
74    def write_csv(self, filename, delimiter=',', newline='\n'):
+75        csv = io_write_csv(self.x, self.y, delimiter=delimiter)
+76        with open(filename, 'w', newline=newline) as f:
+77            for c in csv:
+78                f.write(c)
+
+ + + + +
+
+ +
+ + def + write_cha(self, chafile, dataset): + + + +
+ +
80    def write_cha(self, chafile, dataset):
+81        write_cha(chafile, dataset, self.x, self.y, self.meta.serialize())
+
+ + + + +
+
+ +
+ + def + write_nexus(self, chafile, dataset): + + + +
+ +
83    def write_nexus(self, chafile, dataset):
+84        write_nexus(chafile, dataset, self.x, self.y, self.meta.serialize())
+
+ + + + +
+
+ +
+ + def + write_cache(self): + + + +
+ +
86    def write_cache(self):
+87        if self._cachefile:
+88            self.write_cha(
+89                self._cachefile,
+90                '/cache/'+self._applied_processings.cache_path()+'/_data')
+
+ + + + +
+
+ +
+ + def + process(self, algorithm: str, **kwargs): + + + +
+ +
92    def process(self, algorithm: str, **kwargs):
+93        if algorithm not in self._available_processings:
+94            raise ValueError('Unknown algorithm {algorithm}')
+95        return getattr(self, algorithm)(**kwargs)
+
+ + + + +
+
+ +
+
@classmethod
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + apply_creator( cls, step: ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel, cachefile_=None): + + + +
+ +
 97    @classmethod
+ 98    @validate_call(config=dict(arbitrary_types_allowed=True))
+ 99    def apply_creator(cls, step: SpeProcessingModel, cachefile_=None):
+100        proc = getattr(cls, step.proc)
+101        spe = proc(*step.args, **step.kwargs, cachefile_=cachefile_)
+102        return spe
+
+ + + + +
+
+ +
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + apply_processing( self, step: ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel): + + + +
+ +
104    @validate_call(config=dict(arbitrary_types_allowed=True))
+105    def apply_processing(self, step: SpeProcessingModel):
+106        proc = getattr(self, step.proc)
+107        spe = proc(*step.args, **step.kwargs)
+108        return spe
+
+ + + + +
+
+ +
+ x + + + +
+ +
124    @property
+125    def x(self): return np.array(self._xdata)
+
+ + + + +
+
+ +
+ x_bin_boundaries + + + +
+ +
132    @property
+133    def x_bin_boundaries(self):
+134        return np.concatenate((
+135            [(3*self.x[0] - self.x[1])/2],
+136            (self.x[1:] + self.x[:-1])/2,
+137            [(3*self.x[-1] - self.x[-2])/2]
+138        ))
+
+ + + + +
+
+ +
+ y: numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]] + + + +
+ +
140    @property
+141    def y(self) -> npt.NDArray[np.float64]:
+142        return np.array(self._ydata)
+
+ + + + +
+
+ +
+ y_noise + + + +
+ +
149    @property
+150    def y_noise(self):
+151        return self.y_noise_savgol()
+
+ + + + +
+
+ +
+ + def + y_noise_MAD(self): + + + +
+ +
153    def y_noise_MAD(self):
+154        return median_abs_deviation(np.diff(self.y))
+
+ + + + +
+
+ +
+
@validate_call(config=dict(validate_default=True))
+ + def + y_noise_savgol_DL(self, order: typing.Annotated[int, Gt(gt=0)] = 1): + + + +
+ +
156    @validate_call(config=dict(validate_default=True))
+157    def y_noise_savgol_DL(self, order: PositiveOddInt = 1):
+158        npts = order + 2
+159        ydata = self.y - np.min(self.y)
+160        summ = np.sum((ydata - savgol_filter(ydata, npts, order))**2)
+161        coeff = savgol_coeffs(npts, order)
+162        coeff[(len(coeff) - 1) // 2] -= 1
+163        scale = np.sqrt(np.sum(coeff**2))
+164        return np.sqrt(summ/len(ydata))/scale
+
+ + + + +
+
+ +
+
@validate_call(config=dict(validate_default=True))
+ + def + y_noise_savgol(self, order: typing.Annotated[int, Gt(gt=0)] = 1): + + + +
+ +
166    @validate_call(config=dict(validate_default=True))
+167    def y_noise_savgol(self, order: PositiveOddInt = 1):
+168        npts = order + 2
+169
+170        # subtract smoothed signal from original
+171        coeff = - savgol_coeffs(npts, order)
+172        coeff[(len(coeff)-1)//2] += 1
+173
+174        # normalize coefficients so that `sum(coeff**2) == 1`
+175        coeff /= np.sqrt(np.sum(coeff**2))
+176
+177        # remove the common floor
+178        ydata = self.y - np.min(self.y)
+179        return np.std(convolve(ydata, coeff, mode='same'))
+
+ + + + +
+
+ +
+ x_err + + + +
+ +
181    @property
+182    def x_err(self):
+183        if self._x_err is None:
+184            return np.zeros_like(self._xdata)
+185        else:
+186            return self._x_err
+
+ + + + +
+
+ +
+ y_err + + + +
+ +
196    @property
+197    def y_err(self):
+198        if self._y_err is None:
+199            return np.zeros_like(self._ydata)
+200        else:
+201            return self._y_err
+
+ + + + +
+
+ + + +
211    @property
+212    def meta(self) -> SpeMetadataModel:
+213        return self._metadata
+
+ + + + +
+
+ +
+ result + + + +
+ +
223    @property
+224    def result(self):
+225        return self.meta['ramanchada2_filter_result']
+
+ + + + +
+
+ +
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + spe_distribution(self, trim_range: Optional[Tuple[float, float]] = None): + + + +
+ +
231    @validate_call(config=dict(arbitrary_types_allowed=True))
+232    def spe_distribution(self, trim_range: Union[Tuple[float, float], None] = None):
+233        x_all = self.x_bin_boundaries
+234        if trim_range is not None:
+235            l_idx = int(np.argmin(np.abs(x_all - trim_range[0])))
+236            r_idx = int(np.argmin(np.abs(x_all - trim_range[1])))
+237            spe_dist = rv_histogram((self.y[l_idx:r_idx], x_all[l_idx:r_idx+1]))
+238        else:
+239            spe_dist = rv_histogram((self.y, x_all))
+240        return spe_dist
+
+ + + + +
+
+ +
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + gen_samples(self, size: typing.Annotated[int, Gt(gt=0)], trim_range=None): + + + +
+ +
242    @validate_call(config=dict(arbitrary_types_allowed=True))
+243    def gen_samples(self, size: PositiveInt, trim_range=None):
+244        spe_dist = self.spe_distribution(trim_range=trim_range)
+245        samps = spe_dist.rvs(size=size)
+246        return samps
+
+ + + + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + add_baseline( old_spe: Spectrum, new_spe: Spectrum, /, n_freq: int, amplitude: float, pedestal: float = 0, func: Optional[Callable] = None, rng_seed=None): + + + +
+ +
39@add_spectrum_filter
+40@validate_call(config=dict(arbitrary_types_allowed=True))
+41def add_baseline(old_spe: Spectrum, new_spe: Spectrum, /, n_freq: int, amplitude: float, pedestal: float = 0,
+42                 func: Union[Callable, None] = None, rng_seed=None):
+43    """
+44    Add artificial baseline to the spectrum.
+45    A random baseline is generated in frequency domain using uniform random numbers.
+46    The baseline in frequency domain is tapered with bohman window to reduce the bandwidth
+47    of the baseline to first `n_freq` frequencies and is transformed to "time" domain.
+48    Additionaly by using `func` parameter the user can define arbitrary function
+49    to be added as baseline.
+50
+51    Args:
+52        n_freq:
+53            Must be `> 2`. Number of lowest frequency bins distinct from zero.
+54        amplitude:
+55            Upper boundary for the uniform random generator.
+56        pedestal:
+57            Additive constant pedestal to the spectrum.
+58        func:
+59            Callable. User-defined function to be added as baseline. Example: `func = lambda x: x*.01 + x**2*.0001`.
+60        rng_seed:
+61            `int`, optional. Seed for the random generator.
+62    """
+63    size = len(old_spe.y)
+64    base = generate_baseline(n_freq=n_freq, size=size, rng_seed=rng_seed)
+65    y = old_spe.y + amplitude*base + pedestal
+66    if func is not None:
+67        y += func(old_spe.x) + old_spe.y
+68    new_spe.y = y
+
+ + +

Add artificial baseline to the spectrum. +A random baseline is generated in frequency domain using uniform random numbers. +The baseline in frequency domain is tapered with bohman window to reduce the bandwidth +of the baseline to first n_freq frequencies and is transformed to "time" domain. +Additionaly by using func parameter the user can define arbitrary function +to be added as baseline.

+ +
Arguments:
+ +
    +
  • n_freq: Must be > 2. Number of lowest frequency bins distinct from zero.
  • +
  • amplitude: Upper boundary for the uniform random generator.
  • +
  • pedestal: Additive constant pedestal to the spectrum.
  • +
  • func: Callable. User-defined function to be added as baseline. Example: func = lambda x: x*.01 + x**2*.0001.
  • +
  • rng_seed: int, optional. Seed for the random generator.
  • +
+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + subtract_baseline_rc1_als( old_spe: Spectrum, new_spe: Spectrum, lam=100000.0, p=0.001, niter=100, smooth=7): + + + +
+ +
53@add_spectrum_filter
+54@validate_call(config=dict(arbitrary_types_allowed=True))
+55def subtract_baseline_rc1_als(
+56        old_spe: Spectrum,
+57        new_spe: Spectrum,
+58        lam=1e5, p=0.001, niter=100, smooth=7
+59        ):
+60    new_spe.y = old_spe.y - baseline_als(old_spe.y, lam=lam, p=p, niter=niter, smooth=smooth)
+
+ + + + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + subtract_baseline_rc1_snip( old_spe: Spectrum, new_spe: Spectrum, niter=30): + + + +
+ +
63@add_spectrum_filter
+64@validate_call(config=dict(arbitrary_types_allowed=True))
+65def subtract_baseline_rc1_snip(
+66        old_spe: Spectrum,
+67        new_spe: Spectrum,
+68        niter=30
+69        ):
+70    new_spe.y = old_spe.y - baseline_snip(old_spe.y, niter=niter)
+
+ + + + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + moving_minimum( old_spe: Spectrum, new_spe: Spectrum, window_size: int): + + + +
+ +
20@add_spectrum_filter
+21@validate_call(config=dict(arbitrary_types_allowed=True))
+22def moving_minimum(
+23        old_spe: Spectrum,
+24        new_spe: Spectrum,
+25        window_size: int):
+26    """
+27    Moving minimum baseline estimator.
+28    Successive values are calculated as minima of rolling rectangular window.
+29    """
+30    new_spe.y = _moving_minimum(old_spe.y, window_size)
+
+ + +

Moving minimum baseline estimator. +Successive values are calculated as minima of rolling rectangular window.

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + subtract_moving_minimum( old_spe: Spectrum, new_spe: Spectrum, window_size: int): + + + +
+ +
33@add_spectrum_filter
+34@validate_call(config=dict(arbitrary_types_allowed=True))
+35def subtract_moving_minimum(
+36        old_spe: Spectrum,
+37        new_spe: Spectrum,
+38        window_size: int):
+39    new_spe.y = old_spe.y - _moving_minimum(old_spe.y, window_size)
+
+ + + + +
+
+ +
+
@add_spectrum_method
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + central_moments( spe: Spectrum, /, boundaries=(-inf, inf), moments=[1, 2, 3, 4], normalize=False): + + + +
+ +
10@add_spectrum_method
+11@validate_call(config=dict(arbitrary_types_allowed=True))
+12def central_moments(spe: Spectrum, /,
+13                    boundaries=(-np.inf, np.inf), moments=[1, 2, 3, 4], normalize=False
+14                    ):
+15    mom = dict()
+16    filter_idx = (spe.x >= boundaries[0]) & (spe.x < boundaries[1])
+17    x = spe.x[filter_idx]
+18    p = spe.y[filter_idx]
+19    p -= p.min()
+20    p /= p.sum()
+21    mom[1] = np.sum(x*p)
+22    mom[2] = np.sum((x - mom[1])**2 * p)
+23    for i in moments:
+24        if i <= 2:
+25            continue
+26        mom[i] = np.sum((x - mom[1])**i * p)
+27        if normalize and i > 2:
+28            mom[i] /= mom[2] ** i/2
+29    return [mom[i] for i in moments]
+
+ + + + +
+
+ +
+
@add_spectrum_method
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + abs_nm_to_shift_cm_1( spe: Spectrum, /, laser_wave_length_nm: float): + + + +
+ +
14@add_spectrum_method
+15@validate_call(config=dict(arbitrary_types_allowed=True))
+16def abs_nm_to_shift_cm_1(spe: Spectrum, /,
+17                         laser_wave_length_nm: float):
+18    """
+19    Convert wavelength to Ramanshift in wavenumber
+20
+21    Args:
+22        spe: internal use only
+23        laser_wave_length_nm: Laser wave length
+24
+25    Returns: Corrected x-values
+26    """
+27    return util_abs_nm_to_shift_cm_1(spe.x, laser_wave_length_nm=laser_wave_length_nm)
+
+ + +

Convert wavelength to Ramanshift in wavenumber

+ +
Arguments:
+ +
    +
  • spe: internal use only
  • +
  • laser_wave_length_nm: Laser wave length
  • +
+ +

Returns: Corrected x-values

+
+ + +
+
+ +
+
@add_spectrum_method
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + shift_cm_1_to_abs_nm( spe: Spectrum, /, laser_wave_length_nm: float): + + + +
+ +
30@add_spectrum_method
+31@validate_call(config=dict(arbitrary_types_allowed=True))
+32def shift_cm_1_to_abs_nm(spe: Spectrum, /,
+33                         laser_wave_length_nm: float):
+34    """
+35    Convert Ramanshift in wavenumber to wavelength
+36
+37    Args:
+38        spe: internal use only
+39        laser_wave_length_nm: Laser wave length
+40
+41    Returns: Corrected x-values
+42    """
+43    return util_shift_cm_1_to_abs_nm(spe.x, laser_wave_length_nm=laser_wave_length_nm)
+
+ + +

Convert Ramanshift in wavenumber to wavelength

+ +
Arguments:
+ +
    +
  • spe: internal use only
  • +
  • laser_wave_length_nm: Laser wave length
  • +
+ +

Returns: Corrected x-values

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + abs_nm_to_shift_cm_1_filter( old_spe: Spectrum, new_spe: Spectrum, /, laser_wave_length_nm: float): + + + +
+ +
46@add_spectrum_filter
+47@validate_call(config=dict(arbitrary_types_allowed=True))
+48def abs_nm_to_shift_cm_1_filter(old_spe: Spectrum,
+49                                new_spe: Spectrum, /,
+50                                laser_wave_length_nm: float):
+51    """
+52    Convert wavelength to Ramanshift in wavenumber
+53
+54    Args:
+55        spe: internal use only
+56        laser_wave_length_nm: Laser wave length
+57
+58    Returns: Spectrum with corrected x-values
+59    """
+60    new_spe.x = util_abs_nm_to_shift_cm_1(old_spe.x, laser_wave_length_nm=laser_wave_length_nm)
+
+ + +

Convert wavelength to Ramanshift in wavenumber

+ +
Arguments:
+ +
    +
  • spe: internal use only
  • +
  • laser_wave_length_nm: Laser wave length
  • +
+ +

Returns: Spectrum with corrected x-values

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + shift_cm_1_to_abs_nm_filter( old_spe: Spectrum, new_spe: Spectrum, /, laser_wave_length_nm: float): + + + +
+ +
63@add_spectrum_filter
+64@validate_call(config=dict(arbitrary_types_allowed=True))
+65def shift_cm_1_to_abs_nm_filter(old_spe: Spectrum,
+66                                new_spe: Spectrum, /,
+67                                laser_wave_length_nm: float):
+68    """
+69    Convert Ramanshift in wavenumber to wavelength
+70
+71    Args:
+72        spe: internal use only
+73        laser_wave_length_nm: Laser wave length
+74
+75    Returns: Spectrum with corrected x-values
+76    """
+77    new_spe.x = util_shift_cm_1_to_abs_nm(old_spe.x, laser_wave_length_nm=laser_wave_length_nm)
+
+ + +

Convert Ramanshift in wavenumber to wavelength

+ +
Arguments:
+ +
    +
  • spe: internal use only
  • +
  • laser_wave_length_nm: Laser wave length
  • +
+ +

Returns: Spectrum with corrected x-values

+
+ + +
+
+ +
+
@add_spectrum_method
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + calibrate_by_deltas_model( spe: Spectrum, /, deltas: Dict[float, float], convolution_steps: Optional[List[float]] = [15, 1], scale2=True, scale3=False, init_guess: Literal[None, 'cumulative'] = None, ax=None, **kwargs): + + + +
+ +
 50@add_spectrum_method
+ 51@validate_call(config=dict(arbitrary_types_allowed=True))
+ 52def calibrate_by_deltas_model(spe: Spectrum, /,
+ 53                              deltas: Dict[float, float],
+ 54                              convolution_steps: Union[None, List[float]] = [15, 1],
+ 55                              scale2=True, scale3=False,
+ 56                              init_guess: Literal[None, 'cumulative'] = None,
+ 57                              ax=None, **kwargs
+ 58                              ):
+ 59    """
+ 60    - Builds a composite model based on a set of user specified delta lines.
+ 61    - Initial guess is calculated based on 10-th and 90-th percentiles of
+ 62      the distributions.
+ 63
+ 64    The phasespace of the model is flat with big amount of narrow minima.
+ 65    In order to find the best fit, the experimental data are successively
+ 66    convolved with gaussians with different widths startign from wide to
+ 67    narrow. The model for the calibration is 3-th order polynomial, which
+ 68    potentialy can be changed for higher order polynomial. In order to avoid
+ 69    solving the inverse of the calibration function, the result is tabulated
+ 70    and interpolated linarly for each bin of the spectrum.
+ 71    This alogrithm is useful for corse calibration.
+ 72    """
+ 73    mod = DeltaSpeModel(deltas)
+ 74    spe_padded = spe
+ 75
+ 76    if init_guess == 'cumulative':
+ 77        deltasx = np.array(list(deltas.keys()))
+ 78
+ 79        deltas_cs = np.cumsum(list(deltas.values()))
+ 80        deltas_cs /= deltas_cs[-1]
+ 81
+ 82        deltas_idx10 = np.argmin(np.abs(deltas_cs-.1))
+ 83        deltas_idx90 = np.argmin(np.abs(deltas_cs-.9))
+ 84        x1, x2 = deltasx[[deltas_idx10, deltas_idx90]]
+ 85
+ 86        spe_cs = np.cumsum(
+ 87            spe_padded.moving_average(50).subtract_moving_minimum(10).moving_average(5).y)  # type: ignore
+ 88
+ 89        spe_cs /= spe_cs[-1]
+ 90        spe_idx10 = np.argmin(np.abs(spe_cs-.1))
+ 91        spe_idx90 = np.argmin(np.abs(spe_cs-.9))
+ 92        y1, y2 = spe_padded.x[[spe_idx10, spe_idx90]]
+ 93
+ 94        scale = (y1-y2)/(x1-x2)
+ 95        shift = -scale * x1 + y1
+ 96    else:
+ 97        scale = 1
+ 98        shift = 0
+ 99    gain = np.sum(spe.y)/np.sum(list(deltas.values()))
+100    mod.params['scale'].set(value=scale)
+101    mod.params['shift'].set(value=shift)
+102    mod.params['gain'].set(value=gain)
+103    mod.params['sigma'].set(value=2.5)
+104
+105    if ax is not None:
+106        spe_padded.plot(ax=ax)
+107
+108    if convolution_steps is not None:
+109        for sig in convolution_steps:
+110            mod.fit(spe=spe_padded, sigma=sig, ax=ax, **kwargs)
+111
+112    if scale2:
+113        mod.params['scale2'].set(vary=True, value=0)
+114        # mod.fit(spe_padded, sigma=1, ax=ax, **kwargs)
+115        mod.fit(spe_padded, sigma=0, ax=ax, **kwargs)
+116    if scale3:
+117        mod.params['scale2'].set(vary=True, value=0)
+118        mod.params['scale3'].set(vary=True, value=0)
+119        # mod.fit(spe_padded, sigma=1, ax=ax, **kwargs)
+120        mod.fit(spe_padded, sigma=0, ax=ax, **kwargs)
+121    return mod.model, mod.params
+
+ + +
    +
  • Builds a composite model based on a set of user specified delta lines.
  • +
  • Initial guess is calculated based on 10-th and 90-th percentiles of +the distributions.
  • +
+ +

The phasespace of the model is flat with big amount of narrow minima. +In order to find the best fit, the experimental data are successively +convolved with gaussians with different widths startign from wide to +narrow. The model for the calibration is 3-th order polynomial, which +potentialy can be changed for higher order polynomial. In order to avoid +solving the inverse of the calibration function, the result is tabulated +and interpolated linarly for each bin of the spectrum. +This alogrithm is useful for corse calibration.

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + calibrate_by_deltas_filter( old_spe: Spectrum, new_spe: Spectrum, /, deltas: Dict[float, float], convolution_steps, init_guess=None, **kwargs): + + + +
+ +
124@add_spectrum_filter
+125@validate_call(config=dict(arbitrary_types_allowed=True))
+126def calibrate_by_deltas_filter(old_spe: Spectrum,
+127                               new_spe: Spectrum, /,
+128                               deltas: Dict[float, float],
+129                               convolution_steps,
+130                               init_guess=None,
+131                               **kwargs
+132                               ):
+133    mod, par = old_spe.calibrate_by_deltas_model(  # type: ignore
+134        deltas=deltas,
+135        convolution_steps=convolution_steps,
+136        init_guess=init_guess,
+137        **kwargs)
+138
+139    deltasx = np.array(list(deltas.keys()))
+140    dxl, dxr = deltasx[[0, -1]]
+141    xl = dxl - (dxr - dxl)
+142    xr = dxl + (dxr - dxl)
+143    true_x = np.linspace(xl, xr, len(old_spe.x)*6)
+144    meas_x = (par['shift'].value + true_x * par['scale'] +
+145              true_x**2 * par['scale2'] + true_x**3 * par['scale3'])
+146    x_cal = np.zeros_like(old_spe.x)
+147    for i in range(len(old_spe.x)):
+148        idx = np.argmax(meas_x > old_spe.x[i])
+149        pt_rto = (old_spe.x[i] - meas_x[idx-1])/(meas_x[idx] - meas_x[idx-1])
+150        x_cal[i] = (true_x[idx] - true_x[idx-1])*pt_rto + true_x[idx-1]
+151    new_spe.x = x_cal
+
+ + + + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + xcal_fine( old_spe: Spectrum, new_spe: Spectrum, /, *, ref: Union[Dict[float, float], List[float]], should_fit=False, poly_order: typing.Annotated[int, Ge(ge=0)], find_peaks_kw={}): + + + +
+ +
154@add_spectrum_filter
+155@validate_call(config=dict(arbitrary_types_allowed=True))
+156def xcal_fine(old_spe: Spectrum,
+157              new_spe: Spectrum, /, *,
+158              ref: Union[Dict[float, float], List[float]],
+159              should_fit=False,
+160              poly_order: NonNegativeInt,
+161              find_peaks_kw={},
+162              ):
+163
+164    if isinstance(ref, dict):
+165        ref_pos = np.array(list(ref.keys()))
+166    else:
+167        ref_pos = np.array(ref)
+168
+169    if should_fit:
+170        spe_pos_dict = old_spe.fit_peak_positions(center_err_threshold=1, find_peaks_kw=find_peaks_kw)  # type: ignore
+171    else:
+172        find_kw = dict(sharpening=None)
+173        find_kw.update(find_peaks_kw)
+174        spe_pos_dict = old_spe.find_peak_multipeak(**find_kw).get_pos_ampl_dict()  # type: ignore
+175    spe_cent = np.array(list(spe_pos_dict.keys()))
+176
+177    if poly_order == 0:
+178        p = rc2utils.align_shift(spe_cent, ref_pos)
+179        spe_cal = old_spe.scale_xaxis_fun(lambda x: x + p)  # type: ignore
+180    else:
+181        def cal_func(x, *a):
+182            return [par*(x/1000)**power for power, par in enumerate(a)]
+183
+184        p0 = np.resize([0, 1000, 0], poly_order + 1)
+185        p = rc2utils.align(spe_cent, ref_pos, p0=p0, func=cal_func)
+186        spe_cal = old_spe.scale_xaxis_fun(  # type: ignore
+187            (lambda x, *args: np.sum(cal_func(x, *args), axis=0)), args=p)
+188    new_spe.x = spe_cal.x
+
+ + + + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + xcal_fine_RBF( old_spe: Spectrum, new_spe: Spectrum, /, *, ref: Union[Dict[float, float], List[float], numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]]], should_fit=False, kernel: Literal['thin_plate_spline', 'cubic', 'quintic', 'multiquadric', 'inverse_multiquadric', 'inverse_quadratic', 'gaussian'] = 'thin_plate_spline', find_peaks_kw={}, **kwargs): + + + +
+ +
191@add_spectrum_filter
+192@validate_call(config=dict(arbitrary_types_allowed=True))
+193def xcal_fine_RBF(old_spe: Spectrum,
+194                  new_spe: Spectrum, /, *,
+195                  ref: Union[Dict[float, float], List[float], npt.NDArray],
+196                  should_fit=False,
+197                  kernel: Literal['thin_plate_spline', 'cubic', 'quintic',
+198                                  'multiquadric', 'inverse_multiquadric',
+199                                  'inverse_quadratic', 'gaussian',
+200                                  ] = 'thin_plate_spline',
+201                  find_peaks_kw={},
+202                  **kwargs,
+203                  ):
+204    """Wavelength calibration using Radial basis fuction interpolation
+205
+206    Please be cautious! Interpolation might not be the most appropriate
+207    approach for this type of calibration.
+208
+209    **kwargs are passed to RBFInterpolator
+210    """
+211
+212    if isinstance(ref, dict):
+213        ref_pos = np.array(list(ref.keys()))
+214    else:
+215        ref_pos = np.array(ref)
+216
+217    if should_fit:
+218        spe_pos_dict = old_spe.fit_peak_positions(center_err_threshold=1, find_peaks_kw=find_peaks_kw)  # type: ignore
+219    else:
+220        find_kw = dict(sharpening=None)
+221        find_kw.update(find_peaks_kw)
+222        spe_pos_dict = old_spe.find_peak_multipeak(**find_kw).get_pos_ampl_dict()  # type: ignore
+223    spe_cent = np.array(list(spe_pos_dict.keys()))
+224
+225    spe_idx, ref_idx = rc2utils.find_closest_pairs_idx(spe_cent, ref_pos)
+226    if len(ref_idx) == 1:
+227        _offset = (ref_pos[ref_idx][0] - spe_cent[spe_idx][0])
+228        new_spe.x = old_spe.x + _offset
+229    else:
+230        kwargs["kernel"] = kernel
+231        interp = interpolate.RBFInterpolator(spe_cent[spe_idx].reshape(-1, 1), ref_pos[ref_idx], **kwargs)
+232        new_spe.x = interp(old_spe.x.reshape(-1, 1))
+
+ + +

Wavelength calibration using Radial basis fuction interpolation

+ +

Please be cautious! Interpolation might not be the most appropriate +approach for this type of calibration.

+ +

**kwargs are passed to RBFInterpolator

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + scale_yaxis_linear( old_spe: Spectrum, new_spe: Spectrum, factor: float = 1): + + + +
+ +
 9@add_spectrum_filter
+10@validate_call(config=dict(arbitrary_types_allowed=True))
+11def scale_yaxis_linear(old_spe: Spectrum,
+12                       new_spe: Spectrum,
+13                       factor: float = 1):
+14    """
+15    Scale y-axis values
+16
+17    This function provides the same result as `spe*const`
+18
+19    Args:
+20        old_spe: internal use only
+21        new_spe: internal use only
+22        factor optional. Defaults to 1.
+23            Y-values scaling factor
+24
+25    Returns: corrected spectrum
+26    """
+27    new_spe.y = old_spe.y * factor
+
+ + +

Scale y-axis values

+ +

This function provides the same result as spe*const

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • factor optional. Defaults to 1. +Y-values scaling factor
  • +
+ +

Returns: corrected spectrum

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + set_new_xaxis( old_spe: Spectrum, new_spe: Spectrum, /, xaxis: numpy.ndarray[typing.Any, numpy.dtype[+_ScalarType_co]]): + + + +
+ +
10@add_spectrum_filter
+11@validate_call(config=dict(arbitrary_types_allowed=True))
+12def set_new_xaxis(old_spe: Spectrum,
+13                  new_spe: Spectrum, /,
+14                  xaxis: npt.NDArray):
+15    """
+16    Substitute x-axis values with new ones
+17
+18    Args:
+19        old_spe: internal use only
+20        new_spe: internal use only
+21        xaxis: new x-axis values
+22
+23    Returns: corrected spectrum
+24
+25    Raises:
+26        ValueError: If the provided array does not match the shape of the spectrum.
+27    """
+28    if old_spe.x.shape != xaxis.shape:
+29        raise ValueError('Shape of xaxis should match the shape of xaxis of the spectrum')
+30    new_spe.x = xaxis
+
+ + +

Substitute x-axis values with new ones

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • xaxis: new x-axis values
  • +
+ +

Returns: corrected spectrum

+ +
Raises:
+ +
    +
  • ValueError: If the provided array does not match the shape of the spectrum.
  • +
+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + scale_xaxis_linear( old_spe: Spectrum, new_spe: Spectrum, /, factor: float = 1, preserve_integral: bool = False): + + + +
+ +
13@add_spectrum_filter
+14@validate_call(config=dict(arbitrary_types_allowed=True))
+15def scale_xaxis_linear(old_spe: Spectrum,
+16                       new_spe: Spectrum, /,
+17                       factor: float = 1,
+18                       preserve_integral: bool = False):
+19    r"""
+20    Scale x-axis using a factor.
+21
+22    Args:
+23        old_spe: internal use only
+24        new_spe: internal use only
+25        factor: Defaults to 1.
+26            Multiply x-axis values with `factor`
+27        preserve_integral: optional. Defaults to False.
+28            If True, preserves the integral in sence
+29            $\sum y_{orig;\,i}*{\Delta x_{orig}}_i = \sum y_{new;\,i}*{\Delta x_{new}}_i = $
+30    Returns: Corrected spectrum
+31    """
+32    new_spe.x = old_spe.x * factor
+33    if preserve_integral:
+34        new_spe.y = old_spe.y / factor
+
+ + +

Scale x-axis using a factor.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • factor: Defaults to 1. +Multiply x-axis values with factor
  • +
  • preserve_integral: optional. Defaults to False. +If True, preserves the integral in sence +$\sum y_{orig;\,i}*{\Delta x_{orig}}_i = \sum y_{new;\,i}*{\Delta x_{new}}_i = $
  • +
+ +

Returns: Corrected spectrum

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + scale_xaxis_fun( old_spe: Spectrum, new_spe: Spectrum, /, fun: Callable[[Union[int, numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]]]], float], args=[]): + + + +
+ +
37@add_spectrum_filter
+38@validate_call(config=dict(arbitrary_types_allowed=True))
+39def scale_xaxis_fun(old_spe: Spectrum,
+40                    new_spe: Spectrum, /,
+41                    fun: Callable[[Union[int, npt.NDArray]], float],
+42                    args=[]):
+43    """
+44    Apply arbitrary calibration function to the x-axis values.
+45
+46    Args:
+47        old_spe: internal use only
+48        new_spe: internal use only
+49        fun: function to be applied
+50        args: Additional arguments to the provided functions
+51
+52    Returns: Corrected spectrum
+53
+54    Raises:
+55        ValueError: If the new x-values are not strictly monotonically increasing.
+56    """
+57    new_spe.x = fun(old_spe.x, *args)
+58    if (np.diff(new_spe.x) < 0).any():
+59        raise ValueError('The provided function is not a monoton increasing funciton.')
+
+ + +

Apply arbitrary calibration function to the x-axis values.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • fun: function to be applied
  • +
  • args: Additional arguments to the provided functions
  • +
+ +

Returns: Corrected spectrum

+ +
Raises:
+ +
    +
  • ValueError: If the new x-values are not strictly monotonically increasing.
  • +
+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + normalize( old_spe: Spectrum, new_spe: Spectrum, /, strategy: Literal['unity', 'min_unity', 'unity_density', 'unity_area', 'minmax', 'L1', 'L2'] = 'minmax'): + + + +
+ +
12@add_spectrum_filter
+13@validate_call(config=dict(arbitrary_types_allowed=True))
+14def normalize(old_spe: Spectrum,
+15              new_spe: Spectrum, /,
+16              strategy: Literal['unity', 'min_unity', 'unity_density', 'unity_area', 'minmax',
+17                                'L1', 'L2'] = 'minmax'):
+18    """
+19    Normalize the spectrum.
+20
+21    Args:
+22        strategy:
+23            If `unity`: normalize to `sum(y)`. If `min_unity`: subtract the minimum and normalize to 'unity'. If
+24            `unity_density`: normalize to `Σ(y_i*Δx_i)`. If `unity_area`: same as `unity_density`. If `minmax`: scale
+25            amplitudes in range `[0, 1]`. If 'L1' or 'L2': L1 or L2 norm without subtracting the pedestal.
+26    """
+27    if strategy == 'unity':
+28        res = old_spe.y
+29        res /= np.sum(res)
+30        new_spe.y = res
+31    elif strategy == 'min_unity':
+32        res = old_spe.y - np.min(old_spe.y)
+33        res /= np.sum(res)
+34        new_spe.y = res
+35    if strategy == 'unity_density' or strategy == 'unity_area':
+36        res = old_spe.y
+37        res /= np.sum(res * np.diff(old_spe.x_bin_boundaries))
+38        new_spe.y = res
+39    elif strategy == 'minmax':
+40        res = old_spe.y - np.min(old_spe.y)
+41        res /= np.max(res)
+42        new_spe.y = res
+43    elif strategy == 'L1':
+44        res = old_spe.y
+45        res /= np.linalg.norm(res, 1)
+46        new_spe.y = res
+47    elif strategy == 'L2':
+48        res = old_spe.y
+49        res /= np.linalg.norm(res)
+50        new_spe.y = res
+
+ + +

Normalize the spectrum.

+ +
Arguments:
+ +
    +
  • strategy: If unity: normalize to sum(y). If min_unity: subtract the minimum and normalize to 'unity'. If +unity_density: normalize to Σ(y_i*Δx_i). If unity_area: same as unity_density. If minmax: scale +amplitudes in range [0, 1]. If 'L1' or 'L2': L1 or L2 norm without subtracting the pedestal.
  • +
+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + moving_median( old_spe: Spectrum, new_spe: Spectrum, /, window_size: typing.Annotated[int, Gt(gt=0)] = 10): + + + +
+ +
20@add_spectrum_filter
+21@validate_call(config=dict(arbitrary_types_allowed=True))
+22def moving_median(old_spe: Spectrum,
+23                  new_spe: Spectrum, /,
+24                  window_size: PositiveInt = 10):
+25    """
+26    Moving median filter.
+27
+28    The resultant spectrum is moving minimum of the input.
+29
+30    Args:
+31        old_spe: internal use only
+32        new_spe: internal use only
+33        window_size:
+34            `int`, optional, default is `10`.
+35
+36    Returns: modified Spectrum
+37    """
+38
+39    new_spe.y = _moving_median(old_spe.y, window_size)
+
+ + +

Moving median filter.

+ +

The resultant spectrum is moving minimum of the input.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • window_size: int, optional, default is 10.
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + subtract_moving_median( old_spe: Spectrum, new_spe: Spectrum, window_size: int): + + + +
+ +
42@add_spectrum_filter
+43@validate_call(config=dict(arbitrary_types_allowed=True))
+44def subtract_moving_median(
+45        old_spe: Spectrum,
+46        new_spe: Spectrum,
+47        window_size: int):
+48    """
+49    Subtract moving median filter.
+50
+51    The resultant spectrum is moving minimum of the input subtracted from the input.
+52
+53    Args:
+54        old_spe: internal use only
+55        new_spe: internal use only
+56        window_size:
+57            `int`, optional, default is `10`.
+58
+59    Returns: modified Spectrum
+60    """
+61    new_spe.y = old_spe.y - _moving_median(old_spe.y, window_size)
+
+ + +

Subtract moving median filter.

+ +

The resultant spectrum is moving minimum of the input subtracted from the input.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • window_size: int, optional, default is 10.
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + add_poisson_noise( old_spe: Spectrum, new_spe: Spectrum, /, scale: float = 1, rng_seed=None): + + + +
+ +
10@add_spectrum_filter
+11@validate_call(config=dict(arbitrary_types_allowed=True))
+12def add_poisson_noise(
+13        old_spe: Spectrum,
+14        new_spe: Spectrum, /,
+15        scale: float = 1,
+16        # validation for rng_seed is removed because
+17        # it makes in-place modification impossible
+18        rng_seed=None):
+19    r"""
+20    Add poisson noise to the spectrum.
+21
+22    For each particular sample the noise is proportional to $\sqrt{scale*a_i}$.
+23
+24    Args:
+25        old_spe: internal use only
+26        new_spe: internal use only
+27        scale:
+28            `float`, optional, default is `1`. Scale the amplitude of the noise.
+29        rng_seed:
+30            `int` or rng state, optional. Seed for the random generator.
+31            If a state is provided, it is updated in-place.
+32
+33    Returns: modified Spectrum
+34    """
+35    if isinstance(rng_seed, dict):
+36        rng = np.random.default_rng()
+37        rng.bit_generator.state = rng_seed
+38    else:
+39        rng = np.random.default_rng(rng_seed)
+40    dat = old_spe.y + [rng.normal(0., np.sqrt(i*scale)) for i in old_spe.y]
+41    dat[dat < 0] = 0
+42    if isinstance(rng_seed, dict):
+43        rng_seed.update(rng.bit_generator.state)
+44    new_spe.y = np.array(dat)
+
+ + +

Add poisson noise to the spectrum.

+ +

For each particular sample the noise is proportional to $\sqrt{scale*a_i}$.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • scale: float, optional, default is 1. Scale the amplitude of the noise.
  • +
  • rng_seed: int or rng state, optional. Seed for the random generator. +If a state is provided, it is updated in-place.
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + trim_axes( old_spe: Spectrum, new_spe: Spectrum, /, method: Literal['x-axis', 'bins'], boundaries: Tuple[float, float]): + + + +
+ +
12@add_spectrum_filter
+13@validate_call(config=dict(arbitrary_types_allowed=True))
+14def trim_axes(old_spe: Spectrum,
+15              new_spe: Spectrum, /,
+16              method: Literal['x-axis', 'bins'],
+17              boundaries: Tuple[float, float],
+18              ):
+19    """
+20    Trim axes of the spectrum.
+21
+22    Args:
+23        old_spe: internal use only
+24        new_spe: internal use only
+25        method: 'x-axis' or 'bins'
+26            If 'x-axis' boundaries will be interpreted as x-axis values.
+27            If 'bins' boundaries will be interpreted as indices.
+28        boundaries: lower and upper boundary for the trimming.
+29
+30    Returns: modified Spectrum
+31    """
+32    if method == 'bins':
+33        lb = int(boundaries[0])
+34        rb = int(boundaries[1])
+35    elif method == 'x-axis':
+36        lb = int(np.argmin(np.abs(old_spe.x - boundaries[0])))
+37        rb = int(np.argmin(np.abs(old_spe.x - boundaries[1])))
+38    new_spe.x = old_spe.x[lb:rb]
+39    new_spe.y = old_spe.y[lb:rb]
+
+ + +

Trim axes of the spectrum.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • method: 'x-axis' or 'bins' +If 'x-axis' boundaries will be interpreted as x-axis values. +If 'bins' boundaries will be interpreted as indices.
  • +
  • boundaries: lower and upper boundary for the trimming.
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + pad_zeros( old_spe: Spectrum, new_spe: Spectrum, /): + + + +
+ +
10@add_spectrum_filter
+11@validate_call(config=dict(arbitrary_types_allowed=True))
+12def pad_zeros(old_spe: Spectrum,
+13              new_spe: Spectrum, /):
+14    """
+15    Extend x-axis by 100% in both directions.
+16
+17    The x-axis of resultant spectrum will be:
+18    $[x_{lower}-(x_{upper}-x_{lower})..(x_{upper}+(x_{upper}-x_{lower}))]$.
+19    The length of the new spectrum is 3 times the original. The added values
+20    are with an uniform step. In the middle is the original spectrum with
+21    original x and y values. The coresponding y vallues for the newly added
+22    x-values are always zeros.
+23
+24    Args:
+25        old_spe: internal use only
+26        new_spe: internal use only
+27
+28    Returns: modified Spectrum
+29    """
+30    lenx = len(old_spe.x)
+31    minx = np.min(old_spe.x)
+32    maxx = np.max(old_spe.x)
+33    xl = np.linspace(minx-(maxx-minx), minx, lenx, endpoint=True)[:-1]
+34    xr = np.linspace(maxx, maxx+(maxx-minx), lenx, endpoint=True)[1:]
+35
+36    new_spe.y = np.concatenate((np.zeros(lenx-1), old_spe.y, np.zeros(lenx-1)))
+37    new_spe.x = np.concatenate((xl, old_spe.x, xr))
+
+ + +

Extend x-axis by 100% in both directions.

+ +

The x-axis of resultant spectrum will be: +$[x_{lower}-(x_{upper}-x_{lower})..(x_{upper}+(x_{upper}-x_{lower}))]$. +The length of the new spectrum is 3 times the original. The added values +are with an uniform step. In the middle is the original spectrum with +original x and y values. The coresponding y vallues for the newly added +x-values are always zeros.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + add_gaussian_noise( old_spe: Spectrum, new_spe: Spectrum, /, sigma: typing.Annotated[float, Gt(gt=0)], rng_seed=None): + + + +
+ +
10@add_spectrum_filter
+11@validate_call(config=dict(arbitrary_types_allowed=True))
+12def add_gaussian_noise(
+13        old_spe: Spectrum,
+14        new_spe: Spectrum, /,
+15        sigma: PositiveFloat,
+16        # validation for rng_seed is removed because
+17        # it makes in-place modification impossible
+18        rng_seed=None):
+19    r"""
+20    Add gaussian noise to the spectrum.
+21
+22    Random number i.i.d. $N(0, \sigma)$ is added to every sample
+23
+24    Args:
+25        old_spe: internal use only
+26        new_spe: internal use only
+27        sigma:
+28            Sigma of the gaussian noise.
+29        rng_seed:
+30            `int` or rng state, optional, seed for the random generator.
+31            If a state is provided, it is updated in-place.
+32
+33    Returns: modified Spectrum
+34    """
+35    if isinstance(rng_seed, dict):
+36        rng = np.random.default_rng()
+37        rng.bit_generator.state = rng_seed
+38    else:
+39        rng = np.random.default_rng(rng_seed)
+40    dat = old_spe.y + rng.normal(0., sigma, size=len(old_spe.y))
+41    if any(dat < 0):
+42        dat += abs(dat.min())
+43    if isinstance(rng_seed, dict):
+44        rng_seed.update(rng.bit_generator.state)
+45    new_spe.y = np.array(dat)
+
+ + +

Add gaussian noise to the spectrum.

+ +

Random number i.i.d. $N(0, \sigma)$ is added to every sample

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • sigma: Sigma of the gaussian noise.
  • +
  • rng_seed: int or rng state, optional, seed for the random generator. +If a state is provided, it is updated in-place.
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + smoothing_RC1( old_spe: Spectrum, new_spe: Spectrum, /, *args, method: Literal['savgol', 'sg', 'wiener', 'median', 'gauss', 'gaussian', 'lowess', 'boxcar'], **kwargs): + + + +
+ +
16@add_spectrum_filter
+17@validate_call(config=dict(arbitrary_types_allowed=True))
+18def smoothing_RC1(old_spe: Spectrum,
+19                  new_spe: Spectrum, /, *args,
+20                  method: Literal['savgol', 'sg',
+21                                  'wiener',
+22                                  'median',
+23                                  'gauss', 'gaussian',
+24                                  'lowess',
+25                                  'boxcar'],
+26                  **kwargs):
+27    """
+28    Smooth the spectrum.
+29
+30    The spectrum will be smoothed using the specified filter.
+31    This method is inherited from ramanchada1 for compatibility reasons.
+32
+33    Args:
+34        old_spe: internal use only
+35        new_spe: internal use only
+36        method: method to be used
+37        **kwargs: keyword arguments to be passed to the selected method
+38
+39    Returns: modified Spectrum
+40    """
+41    if method == 'savgol' or method == 'sg':
+42        new_spe.y = savgol_filter(old_spe.y, **kwargs)  # window_length, polyorder
+43    elif method == 'wiener':
+44        new_spe.y = wiener(old_spe.y, **kwargs)
+45    elif method == 'gaussian' or method == 'gauss':
+46        new_spe.y = gaussian_filter1d(old_spe.y, **kwargs)  # sigma
+47    elif method == 'median':
+48        new_spe.y = medfilt(old_spe.y, **kwargs)
+49    elif method == 'lowess':
+50        kw = dict(span=11)
+51        kw.update(kwargs)
+52        x = np.linspace(0, 1, len(old_spe.y))
+53        new_spe.y = sm.nonparametric.lowess(old_spe.y, x, frac=(5*kw['span'] / len(old_spe.y)), return_sorted=False)
+54    elif method == 'boxcar':
+55        kw = dict(box_pts=11)
+56        kw.update(kwargs)
+57        box = boxcar(**kwargs, sym=True)
+58        new_spe.y = np.convolve(old_spe.y, box, mode='same')
+
+ + +

Smooth the spectrum.

+ +

The spectrum will be smoothed using the specified filter. +This method is inherited from ramanchada1 for compatibility reasons.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • method: method to be used
  • +
  • **kwargs: keyword arguments to be passed to the selected method
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + derivative_sharpening( old_spe: Spectrum, new_spe: Spectrum, /, filter_fraction: typing.Annotated[float, None, Interval(gt=0, ge=None, lt=None, le=1), None, None] = 0.6, sig_width: typing.Annotated[float, None, Interval(gt=None, ge=0, lt=None, le=None), None, None] = 0.25, der2_factor: float = 1, der4_factor: float = 0.1): + + + +
+ +
14@add_spectrum_filter
+15@validate_call(config=dict(arbitrary_types_allowed=True))
+16def derivative_sharpening(old_spe: Spectrum,
+17                          new_spe: Spectrum, /,
+18                          filter_fraction: confloat(gt=0, le=1) = .6,  # type: ignore
+19                          sig_width: confloat(ge=0) = .25,  # type: ignore
+20                          der2_factor: float = 1,
+21                          der4_factor: float = .1
+22                          ):
+23    """
+24    Derivative-based sharpening.
+25
+26    Sharpen the spectrum subtracting second derivative and add fourth derivative.
+27
+28    Args:
+29        old_spe: internal use only
+30        new_spe: internal use only
+31        filter_fraction `float` in (0; 1]: Default is 0.6
+32            Depth of filtration
+33        signal_width: The width of features to be enhanced in sample count
+34        der2_factor: Second derivative scaling factor
+35        der4_factor: Fourth derivative scaling factor
+36
+37    Returns: modified Spectrum
+38    """
+39    leny = len(old_spe.y)
+40    Y = fft.rfft(old_spe.y, n=leny)
+41    h = signal.windows.hann(int(len(Y)*filter_fraction))
+42    h = h[(len(h))//2-1:]
+43    h = np.concatenate((h, np.zeros(len(Y)-len(h))))
+44    der = np.arange(len(Y))
+45    der = 1j*np.pi*der/der[-1]
+46    Y *= h
+47    Y2 = Y*der**2
+48    Y4 = Y2*der**2
+49    y0 = fft.irfft(Y, n=leny)
+50    y2 = fft.irfft(Y2, n=leny)
+51    y4 = fft.irfft(Y4, n=leny)
+52    new_spe.y = y0 - y2/sig_width**2*der2_factor + y4/sig_width**4*der4_factor
+
+ + +

Derivative-based sharpening.

+ +

Sharpen the spectrum subtracting second derivative and add fourth derivative.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • filter_fraction float in (0; 1]: Default is 0.6 +Depth of filtration
  • +
  • signal_width: The width of features to be enhanced in sample count
  • +
  • der2_factor: Second derivative scaling factor
  • +
  • der4_factor: Fourth derivative scaling factor
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + hht_sharpening( old_spe: Spectrum, new_spe: Spectrum, /, movmin=100): + + + +
+ +
55@add_spectrum_filter
+56@validate_call(config=dict(arbitrary_types_allowed=True))
+57def hht_sharpening(old_spe: Spectrum,
+58                   new_spe: Spectrum, /,
+59                   movmin=100
+60                   ):
+61    """
+62    Hilbert-Huang based sharpening.
+63
+64    In order to reduce the overshooting, moving minimum is subtracted from the result
+65
+66    Args:
+67        old_spe: internal use only
+68        new_spe: internal use only
+69        movmin: optional. Default is 100
+70            Window size for moving minimum
+71
+72    Returns: modified Spectrum
+73    """
+74    imfs = emd.sift.sift(old_spe.y).T
+75    freq_list = list()
+76    for ansig in signal.hilbert(imfs):
+77        freq_list.append(emd.spectra.freq_from_phase(
+78            emd.spectra.phase_from_complex_signal(ansig, ret_phase='unwrapped'), 1))
+79    freq = np.array(freq_list)
+80    freq[freq < 0] = 0
+81    freq[np.isnan(freq)] = 0
+82    imfsall = imfs.copy()
+83    imfsall[np.isnan(imfsall)] = 0
+84    imfsall[freq > .3] = 0
+85    imfsall *= freq**.5
+86    ynew = np.sum(imfsall, axis=0)
+87    new_spe.y = ynew
+88    new_spe.y = new_spe.subtract_moving_minimum(movmin).normalize().y  # type: ignore
+89    new_spe.y = new_spe.y * old_spe.y.max() + old_spe.y.min()
+
+ + +

Hilbert-Huang based sharpening.

+ +

In order to reduce the overshooting, moving minimum is subtracted from the result

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • movmin: optional. Default is 100 +Window size for moving minimum
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + hht_sharpening_chain( old_spe: Spectrum, new_spe: Spectrum, /, movmin: List[Annotated[int, Gt(gt=0)]] = [150, 50]): + + + +
+ +
 92@add_spectrum_filter
+ 93@validate_call(config=dict(arbitrary_types_allowed=True))
+ 94def hht_sharpening_chain(old_spe: Spectrum,
+ 95                         new_spe: Spectrum, /,
+ 96                         movmin: List[PositiveInt] = [150, 50]
+ 97                         ):
+ 98    """
+ 99    Hilbert-Huang based chain sharpening.
+100
+101    Sequence of Hilbert-Huang sharpening procedures are performed.
+102
+103    Args:
+104        old_spe: internal use only
+105        new_spe: internal use only
+106        movmin: List[int], optional. Default is [150, 50]
+107            The numer of values in the list defines how many iterations
+108            of HHT_sharpening will be performed and the values define
+109            the moving minimum window sizes for the corresponding operations.
+110
+111    Returns: modified Spectrum
+112    """
+113    spe = old_spe
+114    for mm in movmin:
+115        spe = spe.hht_sharpening(movmin=mm)  # type: ignore
+116    new_spe.y = spe.y
+
+ + +

Hilbert-Huang based chain sharpening.

+ +

Sequence of Hilbert-Huang sharpening procedures are performed.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • movmin: List[int], optional. Default is [150, 50] +The numer of values in the list defines how many iterations +of HHT_sharpening will be performed and the values define +the moving minimum window sizes for the corresponding operations.
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + convolve( old_spe: Spectrum, new_spe: Spectrum, /, lineshape: Union[Callable[[Union[float, numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]]]], float], numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]], Literal['gaussian', 'lorentzian', 'voigt', 'pvoigt', 'moffat', 'pearson4', 'pearson7']], **kwargs): + + + +
+ +
16@add_spectrum_filter
+17@validate_call(config=dict(arbitrary_types_allowed=True))
+18def convolve(
+19        old_spe: Spectrum,
+20        new_spe: Spectrum, /,
+21        lineshape: Union[Callable[[Union[float, NDArray]], float],
+22                         npt.NDArray,
+23                         Literal[
+24                              'gaussian', 'lorentzian',
+25                              'voigt', 'pvoigt', 'moffat',
+26                              'pearson4', 'pearson7'
+27                              ]],
+28        **kwargs):
+29    """
+30    Convole spectrum with arbitrary lineshape.
+31
+32    Args:
+33        old_spe: internal use only
+34        new_spe: internal use only
+35        lineshape:callable, `str` or `np.ndarray`.
+36             If callable: should have a single positional argument `x`, e.g.
+37            `lambda x: np.exp((x/5)**2)`.
+38            If predefined peak profile: can be `gaussian`, `lorentzian`, `voigt`,
+39            `pvoigt`, `moffat` or `pearson4`.
+40            If `np.ndarray`: lineshape in samples.
+41        **kwargs:
+42            Additional kwargs will be passed to lineshape function.
+43
+44    Returns: modified Spectrum
+45    """
+46
+47    if isinstance(lineshape, np.ndarray):
+48        new_spe.y = signal.convolve(old_spe.y, lineshape, mode='same')
+49    else:
+50        if callable(lineshape):
+51            shape_fun = lineshape
+52        else:
+53            shape_fun = getattr(lmfit.lineshapes, lineshape)
+54
+55        leny = len(old_spe.y)
+56        x = np.arange(-(leny-1)//2, (leny+1)//2, dtype=float)
+57        shape_val = shape_fun(x, **kwargs)
+58        new_spe.y = signal.convolve(old_spe.y, shape_val, mode='same')
+
+ + +

Convole spectrum with arbitrary lineshape.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • lineshape: callable, str or np.ndarray. + If callable: should have a single positional argument x, e.g. +lambda x: np.exp((x/5)**2). +If predefined peak profile: can be gaussian, lorentzian, voigt, +pvoigt, moffat or pearson4. +If np.ndarray: lineshape in samples.
  • +
  • **kwargs: Additional kwargs will be passed to lineshape function.
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + moving_average( old_spe: Spectrum, new_spe: Spectrum, /, window_size: typing.Annotated[int, Gt(gt=0)] = 10): + + + +
+ +
11@add_spectrum_filter
+12@validate_call(config=dict(arbitrary_types_allowed=True))
+13def moving_average(old_spe: Spectrum,
+14                   new_spe: Spectrum, /,
+15                   window_size: PositiveInt = 10):
+16    """
+17    Moving average filter.
+18
+19    Args:
+20        old_spe: internal use only
+21        new_spe: internal use only
+22        window_size:
+23            `int`, optional, default is `10`.
+24
+25    Returns: modified Spectrum
+26    """
+27    y = [np.average(old_spe.y[i:min(i + window_size, len(old_spe.y))])
+28         for i in range(len(old_spe.y))]
+29    new_spe.y = np.array(y)
+
+ + +

Moving average filter.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • window_size: int, optional, default is 10.
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + moving_average_convolve( old_spe: Spectrum, new_spe: Spectrum, /, window_size: typing.Annotated[int, Gt(gt=0)] = 10): + + + +
+ +
32@add_spectrum_filter
+33@validate_call(config=dict(arbitrary_types_allowed=True))
+34def moving_average_convolve(old_spe: Spectrum,
+35                            new_spe: Spectrum, /,
+36                            window_size: PositiveInt = 10):
+37    """
+38    Moving average filter.
+39
+40    Args:
+41        old_spe: internal use only
+42        new_spe: internal use only
+43        window_size:
+44            `int`, optional, default is `10`.
+45
+46    Returns: modified Spectrum
+47    """
+48    new_spe.y = signal.convolve(old_spe.y, np.ones(window_size)/window_size, mode='same')
+
+ + +

Moving average filter.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • window_size: int, optional, default is 10.
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ +
+
@add_spectrum_method
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + resample_NUDFT( spe: Spectrum, /, x_range: Tuple[float, float] = (0, 4000), xnew_bins: typing.Annotated[int, Gt(gt=0)] = 100, window: Union[Callable, Tuple[Any, ...], Literal['barthann', 'bartlett', 'blackman', 'blackmanharris', 'bohman', 'boxcar', 'chebwin', 'cosine', 'dpss', 'exponential', 'flattop', 'gaussian', 'general_cosine', 'general_gaussian', 'general_hamming', 'hamming', 'hann', 'kaiser', 'nuttall', 'parzen', 'taylor', 'triang', 'tukey'], NoneType] = None, cumulative: bool = False): + + + +
+ +
16@add_spectrum_method
+17@validate_call(config=dict(arbitrary_types_allowed=True))
+18def resample_NUDFT(spe: Spectrum, /,
+19                   x_range: Tuple[float, float] = (0, 4000),
+20                   xnew_bins: PositiveInt = 100,
+21                   window: Optional[Union[Callable,
+22                                          Tuple[Any, ...],  # e.g. ('gaussian', sigma)
+23                                          Literal['barthann', 'bartlett', 'blackman', 'blackmanharris',
+24                                                  'bohman', 'boxcar', 'chebwin', 'cosine', 'dpss',
+25                                                  'exponential', 'flattop', 'gaussian', 'general_cosine',
+26                                                  'general_gaussian', 'general_hamming', 'hamming', 'hann',
+27                                                  'kaiser', 'nuttall', 'parzen', 'taylor', 'triang', 'tukey']
+28                                          ]] = None,
+29                   cumulative: bool = False):
+30    """
+31    Resample the spectrum using Non-uniform discrete fourier transform.
+32
+33    The x-axis of the result will be uniform. The corresponding y-values
+34    will be calculated with NUDFT and inverse FFT.
+35
+36    Args:
+37        spe: internal use only
+38        x_range: optional. Defaults to (0, 4000).
+39            The x_range of the new spectrum.
+40        xnew_bins: optional. Defaults to 100.
+41            Number of bins of the new spectrum
+42        window: optional, Defaults to None.
+43            The window to be used for lowpass filter. If None 'blackmanharris' is used.
+44            If no low-pass filter is required, one can use `window=lambda x: [1]*len(x)`.
+45        cumulative: optional. Defaults to False.
+46            If True, the resultant spectrum will be cumulative and normalized
+47            (in analogy with CDF).
+48
+49    Returns:
+50        (x_values, y_values)
+51    """
+52
+53    x_new = np.linspace(x_range[0], x_range[1], xnew_bins, endpoint=False)
+54    x = spe.x
+55    y = spe.y
+56    x = np.array(x)
+57    x_range = (np.min(x_range), np.max(x_range))
+58    y = y[(x >= x_range[0]) & (x < x_range[1])]
+59    x = x[(x >= x_range[0]) & (x < x_range[1])]
+60
+61    w = (x-x_range[0])/(x_range[1]-x_range[0])*np.pi*2
+62    x -= x_range[0]
+63
+64    k = np.arange(xnew_bins)
+65
+66    Y_new = np.sum([yi*np.exp(-1j*wi*k) for yi, wi in zip(y, w)], axis=0)
+67
+68    if window is None:
+69        window = 'blackmanharris'
+70
+71    if hasattr(window, '__call__'):
+72        h = (window(len(Y_new)*2))[len(Y_new):]  # type: ignore
+73    else:
+74        h = signal.windows.get_window(window, len(Y_new)*2)[len(Y_new):]
+75    Y_new *= h
+76
+77    y_new = fft.irfft(Y_new, n=xnew_bins)
+78    if cumulative:
+79        y_new = np.cumsum(y_new)
+80        y_new /= y_new[-1]
+81    return x_new, y_new
+
+ + +

Resample the spectrum using Non-uniform discrete fourier transform.

+ +

The x-axis of the result will be uniform. The corresponding y-values +will be calculated with NUDFT and inverse FFT.

+ +
Arguments:
+ +
    +
  • spe: internal use only
  • +
  • x_range: optional. Defaults to (0, 4000). +The x_range of the new spectrum.
  • +
  • xnew_bins: optional. Defaults to 100. +Number of bins of the new spectrum
  • +
  • window: optional, Defaults to None. +The window to be used for lowpass filter. If None 'blackmanharris' is used. +If no low-pass filter is required, one can use window=lambda x: [1]*len(x).
  • +
  • cumulative: optional. Defaults to False. +If True, the resultant spectrum will be cumulative and normalized +(in analogy with CDF).
  • +
+ +
Returns:
+ +
+

(x_values, y_values)

+
+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + resample_NUDFT_filter( old_spe: Spectrum, new_spe: Spectrum, /, x_range: Tuple[float, float] = (0, 4000), xnew_bins: typing.Annotated[int, Gt(gt=0)] = 100, window=None, cumulative: bool = False): + + + +
+ +
 84@add_spectrum_filter
+ 85@validate_call(config=dict(arbitrary_types_allowed=True))
+ 86def resample_NUDFT_filter(old_spe: Spectrum,
+ 87                          new_spe: Spectrum, /,
+ 88                          x_range: Tuple[float, float] = (0, 4000),
+ 89                          xnew_bins: PositiveInt = 100,
+ 90                          window=None,
+ 91                          cumulative: bool = False):
+ 92    """
+ 93    Resample the spectrum using Non-uniform discrete fourier transform.
+ 94
+ 95    The x-axis of the result will be uniform. The corresponding y-values
+ 96    will be calculated with NUDFT and inverse FFT.
+ 97
+ 98    Args:
+ 99        old_spe: internal use only
+100        new_spe: internal use only
+101        x_range: optional. Defaults to (0, 4000).
+102            The x_range of the new spectrum.
+103        xnew_bins: optional. Defaults to 100.
+104            Number of bins of the new spectrum
+105        window: optional, Defaults to None.
+106            The window to be used for lowpass filter. If None 'blackmanharris' is used.
+107            If no low-pass filter is required, one can use `window=lambda x: [1]*len(x)`.
+108        cumulative: optional. Defaults to False.
+109            If True, the resultant spectrum will be cumulative and normalized
+110            (in analogy with CDF).
+111
+112    Returns: modified Spectrum
+113    """
+114    new_spe.x, new_spe.y = resample_NUDFT(old_spe,
+115                                          x_range=x_range,
+116                                          xnew_bins=xnew_bins,
+117                                          window=window,
+118                                          cumulative=cumulative)
+
+ + +

Resample the spectrum using Non-uniform discrete fourier transform.

+ +

The x-axis of the result will be uniform. The corresponding y-values +will be calculated with NUDFT and inverse FFT.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • x_range: optional. Defaults to (0, 4000). +The x_range of the new spectrum.
  • +
  • xnew_bins: optional. Defaults to 100. +Number of bins of the new spectrum
  • +
  • window: optional, Defaults to None. +The window to be used for lowpass filter. If None 'blackmanharris' is used. +If no low-pass filter is required, one can use window=lambda x: [1]*len(x).
  • +
  • cumulative: optional. Defaults to False. +If True, the resultant spectrum will be cumulative and normalized +(in analogy with CDF).
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ +
+
@add_spectrum_method
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + resample_spline( spe: Spectrum, /, x_range: Tuple[float, float] = (0, 4000), xnew_bins: typing.Annotated[int, Gt(gt=0)] = 100, spline: Literal['pchip', 'akima', 'makima', 'cubic_spline'] = 'pchip', interp_kw_args: Optional[Dict] = None, cumulative: bool = False): + + + +
+ +
121@add_spectrum_method
+122@validate_call(config=dict(arbitrary_types_allowed=True))
+123def resample_spline(spe: Spectrum, /,
+124                    x_range: Tuple[float, float] = (0, 4000),
+125                    xnew_bins: PositiveInt = 100,
+126                    spline: Literal['pchip', 'akima', 'makima', 'cubic_spline'] = 'pchip',
+127                    interp_kw_args: Optional[Dict] = None,
+128                    cumulative: bool = False):
+129    """
+130    Resample the spectrum using spline interpolation.
+131
+132    The x-axis of the result will be uniform. The corresponding y-values
+133    will be calculated with spline interpolation.
+134
+135    Args:
+136        spe: internal use only
+137        x_range: optional. Defaults to (0, 4000).
+138            The x_range of the new spectrum.
+139        xnew_bins: optional. Defaults to 100.
+140            Number of bins of the new spectrum
+141        spline: optional, Defaults to 'pchip'.
+142            Name of the spline funcion to be used.
+143        cumulative: optional. Defaults to False.
+144            If True, the resultant spectrum will be cumulative and normalized
+145            (in analogy with CDF).
+146
+147    Returns:
+148        (x_values, y_values)
+149    """
+150
+151    kw_args: Dict[str, Any] = {}
+152    if spline == 'pchip':
+153        spline_fn = PchipInterpolator
+154        kw_args['extrapolate'] = False
+155    elif spline == 'akima':
+156        spline_fn = Akima1DInterpolator
+157    elif spline == 'makima':
+158        spline_fn = Akima1DInterpolator
+159        kw_args['method'] = 'makima'
+160    elif spline == 'cubic_spline':
+161        spline_fn = CubicSpline
+162        kw_args['bc_type'] = 'natural'
+163        kw_args['extrapolate'] = False
+164
+165    if interp_kw_args is not None:
+166        kw_args.update(interp_kw_args)
+167
+168    x_new = np.linspace(x_range[0], x_range[1], xnew_bins, endpoint=False)
+169    y_new = spline_fn(spe.x, spe.y, **kw_args)(x_new)
+170
+171    y_new[np.isnan(y_new)] = 0
+172    if cumulative:
+173        y_new = np.cumsum(y_new)
+174        y_new /= y_new[-1]
+175
+176    return x_new, y_new
+
+ + +

Resample the spectrum using spline interpolation.

+ +

The x-axis of the result will be uniform. The corresponding y-values +will be calculated with spline interpolation.

+ +
Arguments:
+ +
    +
  • spe: internal use only
  • +
  • x_range: optional. Defaults to (0, 4000). +The x_range of the new spectrum.
  • +
  • xnew_bins: optional. Defaults to 100. +Number of bins of the new spectrum
  • +
  • spline: optional, Defaults to 'pchip'. +Name of the spline funcion to be used.
  • +
  • cumulative: optional. Defaults to False. +If True, the resultant spectrum will be cumulative and normalized +(in analogy with CDF).
  • +
+ +
Returns:
+ +
+

(x_values, y_values)

+
+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + resample_spline_filter( old_spe: Spectrum, new_spe: Spectrum, /, x_range: Tuple[float, float] = (0, 4000), xnew_bins: typing.Annotated[int, Gt(gt=0)] = 100, spline: Literal['pchip', 'akima', 'makima', 'cubic_spline'] = 'pchip', interp_kw_args: Optional[Dict] = None, cumulative: bool = False): + + + +
+ +
179@add_spectrum_filter
+180@validate_call(config=dict(arbitrary_types_allowed=True))
+181def resample_spline_filter(old_spe: Spectrum,
+182                           new_spe: Spectrum, /,
+183                           x_range: Tuple[float, float] = (0, 4000),
+184                           xnew_bins: PositiveInt = 100,
+185                           spline: Literal['pchip', 'akima', 'makima', 'cubic_spline'] = 'pchip',
+186                           interp_kw_args: Optional[Dict] = None,
+187                           cumulative: bool = False):
+188    """
+189    Resample the spectrum using spline interpolation.
+190
+191    The x-axis of the result will be uniform. The corresponding y-values
+192    will be calculated with spline interpolation.
+193
+194    Args:
+195        old_spe: internal use only
+196        new_spe: internal use only
+197        x_range: optional. Defaults to (0, 4000).
+198            The x_range of the new spectrum.
+199        xnew_bins: optional. Defaults to 100.
+200            Number of bins of the new spectrum
+201        spline: optional, Defaults to 'pchip'.
+202            Name of the spline funcion to be used.
+203        cumulative: optional. Defaults to False.
+204            If True, the resultant spectrum will be cumulative and normalized
+205            (in analogy with CDF).
+206
+207    Returns: modified Spectrum
+208    """
+209    new_spe.x, new_spe.y = resample_spline(old_spe,
+210                                           x_range=x_range,
+211                                           xnew_bins=xnew_bins,
+212                                           spline=spline,
+213                                           interp_kw_args=interp_kw_args,
+214                                           cumulative=cumulative)
+
+ + +

Resample the spectrum using spline interpolation.

+ +

The x-axis of the result will be uniform. The corresponding y-values +will be calculated with spline interpolation.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • x_range: optional. Defaults to (0, 4000). +The x_range of the new spectrum.
  • +
  • xnew_bins: optional. Defaults to 100. +Number of bins of the new spectrum
  • +
  • spline: optional, Defaults to 'pchip'. +Name of the spline funcion to be used.
  • +
  • cumulative: optional. Defaults to False. +If True, the resultant spectrum will be cumulative and normalized +(in analogy with CDF).
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + add_gaussian_noise_drift( old_spe: Spectrum, new_spe: Spectrum, /, sigma: typing.Annotated[float, Gt(gt=0)], coef: typing.Annotated[float, None, Interval(gt=None, ge=0, lt=None, le=1), None, None], rng_seed=None): + + + +
+ +
36@add_spectrum_filter
+37@validate_call(config=dict(arbitrary_types_allowed=True))
+38def add_gaussian_noise_drift(
+39        old_spe: Spectrum,
+40        new_spe: Spectrum, /,
+41        sigma: PositiveFloat,
+42        coef: confloat(ge=0, le=1),  # type: ignore [valid-type]
+43        # validation for rng_seed is removed because
+44        # it makes in-place modification impossible
+45        rng_seed=None):
+46    r"""
+47    Add cumulative gaussian noise to the spectrum.
+48
+49    Exponential-moving-average-like gaussian noise is added
+50    to each sample. The goal is to mimic the low-frequency noise
+51    (or random substructures in spectra).
+52    The additive noise is
+53    .. math::
+54        a_i = coef*\sum_{j=0}^{i-1}g_j + g_i,
+55    where
+56    .. math::
+57        g_i = \mathcal{N}(0, 1+\frac{coef}{\sqrt 2}).
+58    This way drifting is possible while keeping the
+59    .. math::
+60        \sigma(\Delta(a)) \approx 1.
+61
+62    Args:
+63        old_spe: internal use only
+64        new_spe: internal use only
+65        sigma:
+66            Sigma of the gaussian noise.
+67        coef:
+68            `float` in `[0, 1]`, drifting coefficient. If `coef == 0`,
+69            the result is identical to `add_gaussian_noise()`.
+70        rng_seed:
+71            `int` or rng state, optional. Seed for the random generator.
+72            If a state is provided, it is updated in-place.
+73
+74    Returns: modified Spectrum
+75    """
+76    new_spe.y = generate_add_gaussian_noise_drift(old_spe.y,
+77                                                  sigma=sigma,
+78                                                  coef=coef,
+79                                                  rng_seed=rng_seed)
+
+ + +

Add cumulative gaussian noise to the spectrum.

+ +

Exponential-moving-average-like gaussian noise is added +to each sample. The goal is to mimic the low-frequency noise +(or random substructures in spectra). +The additive noise is +$$a_i = coef*\sum_{j=0}^{i-1}g_j + g_i,$$

+ +

where +$$g_i = \mathcal{N}(0, 1+\frac{coef}{\sqrt 2}).$$

+ +

This way drifting is possible while keeping the +$$\sigma(\Delta(a)) \approx 1.$$

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • sigma: Sigma of the gaussian noise.
  • +
  • coef: float in [0, 1], drifting coefficient. If coef == 0, +the result is identical to add_gaussian_noise().
  • +
  • rng_seed: int or rng state, optional. Seed for the random generator. +If a state is provided, it is updated in-place.
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ +
+
@add_spectrum_method
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + spike_indices( spe: Spectrum, /, n_sigma: typing.Annotated[float, Gt(gt=0)]) -> numpy.ndarray[typing.Any, numpy.dtype[+_ScalarType_co]]: + + + +
+ +
12@add_spectrum_method
+13@validate_call(config=dict(arbitrary_types_allowed=True))
+14def spike_indices(spe: Spectrum, /, n_sigma: PositiveFloat) -> NDArray:
+15    """
+16    Find spikes in spectrum
+17
+18    Single-bin spikes are located using left and right successive
+19    differences. The threshold is based on the standart deviation
+20    of the metric which makes this algorithm less optimal.
+21
+22    Args:
+23        spe: internal use only
+24        n_sigma: Threshold value should be `n_sigma` times the standart
+25          deviation of the metric.
+26
+27    Returns: List of spike indices
+28    """
+29    yi = spe.y[1:-1]
+30    yi_1 = spe.y[:-2]
+31    yi1 = spe.y[2:]
+32    y_merit = np.abs(2*yi-yi_1-yi1) - np.abs(yi1-yi_1)
+33    spike_idx = y_merit > n_sigma * y_merit.std()
+34    spike_idx = np.concatenate(([False], spike_idx, [False]))
+35    return spike_idx
+
+ + +

Find spikes in spectrum

+ +

Single-bin spikes are located using left and right successive +differences. The threshold is based on the standart deviation +of the metric which makes this algorithm less optimal.

+ +
Arguments:
+ +
    +
  • spe: internal use only
  • +
  • n_sigma: Threshold value should be n_sigma times the standart +deviation of the metric.
  • +
+ +

Returns: List of spike indices

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + drop_spikes( old_spe: Spectrum, new_spe: Spectrum, /, n_sigma: typing.Annotated[float, Gt(gt=0)] = 10): + + + +
+ +
38@add_spectrum_filter
+39@validate_call(config=dict(arbitrary_types_allowed=True))
+40def drop_spikes(old_spe: Spectrum,
+41                new_spe: Spectrum, /,
+42                n_sigma: PositiveFloat = 10):
+43    """
+44    Removes single-bin spikes.
+45
+46    Remove x, y pairs recognised as spikes using left and right
+47    successive differences and standard-deviation-based threshold.
+48
+49    Args:
+50        old_spe: internal use only
+51        new_spe: internal use only
+52        n_sigma: optional, default is `10`.
+53            Threshold is `n_sigma` times the standard deviation.
+54
+55    Returns: modified Spectrum
+56    """
+57    use_idx = ~spike_indices(old_spe, n_sigma=n_sigma)
+58    new_spe.x = old_spe.x[use_idx]
+59    new_spe.y = old_spe.y[use_idx]
+
+ + +

Removes single-bin spikes.

+ +

Remove x, y pairs recognised as spikes using left and right +successive differences and standard-deviation-based threshold.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • n_sigma: optional, default is 10. +Threshold is n_sigma times the standard deviation.
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + recover_spikes( old_spe: Spectrum, new_spe: Spectrum, /, n_sigma: typing.Annotated[float, Gt(gt=0)] = 10): + + + +
+ +
62@add_spectrum_filter
+63@validate_call(config=dict(arbitrary_types_allowed=True))
+64def recover_spikes(old_spe: Spectrum,
+65                   new_spe: Spectrum, /,
+66                   n_sigma: PositiveFloat = 10):
+67    """
+68    Recover single-bin spikes.
+69
+70    Recover x, y pairs recognised as spikes using left and right
+71    successive differences and standard-deviation-based threshold
+72    and linear interpolation.
+73
+74    Args:
+75        old_spe: internal use only
+76        new_spe: internal use only
+77        n_sigma: optional, default is `10`.
+78            Threshold is `n_sigma` times the standard deviation.
+79
+80    Returns: modified Spectrum
+81    """
+82    use_idx = ~spike_indices(old_spe, n_sigma=n_sigma)
+83    new_spe.y = np.interp(old_spe.x, old_spe.x[use_idx], old_spe.y[use_idx])
+
+ + +

Recover single-bin spikes.

+ +

Recover x, y pairs recognised as spikes using left and right +successive differences and standard-deviation-based threshold +and linear interpolation.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • n_sigma: optional, default is 10. +Threshold is n_sigma times the standard deviation.
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + get_spikes( old_spe: Spectrum, new_spe: Spectrum, /, n_sigma: typing.Annotated[float, Gt(gt=0)] = 10): + + + +
+ +
 86@add_spectrum_filter
+ 87@validate_call(config=dict(arbitrary_types_allowed=True))
+ 88def get_spikes(old_spe: Spectrum,
+ 89               new_spe: Spectrum, /,
+ 90               n_sigma: PositiveFloat = 10):
+ 91    """
+ 92    Get single-bin spikes only.
+ 93
+ 94    Get x, y pairs recognised as spikes using left and right
+ 95    successive differences and standard-deviation-based threshold
+ 96    and linear interpolation.
+ 97
+ 98    Args:
+ 99        old_spe: internal use only
+100        new_spe: internal use only
+101        n_sigma: optional, default is `10`.
+102            Threshold is `n_sigma` times the standard deviation.
+103
+104    Returns: modified Spectrum
+105    """
+106    spike_idx = spike_indices(old_spe, n_sigma=n_sigma)
+107    new_spe.x = old_spe.x[spike_idx]
+108    new_spe.y = old_spe.y[spike_idx]
+
+ + +

Get single-bin spikes only.

+ +

Get x, y pairs recognised as spikes using left and right +successive differences and standard-deviation-based threshold +and linear interpolation.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • n_sigma: optional, default is 10. +Threshold is n_sigma times the standard deviation.
  • +
+ +

Returns: modified Spectrum

+
+ + +
+
+ +
+
@add_spectrum_method
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + fit_peak_positions( spe: Spectrum, /, *, mov_min=40, center_err_threshold=0.5, find_peaks_kw={}, fit_peaks_kw={}) -> Dict[float, float]: + + + +
+ +
14@add_spectrum_method
+15@validate_call(config=dict(arbitrary_types_allowed=True))
+16def fit_peak_positions(spe: Spectrum, /, *,
+17                       mov_min=40,
+18                       center_err_threshold=.5,
+19                       find_peaks_kw={},
+20                       fit_peaks_kw={},
+21                       ) -> Dict[float, float]:
+22    """
+23    Calculate peak positions and amplitudes.
+24
+25    Sequence of multiple processings:
+26    - `subtract_moving_minimum`
+27    - `find_peak_multipeak`
+28    - filter peaks with x-location better than threshold
+29
+30    Args:
+31        spe: internal use only
+32        mov_min: optional. Defaults to 40
+33            subtract moving_minimum with the specified window.
+34        center_err_threshold: optional. Defaults to 0.5.
+35            threshold for centroid standard deviation. Only peaks
+36            with better uncertainty will be returned.
+37
+38        find_peaks_kw: optional
+39            keyword arguments to be used with find_peak_multipeak
+40        fit_peaks_kw: optional
+41            keyword arguments to be used with fit_peaks_multipeak
+42
+43    Returns:
+44        Dict[float, float]: {positions: amplitudes}
+45    """
+46    ss = spe.subtract_moving_minimum(mov_min)  # type: ignore
+47    find_kw = dict(sharpening=None)
+48    find_kw.update(find_peaks_kw)
+49    cand = ss.find_peak_multipeak(**find_kw)
+50
+51    fit_kw = dict(profile='Gaussian')
+52    fit_kw.update(fit_peaks_kw)
+53    fit_res = spe.fit_peak_multimodel(candidates=cand, **fit_kw)  # type: ignore
+54
+55    pos, amp = fit_res.center_amplitude(threshold=center_err_threshold)
+56
+57    return dict(zip(pos, amp))
+
+ + +

Calculate peak positions and amplitudes.

+ +

Sequence of multiple processings:

+ + + +
Arguments:
+ +
    +
  • spe: internal use only
  • +
  • mov_min: optional. Defaults to 40 +subtract moving_minimum with the specified window.
  • +
  • center_err_threshold: optional. Defaults to 0.5. +threshold for centroid standard deviation. Only peaks +with better uncertainty will be returned.
  • +
  • find_peaks_kw: optional +keyword arguments to be used with find_peak_multipeak
  • +
  • fit_peaks_kw: optional +keyword arguments to be used with fit_peaks_multipeak
  • +
+ +
Returns:
+ +
+

Dict[float, float]: {positions: amplitudes}

+
+
+ + +
+
+ +
+
@add_spectrum_method
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + bayesian_gaussian_mixture( spe: Spectrum, /, n_samples: typing.Annotated[int, Gt(gt=0)] = 5000, n_components: typing.Annotated[int, Gt(gt=0)] = 50, max_iter: typing.Annotated[int, Gt(gt=0)] = 100, moving_minimum_window: Optional[Annotated[int, Gt(gt=0)]] = None, random_state=None, trim_range: Optional[Tuple[float, float]] = None) -> sklearn.mixture._bayesian_mixture.BayesianGaussianMixture: + + + +
+ +
12@add_spectrum_method
+13@validate_call(config=dict(arbitrary_types_allowed=True))
+14def bayesian_gaussian_mixture(spe: Spectrum, /,
+15                              n_samples: PositiveInt = 5000,
+16                              n_components: PositiveInt = 50,
+17                              max_iter: PositiveInt = 100,
+18                              moving_minimum_window: Union[PositiveInt, None] = None,
+19                              random_state=None,
+20                              trim_range: Optional[Tuple[float, float]] = None,
+21                              ) -> BayesianGaussianMixture:
+22    """
+23    Decompose the spectrum to Bayesian Gaussian Mixture
+24
+25    Args:
+26        spe: internal use only
+27        n_samples: optional. Defaults to 5000.
+28            Resampled dataset size
+29        n_components: optional. Defaults to 50.
+30            Number of expected gaussian components
+31        max_iter: optional. Defaults to 100.
+32            Maximal number of iterations.
+33        moving_minimum_window: optional. Defaults to None.
+34            If None no moving minimum is subtracted, otherwise as specified.
+35        random_state: optional. Defaults to None.
+36            Random generator seed to be used.
+37        trim_range: optional. Defaults to None:
+38            If None ignore trimming, otherwise trim range is in x-axis values.
+39
+40    Returns:
+41        BayesianGaussianMixture: Fitted Bayesian Gaussian Mixture
+42    """
+43    if moving_minimum_window is not None:
+44        spe = spe.subtract_moving_minimum(moving_minimum_window)  # type: ignore
+45    samp = spe.gen_samples(size=n_samples, trim_range=trim_range)
+46    X = [[i] for i in samp]
+47    bgm = BayesianGaussianMixture(n_components=n_components,
+48                                  random_state=random_state,
+49                                  max_iter=max_iter
+50                                  ).fit(X)
+51    return bgm
+
+ + +

Decompose the spectrum to Bayesian Gaussian Mixture

+ +
Arguments:
+ +
    +
  • spe: internal use only
  • +
  • n_samples: optional. Defaults to 5000. +Resampled dataset size
  • +
  • n_components: optional. Defaults to 50. +Number of expected gaussian components
  • +
  • max_iter: optional. Defaults to 100. +Maximal number of iterations.
  • +
  • moving_minimum_window: optional. Defaults to None. +If None no moving minimum is subtracted, otherwise as specified.
  • +
  • random_state: optional. Defaults to None. +Random generator seed to be used.
  • +
  • trim_range: optional. Defaults to None: +If None ignore trimming, otherwise trim range is in x-axis values.
  • +
+ +
Returns:
+ +
+

BayesianGaussianMixture: Fitted Bayesian Gaussian Mixture

+
+
+ + +
+
+ +
+
@add_spectrum_method
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + find_peak_multipeak( spe: Spectrum, /, prominence: Optional[Annotated[float, Ge(ge=0)]] = None, wlen: Optional[Annotated[int, Ge(ge=0)]] = None, width: Union[int, Tuple[int, int], NoneType] = None, hht_chain: Optional[List[Annotated[int, Gt(gt=0)]]] = None, bgm_kwargs={}, sharpening: Optional[Literal['hht']] = None, strategy: Literal['topo', 'bayesian_gaussian_mixture', 'bgm', 'cwt'] = 'topo') -> ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel: + + + +
+ +
 41@add_spectrum_method
+ 42@validate_call(config=dict(arbitrary_types_allowed=True))
+ 43def find_peak_multipeak(
+ 44        spe: Spectrum, /,
+ 45        prominence: Union[NonNegativeFloat, None] = None,
+ 46        wlen: Union[NonNegativeInt, None] = None,
+ 47        width: Union[int, Tuple[int, int], None] = None,
+ 48        hht_chain: Union[List[PositiveInt], None] = None,
+ 49        bgm_kwargs={},
+ 50        sharpening: Union[Literal['hht'], None] = None,
+ 51        strategy: Literal['topo', 'bayesian_gaussian_mixture', 'bgm', 'cwt'] = 'topo'
+ 52        ) -> ListPeakCandidateMultiModel:
+ 53    """
+ 54    Find groups of peaks in spectrum.
+ 55
+ 56    Args:
+ 57        spe: internal use only
+ 58        prominence: Optional. Defaults to None
+ 59            If None the prominence value will be `spe.y_nose`. Reasonable value for
+ 60            promience is `const * spe.y_noise_MAD`.
+ 61        wlen: optional. Defaults to None.
+ 62            wlen value used in `scipy.signal.find_peaks`. If wlen is None, 200 will be used.
+ 63        width: optional. Defaults to None.
+ 64            width value used in `scipy.signal.find_peaks`. If width is None, 2 will be used.
+ 65        hht_chain: optional. Defaults to None.
+ 66            List of hht_chain window sizes. If None, no hht sharpening is performed.
+ 67        bgm_kwargs: kwargs for bayesian_gaussian_mixture
+ 68        sharpening 'hht' or None. Defaults to None.
+ 69            If 'hht' hht sharpening will be performed before finding peaks.
+ 70        strategy: optional. Defauts to 'topo'.
+ 71            Peakfinding method
+ 72
+ 73    Returns:
+ 74        ListPeakCandidateMultiModel: Located peak groups
+ 75    """
+ 76
+ 77    if prominence is None:
+ 78        prominence = spe.y_noise
+ 79    if not wlen:
+ 80        wlen = 200
+ 81    if width is None:
+ 82        width = 2
+ 83
+ 84    if sharpening == 'hht':
+ 85        if hht_chain is None:
+ 86            hht_chain = [20]
+ 87        sharp_spe = spe.hht_sharpening_chain(movmin=hht_chain)  # type: ignore
+ 88    else:
+ 89        sharp_spe = spe
+ 90
+ 91    x_arr = sharp_spe.x
+ 92    y_arr = sharp_spe.y
+ 93
+ 94    def interpolate(x):
+ 95        x1 = int(x)
+ 96        x2 = x1 + 1
+ 97        y1 = x_arr[x1]
+ 98        y2 = x_arr[x2]
+ 99        return (y2-y1)/(x2-x1)*(x-x1)+y1
+100
+101    boundaries = peak_boundaries(spe, prominence=prominence, width=width, wlen=wlen)
+102    boundaries = [(li, ri) for li, ri in boundaries if (ri-li) > 4]
+103
+104    peaks, props = signal.find_peaks(y_arr,
+105                                     prominence=prominence,
+106                                     width=width,
+107                                     wlen=wlen)
+108    peak_groups = list()
+109
+110    if strategy in {'bgm', 'bayesian_gaussian_mixture'}:
+111        bgm = sharp_spe.bayesian_gaussian_mixture(**bgm_kwargs)
+112
+113        bgm_peaks = [[mean[0], np.sqrt(cov[0][0]), weight]
+114                     for mean, cov, weight in
+115                     zip(bgm.means_, bgm.covariances_, bgm.weights_)]
+116        bgm_peaks = sorted(bgm_peaks, key=lambda x: x[2], reverse=True)
+117        integral = np.sum(y_arr)
+118        n_peaks = (np.round(bgm.weights_, 2) > 0).sum()
+119        bgm_peaks = bgm_peaks[:n_peaks]
+120
+121        peak_list = list()
+122        for mean, sigma, weight in bgm_peaks:
+123            peak_list.append(dict(amplitude=weight*integral*2/sigma,
+124                                  position=mean,
+125                                  sigma=sigma,
+126                                  ))
+127        for li, ri in boundaries:
+128            peak_group = list()
+129            for peak in peak_list:
+130                if li < peak['position'] < ri:
+131                    peak_group.append(dict(position=peak['position'],
+132                                           amplitude=peak['amplitude'],
+133                                           sigma=peak['sigma'])
+134                                      )
+135            if peak_group:
+136                peak_groups.append(dict(boundaries=(x_arr[li], x_arr[ri]),
+137                                        peaks=peak_group))
+138    elif strategy == 'cwt':
+139        # TODO: cwt_args tbd
+140        peaks = find_peaks_cwt(spe.y, **bgm_kwargs)
+141        peak_list = list()
+142        for peak_index in peaks:
+143            half_max = spe.y[peak_index] / 2.0
+144            left_index = np.where(spe.y[:peak_index] <= half_max)[0][-1]
+145            right_index = np.where(spe.y[peak_index:] <= half_max)[0][0] + peak_index
+146            fwhm = spe.x[right_index] - spe.x[left_index]
+147            # rough sigma estimation based on fwhm
+148            sqrt2ln2 = 2 * np.sqrt(2 * np.log(2))
+149            # print(spe.x[peak_index], spe.y[peak_index], fwhm / sqrt2ln2 )
+150            peak_list.append(dict(amplitude=spe.y[peak_index],
+151                                  position=spe.x[peak_index],
+152                                  sigma=fwhm / sqrt2ln2,
+153                                  fwhm=fwhm))
+154        for li, ri in boundaries:
+155            peak_group = list()
+156            for peak in peak_list:
+157                if li < peak['position'] < ri:
+158                    peak_group.append(dict(position=peak['position'],
+159                                           amplitude=peak['amplitude'],
+160                                           sigma=peak['sigma']))
+161            if peak_group:
+162                peak_groups.append(dict(boundaries=(x_arr[li], x_arr[ri]),
+163                                        peaks=peak_group))
+164    elif strategy == 'topo':
+165        for li, ri in boundaries:
+166            peak_group = list()
+167            x1 = spe.x[li]
+168            x2 = spe.x[ri]
+169            y1 = spe.y[li]
+170            y2 = spe.y[ri]
+171            slope = (y2-y1)/(x2-x1)
+172            intercept = -slope*x1+y1
+173            for peak_i, peak_pos in enumerate(peaks):
+174                if li < peak_pos < ri:
+175                    pos_maximum = x_arr[peak_pos]
+176                    amplitude = props['prominences'][peak_i]
+177                    lwhm = pos_maximum - interpolate(props['left_ips'][peak_i])
+178                    rwhm = interpolate(props['right_ips'][peak_i]) - pos_maximum
+179                    fwhm = lwhm + rwhm
+180                    sigma = fwhm/2.355
+181                    skew = (rwhm-lwhm)/(rwhm+lwhm)
+182                    peak_group.append(dict(position=pos_maximum,
+183                                           amplitude=amplitude,
+184                                           sigma=sigma,
+185                                           skew=skew)
+186                                      )
+187            if peak_group:
+188                peak_groups.append(dict(base_intercept=intercept,
+189                                        base_slope=slope,
+190                                        boundaries=(x_arr[li], x_arr[ri]),
+191                                        peaks=peak_group))
+192
+193    candidates = ListPeakCandidateMultiModel.model_validate(peak_groups)
+194    return candidates
+
+ + +

Find groups of peaks in spectrum.

+ +
Arguments:
+ +
    +
  • spe: internal use only
  • +
  • prominence: Optional. Defaults to None +If None the prominence value will be spe.y_nose. Reasonable value for +promience is const * spe.y_noise_MAD.
  • +
  • wlen: optional. Defaults to None. +wlen value used in scipy.signal.find_peaks. If wlen is None, 200 will be used.
  • +
  • width: optional. Defaults to None. +width value used in scipy.signal.find_peaks. If width is None, 2 will be used.
  • +
  • hht_chain: optional. Defaults to None. +List of hht_chain window sizes. If None, no hht sharpening is performed.
  • +
  • bgm_kwargs: kwargs for bayesian_gaussian_mixture
  • +
  • sharpening 'hht' or None. Defaults to None. +If 'hht' hht sharpening will be performed before finding peaks.
  • +
  • strategy: optional. Defauts to 'topo'. +Peakfinding method
  • +
+ +
Returns:
+ +
+

ListPeakCandidateMultiModel: Located peak groups

+
+
+ + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + find_peak_multipeak_filter( old_spe: Spectrum, new_spe: Spectrum, /, *args, **kwargs): + + + +
+ +
197@add_spectrum_filter
+198@validate_call(config=dict(arbitrary_types_allowed=True))
+199def find_peak_multipeak_filter(
+200        old_spe: Spectrum,
+201        new_spe: Spectrum, /,
+202        *args, **kwargs):
+203    """
+204    Same as `find_peak_multipeak` but the result is stored as metadata in the returned spectrum.
+205
+206    Args:
+207        old_spe: internal use only
+208        new_spe: internal use only
+209        *args, **kwargs: same as `find_peak_multipeak`
+210    """
+211    res = old_spe.find_peak_multipeak(*args, **kwargs)  # type: ignore
+212    new_spe.result = res.model_dump()
+
+ + +

Same as find_peak_multipeak but the result is stored as metadata in the returned spectrum.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • args, *kwargs: same as find_peak_multipeak
  • +
+
+ + +
+
+ +
+
@add_spectrum_method
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + fit_peak_multimodel( spe, /, *, profile: Union[Literal['Gaussian', 'Lorentzian', 'Moffat', 'Voigt', 'PseudoVoigt', 'Pearson4', 'Pearson7'], List[Literal['Gaussian', 'Lorentzian', 'Moffat', 'Voigt', 'PseudoVoigt', 'Pearson4', 'Pearson7']]], candidates: ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel, no_fit=False, should_break=[False], kwargs_fit={}, vary_baseline: bool = False) -> ramanchada2.misc.types.fit_peaks_result.FitPeaksResult: + + + +
+ +
 85@add_spectrum_method
+ 86@validate_call(config=dict(arbitrary_types_allowed=True))
+ 87def fit_peak_multimodel(spe, /, *,
+ 88                        profile: Union[available_models_type, List[available_models_type]],
+ 89                        candidates: ListPeakCandidateMultiModel,
+ 90                        no_fit=False,
+ 91                        should_break=[False],
+ 92                        kwargs_fit={},
+ 93                        vary_baseline: bool = False,
+ 94                        ) -> FitPeaksResult:
+ 95    """
+ 96    Fit a model based on candidates to the spectrum.
+ 97
+ 98    Args:
+ 99        spe: internal use only
+100        profile: str or List[str]
+101            possible values are: ["""+str(available_models)+"""]
+102        candidates: as provided from find_peak_multipeak
+103        no_fit: optional. Defaults to False.
+104            If true, do not perform a fit. Result will be the inital guess,
+105            based on the data from peak candidates.
+106        should_break: optional. Defaults to [False].
+107            Use mutability of the python list type to be able to externaly
+108            break the minimization procedure.
+109        kwargs_fit: optional
+110            kwargs for fit function
+111        vary_baseline: optional. Defaults to False.
+112            If False baseline will not be a free parameter and its amplitude
+113            will be taken from the peak candidates.
+114
+115    Returns:
+116        FitPeaksResult: groups of fitted peaks
+117    """
+118
+119    def iter_cb(params, iter, resid, *args, **kws):
+120        return should_break[0]
+121    if no_fit:
+122        kwargs_fit = dict(kwargs_fit)
+123        kwargs_fit['max_nfev'] = 1
+124    fit_res = FitPeaksResult()
+125    for group in candidates.root:
+126        mod, par = build_multipeak_model_params(profile=profile, candidates=group)
+127        idx = (group.boundaries[0] < spe.x) & (spe.x < group.boundaries[1])
+128        x = spe.x[idx]
+129        y = spe.y[idx]
+130        for i in range(len(group.peaks)):
+131            par[f'p{i}_center'].set(vary=False)
+132        fr = mod.fit(y, x=x, params=par, iter_cb=iter_cb,  **kwargs_fit)
+133        for i in range(len(group.peaks)):
+134            par[f'p{i}_center'].set(vary=True)
+135        if vary_baseline:
+136            par['bl_slope'].set(vary=True)
+137            par['bl_intercept'].set(vary=True)
+138        fr = mod.fit(y, x=x, params=par, iter_cb=iter_cb, **kwargs_fit)
+139        fit_res.append(fr)
+140    return fit_res
+
+ + + + +
+
+ +
+
@add_spectrum_filter
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + fit_peaks_filter( old_spe: Spectrum, new_spe: Spectrum, /, *args, should_break=[False], kwargs_fit={}, **kwargs): + + + +
+ +
143@add_spectrum_filter
+144@validate_call(config=dict(arbitrary_types_allowed=True))
+145def fit_peaks_filter(
+146        old_spe: Spectrum,
+147        new_spe: Spectrum, /, *args,
+148        should_break=[False],
+149        kwargs_fit={},
+150        **kwargs,
+151        ):
+152    """
+153    Same as `fit_peak_multipeak` but the result is stored as metadata in the returned spectrum.
+154
+155    Args:
+156        old_spe: internal use only
+157        new_spe: internal use only
+158        should_break: same as in fit_peaks_multipeak
+159        *args, **kwargs: same as `fit_peaks_multipeak`
+160    """
+161    cand_groups = ListPeakCandidateMultiModel.model_validate(old_spe.result)
+162    new_spe.result = old_spe.fit_peak_multimodel(*args,  # type: ignore
+163                                                 candidates=cand_groups,
+164                                                 should_break=should_break,
+165                                                 kwargs_fit=kwargs_fit,
+166                                                 **kwargs).dumps()
+
+ + +

Same as fit_peak_multipeak but the result is stored as metadata in the returned spectrum.

+ +
Arguments:
+ +
    +
  • old_spe: internal use only
  • +
  • new_spe: internal use only
  • +
  • should_break: same as in fit_peaks_multipeak
  • +
  • args, *kwargs: same as fit_peaks_multipeak
  • +
+
+ + +
+
+ +
+
@add_spectrum_constructor(set_applied_processing=False)
+
@validate_call
+ + def + from_cache_or_calc( required_steps: ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel, cachefile: Optional[str] = None): + + + +
+ +
15@add_spectrum_constructor(set_applied_processing=False)
+16@validate_call
+17def from_cache_or_calc(required_steps: spe_t.SpeProcessingListModel,
+18                       cachefile: Optional[str] = None):
+19    """
+20    Load spectrum from cache or calculate if needed.
+21
+22    The cache is a nested structure of spectra. All processings applied to
+23    a spectrum result to spectra of the initial one. If part of the requred
+24    processings are available, only the needed steps are calculated and added
+25    to the cache.
+26
+27    Args:
+28        required_steps: List of required steps in the form
+29            [{'proc': str, 'args': List[Any], 'kwargs': Dict[str, Any]}, ...]
+30        cachefile: optional. Defaults to None.
+31            Filename of the cache. If None no cache is used
+32    """
+33    def recall():
+34        if len(required_steps):
+35            last_proc = required_steps.pop()
+36            if last_proc.is_constructor:
+37                spe = Spectrum.apply_creator(last_proc, cachefile_=cachefile)
+38            else:
+39                spe = recur(required_steps=required_steps)
+40                spe._cachefile = cachefile
+41                spe = spe.apply_processing(last_proc)
+42            return spe
+43        else:
+44            raise Exception('no starting point')
+45
+46    def recur(required_steps: spe_t.SpeProcessingListModel):
+47        try:
+48            if cachefile:
+49                spe = get_cache()
+50            else:
+51                spe = recall()
+52        except Exception:
+53            spe = recall()
+54        spe._cachefile = cachefile
+55        return spe
+56
+57    def get_cache():
+58        try:
+59            cache_path = required_steps.cache_path()
+60            if cache_path:
+61                cache_path = '/cache/'+cache_path+'/_data'
+62            else:
+63                cache_path = 'raw'
+64            spe = Spectrum.from_chada(cachefile, cache_path)
+65            spe._applied_processings.extend_left(required_steps.root)
+66            return spe
+67        except Exception as e:
+68            logger.info(repr(e))
+69            raise e
+70
+71    return recur(required_steps)
+
+ + +

Load spectrum from cache or calculate if needed.

+ +

The cache is a nested structure of spectra. All processings applied to +a spectrum result to spectra of the initial one. If part of the requred +processings are available, only the needed steps are calculated and added +to the cache.

+ +
Arguments:
+ +
    +
  • required_steps: List of required steps in the form +[{'proc': str, 'args': List[Any], 'kwargs': Dict[str, Any]}, ...]
  • +
  • cachefile: optional. Defaults to None. +Filename of the cache. If None no cache is used
  • +
+
+ + +
+
+ +
+
@add_spectrum_constructor(set_applied_processing=False)
+
@validate_call
+ + def + from_chada(filename: str, dataset: str = '/raw', h5module=None): + + + +
+ +
10@add_spectrum_constructor(set_applied_processing=False)
+11@validate_call
+12def from_chada(filename: str, dataset: str = '/raw', h5module=None):
+13    x, y, meta = read_cha(filename, dataset, h5module=h5module)
+14    return Spectrum(x=x, y=y, metadata=meta)  # type: ignore
+
+ + + + +
+
+ +
+
@add_spectrum_constructor()
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + from_local_file( in_file_name: str, filetype: Optional[Literal['spc', 'sp', 'spa', '0', '1', '2', 'wdf', 'ngs', 'jdx', 'dx', 'txt', 'txtr', 'csv', 'prn', 'rruf']] = None, backend: Optional[Literal['native', 'rc1_parser']] = None): + + + +
+ +
17@add_spectrum_constructor()
+18@validate_call(config=dict(arbitrary_types_allowed=True))
+19def from_local_file(
+20        in_file_name: str,
+21        filetype: Union[None, Literal['spc', 'sp', 'spa', '0', '1', '2',
+22                                      'wdf', 'ngs', 'jdx', 'dx',
+23                                      'txt', 'txtr', 'csv', 'prn', 'rruf']] = None,
+24        backend: Union[None, Literal['native', 'rc1_parser']] = None):
+25    """
+26    Read experimental spectrum from a local file.
+27
+28    Args:
+29        in_file_name:
+30            Path to a local file containing a spectrum.
+31        filetype:
+32            Specify the filetype. Filetype can be any of: `spc`, `sp`, `spa`, `0`, `1`, `2`, `wdf`, `ngs`, `jdx`, `dx`,
+33            `txt`, `txtr`, `csv`, `prn`, `rruf` or `None`. `None` used to determine by extension of the file.
+34        backend:
+35            `native`, `rc1_parser` or `None`. `None` means both.
+36
+37    Raises:
+38        ValueError:
+39            When called with unsupported file formats.
+40    """
+41    def load_native():
+42        if filetype is None:
+43            ft = os.path.splitext(in_file_name)[1][1:]
+44        else:
+45            ft = filetype
+46        if ft in {'txt', 'txtr', 'prn', 'rruf'}:
+47            with open(in_file_name) as fp:
+48                x, y, meta = read_txt(fp)
+49        elif ft in {'csv'}:
+50            with open(in_file_name) as fp:
+51                x, y, meta = read_csv(fp)
+52        elif ft in {'spc'}:
+53            with open(in_file_name, 'rb') as fp:
+54                spc = spc_io.SPC.from_bytes_io(fp)
+55                if len(spc) != 1:
+56                    raise ValueError(f'Single subfile SPCs are supported. {len(spc)} subfiles found')
+57                x = spc[0].xarray
+58                y = spc[0].yarray
+59                meta = spc.log_book.text
+60        else:
+61            raise ValueError(f'filetype {ft} not supported')
+62        meta["Original file"] = os.path.basename(in_file_name)
+63        spe = Spectrum(x=x, y=y, metadata=meta)  # type: ignore
+64        return spe
+65
+66    def load_rc1():
+67        x, y, meta = rc1_parser.parse(in_file_name, filetype)
+68        spe = Spectrum(x=x, y=y, metadata=SpeMetadataModel.model_validate(meta))
+69        return spe
+70
+71    if backend == 'native':
+72        spe = load_native()
+73    elif backend == 'rc1_parser':
+74        spe = load_rc1()
+75    elif backend is None:
+76        try:
+77            spe = load_native()
+78        except Exception:
+79            spe = load_rc1()
+80    spe._sort_x()
+81    return spe
+
+ + +

Read experimental spectrum from a local file.

+ +
Arguments:
+ +
    +
  • in_file_name: Path to a local file containing a spectrum.
  • +
  • filetype: Specify the filetype. Filetype can be any of: spc, sp, spa, 0, 1, 2, wdf, ngs, jdx, dx, +txt, txtr, csv, prn, rruf or None. None used to determine by extension of the file.
  • +
  • backend: native, rc1_parser or None. None means both.
  • +
+ +
Raises:
+ +
    +
  • ValueError: When called with unsupported file formats.
  • +
+
+ + +
+
+ +
+
@add_spectrum_constructor()
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + from_delta_lines( deltas: Dict[float, float], xcal: Optional[Callable[[float], float]] = None, nbins: typing.Annotated[int, Gt(gt=0)] = 2000, **kwargs): + + + +
+ +
13@add_spectrum_constructor()
+14@validate_call(config=dict(arbitrary_types_allowed=True))
+15def from_delta_lines(
+16        deltas: Dict[float, float],
+17        xcal: Union[Callable[[float], float], None] = None,
+18        nbins: PositiveInt = 2000,
+19        **kwargs
+20        ):
+21    """
+22    Generate `Spectrum` with delta lines.
+23
+24    Args:
+25        deltas:
+26            Keys of the dictionary are the `x` positions of the deltas; values are the amplitudes of the corresponding
+27            deltas.
+28        xcal:
+29            Callable, optional. `x` axis calibration function.
+30        nbins:
+31            `int`, optional. Number of bins in the spectrum.
+32
+33    Example:
+34
+35    This will produce spectrum with 1000 bins in the range `[-1000, 2000)`:
+36    ```py
+37    xcal = lambda x: x*3 -1000, nbins=1000
+38    ```
+39    """
+40    if xcal is None:
+41        dk = list(deltas.keys())
+42        dkmin, dkmax = np.min(dk), np.max(dk)
+43        if dkmin == dkmax:
+44            dkmin, dkmax = dkmin*.8, dkmax*1.2
+45        else:
+46            dkmin -= (dkmax-dkmin) * .1
+47            dkmax += (dkmax-dkmin) * .1
+48        x = np.linspace(dkmin, dkmax, nbins, endpoint=False, dtype=float)
+49    else:
+50        x = np.linspace(xcal(0), xcal(nbins), nbins, endpoint=False)
+51    y = np.zeros_like(x)
+52    for pos, ampl in deltas.items():
+53        idx = np.argmin(np.abs(x - pos))
+54        y[idx] += ampl
+55    spe = Spectrum(x=x, y=y, **kwargs)
+56    return spe
+
+ + +

Generate Spectrum with delta lines.

+ +
Arguments:
+ +
    +
  • deltas: Keys of the dictionary are the x positions of the deltas; values are the amplitudes of the corresponding +deltas.
  • +
  • xcal: Callable, optional. x axis calibration function.
  • +
  • nbins: int, optional. Number of bins in the spectrum.
  • +
+ +

Example:

+ +

This will produce spectrum with 1000 bins in the range [-1000, 2000):

+ +
+
xcal = lambda x: x*3 -1000, nbins=1000
+
+
+
+ + +
+
+ +
+
@add_spectrum_constructor()
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + from_simulation( in_file: Union[str, io.TextIOBase], sim_type: Literal['vasp', 'crystal_out', 'crystal_dat', 'raw_dat'], use: Union[Literal['I_tot', 'I_perp', 'I_par', 'I_xx', 'I_xy', 'I_xz', 'I_yy', 'I_yz', 'I_zz'], Dict[Literal['I_tot', 'I_perp', 'I_par', 'I_xx', 'I_xy', 'I_xz', 'I_yy', 'I_yz', 'I_zz'], Annotated[float, Gt(gt=0)]]] = 'I_tot', nbins: typing.Annotated[int, Gt(gt=0)] = 2000): + + + +
+ +
18@add_spectrum_constructor()
+19@validate_call(config=dict(arbitrary_types_allowed=True))
+20def from_simulation(in_file: Union[str, TextIOBase],
+21                    sim_type: Literal['vasp', 'crystal_out', 'crystal_dat', 'raw_dat'],
+22                    use: Union[_DIRECTION_LITERALS, Dict[_DIRECTION_LITERALS, PositiveFloat]] = 'I_tot',
+23                    nbins: PositiveInt = 2000,
+24                    ):
+25    """
+26    Generate spectrum from simulation file.
+27
+28    The returned spectrum has only few x/y pairs -- one for each simulated line. Values along
+29    the x-axis will not be uniform. To make it uniform, one needs to resample the spectrum.
+30
+31    Args:
+32        in_file:
+33            Path to a local file, or file-like object.
+34        sim_type:
+35            If `vasp`: `.dat` file from VASP simulation. If `crystal_out`: `.out` file from CRYSTAL simulation, not
+36            preferred. If `crystal_dat`: `.dat` file from CRYSTAL simulation.
+37        use:
+38            One of the directions `I_tot`, `I_perp`, `I_par`, `I_xx`, `I_xy`,
+39            `I_xz`, `I_yy`, `I_yz`, `I_zz`, `I_tot`, `I_perp`, `I_par` are
+40            available for both CRYSTAL and VASP. `I_xx`, `I_xy`, `I_xz`,
+41            `I_yy`, `I_yz`, `I_zz` are available only for CRYSTAL. If a Dict is
+42            passed, the key should be directions and values should be weighting factor.
+43            For example, `use={'I_perp': .1, 'I_par': .9}`
+44
+45    """
+46    if isinstance(use, str):
+47        use_directions = {use}
+48    else:
+49        use_directions = set(use.keys())
+50    if isinstance(in_file, TextIOBase):
+51        labels, x, ydict = read_simulated_lines(in_file, sim_type=sim_type, use=use_directions)
+52    else:
+53        with open(in_file) as f:
+54            labels, x, ydict = read_simulated_lines(f, sim_type=sim_type, use=use_directions)
+55    if isinstance(use, str):
+56        y = ydict[use]
+57    else:
+58        dirs = list(use.keys())
+59        fact = np.array(list(use.values()))
+60        y = np.transpose([ydict[i] for i in dirs]) @ fact
+61    spe = from_delta_lines(deltas=dict(zip(x, y)), nbins=nbins)
+62    return spe
+
+ + +

Generate spectrum from simulation file.

+ +

The returned spectrum has only few x/y pairs -- one for each simulated line. Values along +the x-axis will not be uniform. To make it uniform, one needs to resample the spectrum.

+ +
Arguments:
+ +
    +
  • in_file: Path to a local file, or file-like object.
  • +
  • sim_type: If vasp: .dat file from VASP simulation. If crystal_out: .out file from CRYSTAL simulation, not +preferred. If crystal_dat: .dat file from CRYSTAL simulation.
  • +
  • use: One of the directions I_tot, I_perp, I_par, I_xx, I_xy, +I_xz, I_yy, I_yz, I_zz, I_tot, I_perp, I_par are +available for both CRYSTAL and VASP. I_xx, I_xy, I_xz, +I_yy, I_yz, I_zz are available only for CRYSTAL. If a Dict is +passed, the key should be directions and values should be weighting factor. +For example, use={'I_perp': .1, 'I_par': .9}
  • +
+
+ + +
+
+ +
+
@add_spectrum_constructor()
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + from_theoretical_lines( shapes: List[Literal['gaussian', 'gaussian2d', 'lorentzian', 'voigt', 'pvoigt', 'moffat', 'pearson4', 'pearson7', 'breit_wigner', 'damped_oscillator', 'dho', 'logistic', 'lognormal', 'students_t', 'expgaussian', 'doniach', 'skewed_gaussian', 'skewed_voigt', 'thermal_distribution', 'step', 'rectangle', 'exponential', 'powerlaw', 'linear', 'parabolic', 'sine', 'expsine', 'split_lorentzian']], params: List[Dict], x: Union[int, numpy.ndarray[Any, numpy.dtype[numpy.float64]]] = 2000): + + + +
+ +
14@add_spectrum_constructor()
+15@validate_call(config=dict(arbitrary_types_allowed=True))
+16def from_theoretical_lines(
+17        shapes: List[Literal[lineshapes.functions]],  # type: ignore
+18        params: List[Dict],
+19        x: Union[int, npt.NDArray[np.float64]] = 2000):
+20    """
+21    Generate spectrum from `lmfit` shapes.
+22
+23    Args:
+24        shapes:
+25            The shapes to be used for spectrum generation.
+26        params:
+27            Shape parameters to be applied to be used with shapes.
+28        x:
+29            Array with `x` values, by default `np.array(2000)`.
+30    """
+31    spe = Spectrum(x=x)
+32    x = spe.x
+33    y = np.zeros_like(x, dtype=float)
+34    for shape_name, pars in zip(shapes, params):
+35        shape = getattr(lineshapes, shape_name)
+36        y += shape(x=x, **pars)
+37    spe.y = y
+38    return spe
+
+ + +

Generate spectrum from lmfit shapes.

+ +
Arguments:
+ +
    +
  • shapes: The shapes to be used for spectrum generation.
  • +
  • params: Shape parameters to be applied to be used with shapes.
  • +
  • x: Array with x values, by default np.array(2000).
  • +
+
+ + +
+
+ +
+
@add_spectrum_constructor()
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + from_spectral_component_collection( spe_components: ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection, x=2000): + + + +
+ +
11@add_spectrum_constructor()
+12@validate_call(config=dict(arbitrary_types_allowed=True))
+13def from_spectral_component_collection(
+14        spe_components: SpectralComponentCollection,
+15        x=2000):
+16    """
+17    from_spectral_component_collection
+18
+19    Args:
+20        spe_components:
+21            SpectralComponentCollection
+22        x:
+23            `int` or array-like, optional, default `2000`. `x` axis of the spectrum.
+24    """
+25
+26    spe = Spectrum(x=x, metadata={'origin': 'generated'})  # type: ignore
+27    spe.y = spe_components(spe.x)
+28    return spe
+
+ + +

from_spectral_component_collection

+ +
Arguments:
+ +
    +
  • spe_components: SpectralComponentCollection
  • +
  • x: int or array-like, optional, default 2000. x axis of the spectrum.
  • +
+
+ + +
+
+ +
+
@add_spectrum_constructor()
+ + def + from_test_spe(index=None, **kwargs): + + + +
+ +
14@add_spectrum_constructor()
+15def from_test_spe(index=None, **kwargs):
+16    """Create new spectrum from test data.
+17
+18    Args:
+19        index:
+20            `int` or `None`, optional, default is `None`. If `int`: will be used as an index of filtered list. If
+21            `None`: a random spectrum will be taken.
+22        **kwargs:
+23            The rest of the parameters will be used as filter.
+24    """
+25    filtered = prepend_prefix(get_filenames(**kwargs))
+26    if index is None:
+27        fn = random.sample(filtered, 1)[0]
+28    else:
+29        fn = filtered[index]
+30    spe = Spectrum.from_local_file(fn)
+31    return spe
+
+ + +

Create new spectrum from test data.

+ +
Arguments:
+ +
    +
  • index: int or None, optional, default is None. If int: will be used as an index of filtered list. If +None: a random spectrum will be taken.
  • +
  • **kwargs: The rest of the parameters will be used as filter.
  • +
+
+ + +
+
+ +
+
@add_spectrum_constructor(set_applied_processing=True)
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + hdr_from_multi_exposure(spes_in: List[Spectrum]): + + + +
+ +
12@add_spectrum_constructor(set_applied_processing=True)
+13@validate_call(config=dict(arbitrary_types_allowed=True))
+14def hdr_from_multi_exposure(spes_in: List[Spectrum]):
+15    """Create an HDR spectrum from several spectra with different exposures.
+16
+17    The resulting spectrum will have the details in low-intensity peaks
+18    from long-exposure-time spectrum. As long-exposure-time
+19    spectrum might be sturated, the information for high-intensity
+20    peaks will be taken from short-exposure-time spectrum.
+21    This function will work on a very limited number of spectra,
+22    because we still do not have standardized metadata.
+23    """
+24
+25    spes = list(sorted(spes_in, key=lambda s: float(s.meta['intigration times(ms)'])))  # type: ignore
+26    if not np.all([spes[0].x == s.x for s in spes]):
+27        raise ValueError('x-axes of the spectra should be equal')
+28    spes_cpms = np.array([s.y / float(s.meta['intigration times(ms)']) for s in spes])  # type: ignore
+29    masks = np.array(list(map(lambda s: s.y > s.meta['yaxis_max'], spes)))  # type: ignore
+30    y = spes_cpms[0]
+31    for si in range(1, len(spes_cpms)):
+32        y[~masks[si]] = spes_cpms[si][~masks[si]]
+33    return Spectrum(x=spes[0].x, y=y)
+
+ + +

Create an HDR spectrum from several spectra with different exposures.

+ +

The resulting spectrum will have the details in low-intensity peaks +from long-exposure-time spectrum. As long-exposure-time +spectrum might be sturated, the information for high-intensity +peaks will be taken from short-exposure-time spectrum. +This function will work on a very limited number of spectra, +because we still do not have standardized metadata.

+
+ + +
+
+
Inherited Members
+
+
ramanchada2.misc.plottable.Plottable
+
plot
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/ramanchada2/theoretical_lines.html b/ramanchada2/theoretical_lines.html new file mode 100644 index 00000000..11519e38 --- /dev/null +++ b/ramanchada2/theoretical_lines.html @@ -0,0 +1,264 @@ + + + + + + + ramanchada2.theoretical_lines API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.theoretical_lines

+ + + + + + +
1#!/usr/bin/env python3
+
+ + +
+
+ + \ No newline at end of file diff --git a/ramanchada2/theoretical_lines/model_from_lines.html b/ramanchada2/theoretical_lines/model_from_lines.html new file mode 100644 index 00000000..af328fee --- /dev/null +++ b/ramanchada2/theoretical_lines/model_from_lines.html @@ -0,0 +1,671 @@ + + + + + + + ramanchada2.theoretical_lines.model_from_lines API documentation + + + + + + + + + + + + +
+
+

+ramanchada2.theoretical_lines.model_from_lines

+ + + + + + +
 1from typing import Dict, List, Literal, Tuple
+ 2
+ 3import numpy as np
+ 4from lmfit import Model, Parameters
+ 5from lmfit.models import GaussianModel, VoigtModel
+ 6from pydantic import BaseModel, Field, validate_call
+ 7
+ 8
+ 9@validate_call(config=dict(arbitrary_types_allowed=True))
+10def model_from_lines(names: List[str],
+11                     positions: List[float],
+12                     intensities: Dict[str, List[float]],
+13                     model: Literal['gaussian', 'voigt'] = 'gaussian'
+14                     ) -> Tuple[Model, Parameters]:
+15
+16    if model == 'gaussian':
+17        lm_model = GaussianModel
+18    elif model == 'voigt':
+19        lm_model = VoigtModel
+20    else:
+21        raise ValueError(f'model {model} not known')
+22    mod = np.sum([
+23        lm_model(prefix=f'{spe_type}_{name}_', name=f'{spe_type}_{name}')
+24        for spe_type in intensities
+25        for name in names
+26        ])
+27
+28    params = Parameters()
+29    params.add('pedestal', 0, min=0)
+30    params.add('sigma', 2, min=0)
+31    params.add('x0', 0)
+32    params.add('x1', 1, min=0)
+33
+34    for spe_type, spe_int in intensities.items():
+35        spe_prefix = f'{spe_type}_'
+36        params.add(spe_prefix+'amplitude', 1, min=0)
+37        for name, pos, line_int in zip(names, positions, spe_int):
+38            line_prefix = f'{spe_prefix}{name}_'
+39            params.add(line_prefix+'amplitude',
+40                       expr=f'({line_int}*{spe_prefix}amplitude)+pedestal')
+41            params.add(line_prefix+'center', expr=f'(({pos}+x0)*x1)')
+42            params.add(line_prefix+'sigma', expr='sigma')
+43
+44    return mod, params
+45
+46
+47class PydPeakModel(BaseModel):
+48    model: Literal['gaussian', 'voigt'] = Field('voigt')
+49    position: float
+50    inensity: float = Field(1, gt=0)
+51    sigma: float = Field(1, gt=0)
+52    name: str = Field('')
+53
+54
+55@validate_call(config=dict(arbitrary_types_allowed=True))
+56def model_from_list(peaks_list: List[PydPeakModel]
+57                    ) -> Tuple[Model, Parameters]:
+58    params = Parameters()
+59    params.add('amplitude', 1, min=0)
+60    params.add('sigma', 1, min=0)
+61    params.add('x0', 0)
+62    params.add('x1', 1, min=0)
+63    params.add('x2', 0, min=-1e-3, max=1e-3)
+64    params.add('x3', 0, min=-1e-5, max=1e-5)
+65
+66    peaks = list()
+67    for ii, peak in enumerate(peaks_list):
+68        if peak.model == 'gaussian':
+69            lm_model = GaussianModel
+70        elif peak.model == 'voigt':
+71            lm_model = VoigtModel
+72        else:
+73            raise ValueError(f'model {peak.model} not known')
+74        prefix = f'{peak.name}_' if peak.name else f'_{ii}_'
+75        name = f'{peak.name}' if peak.name else f'_{ii}'
+76        peaks.append(lm_model(prefix=prefix, name=name))
+77
+78        params.add(prefix+'amplitude', expr=f'({peak.inensity}*amplitude)')
+79        params.add(prefix+'center',
+80                   expr=f'{peak.position}**3*x3 + {peak.position}**2*x2 + {peak.position}*x1 + x0')
+81        params.add(prefix+'sigma', expr=f'{peak.sigma}*sigma')
+82    mod = np.sum(peaks)
+83
+84    return mod, params
+
+ + +
+
+ +
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + model_from_lines( names: List[str], positions: List[float], intensities: Dict[str, List[float]], model: Literal['gaussian', 'voigt'] = 'gaussian') -> Tuple[lmfit.model.Model, lmfit.parameter.Parameters]: + + + +
+ +
10@validate_call(config=dict(arbitrary_types_allowed=True))
+11def model_from_lines(names: List[str],
+12                     positions: List[float],
+13                     intensities: Dict[str, List[float]],
+14                     model: Literal['gaussian', 'voigt'] = 'gaussian'
+15                     ) -> Tuple[Model, Parameters]:
+16
+17    if model == 'gaussian':
+18        lm_model = GaussianModel
+19    elif model == 'voigt':
+20        lm_model = VoigtModel
+21    else:
+22        raise ValueError(f'model {model} not known')
+23    mod = np.sum([
+24        lm_model(prefix=f'{spe_type}_{name}_', name=f'{spe_type}_{name}')
+25        for spe_type in intensities
+26        for name in names
+27        ])
+28
+29    params = Parameters()
+30    params.add('pedestal', 0, min=0)
+31    params.add('sigma', 2, min=0)
+32    params.add('x0', 0)
+33    params.add('x1', 1, min=0)
+34
+35    for spe_type, spe_int in intensities.items():
+36        spe_prefix = f'{spe_type}_'
+37        params.add(spe_prefix+'amplitude', 1, min=0)
+38        for name, pos, line_int in zip(names, positions, spe_int):
+39            line_prefix = f'{spe_prefix}{name}_'
+40            params.add(line_prefix+'amplitude',
+41                       expr=f'({line_int}*{spe_prefix}amplitude)+pedestal')
+42            params.add(line_prefix+'center', expr=f'(({pos}+x0)*x1)')
+43            params.add(line_prefix+'sigma', expr='sigma')
+44
+45    return mod, params
+
+ + + + +
+
+ +
+ + class + PydPeakModel(pydantic.main.BaseModel): + + + +
+ +
48class PydPeakModel(BaseModel):
+49    model: Literal['gaussian', 'voigt'] = Field('voigt')
+50    position: float
+51    inensity: float = Field(1, gt=0)
+52    sigma: float = Field(1, gt=0)
+53    name: str = Field('')
+
+ + +

Usage docs: https://docs.pydantic.dev/2.9/concepts/models/

+ +

A base class for creating Pydantic models.

+ +
Attributes:
+ +
    +
  • __class_vars__: The names of the class variables defined on the model.
  • +
  • __private_attributes__: Metadata about the private attributes of the model.
  • +
  • __signature__: The synthesized __init__ [Signature][inspect.Signature] of the model.
  • +
  • __pydantic_complete__: Whether model building is completed, or if there are still undefined fields.
  • +
  • __pydantic_core_schema__: The core schema of the model.
  • +
  • __pydantic_custom_init__: Whether the model has a custom __init__ function.
  • +
  • __pydantic_decorators__: Metadata containing the decorators defined on the model. +This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.
  • +
  • __pydantic_generic_metadata__: Metadata for generic models; contains data used for a similar purpose to +__args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
  • +
  • __pydantic_parent_namespace__: Parent namespace of the model, used for automatic rebuilding of models.
  • +
  • __pydantic_post_init__: The name of the post-init method for the model, if defined.
  • +
  • __pydantic_root_model__: Whether the model is a [RootModel][pydantic.root_model.RootModel].
  • +
  • __pydantic_serializer__: The pydantic-core SchemaSerializer used to dump instances of the model.
  • +
  • __pydantic_validator__: The pydantic-core SchemaValidator used to validate instances of the model.
  • +
  • __pydantic_extra__: A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] +is set to 'allow'.
  • +
  • __pydantic_fields_set__: The names of fields explicitly set during instantiation.
  • +
  • __pydantic_private__: Values of private attributes set on the model instance.
  • +
+
+ + +
+
+ model: Literal['gaussian', 'voigt'] + + +
+ + + + +
+
+
+ position: float + + +
+ + + + +
+
+
+ inensity: float + + +
+ + + + +
+
+
+ sigma: float + + +
+ + + + +
+
+
+ name: str + + +
+ + + + +
+
+
+ model_config: ClassVar[pydantic.config.ConfigDict] = +{} + + +
+ + +

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

+
+ + +
+
+
+ model_fields: ClassVar[Dict[str, pydantic.fields.FieldInfo]] = + + {'model': FieldInfo(annotation=Literal['gaussian', 'voigt'], required=False, default='voigt'), 'position': FieldInfo(annotation=float, required=True), 'inensity': FieldInfo(annotation=float, required=False, default=1, metadata=[Gt(gt=0)]), 'sigma': FieldInfo(annotation=float, required=False, default=1, metadata=[Gt(gt=0)]), 'name': FieldInfo(annotation=str, required=False, default='')} + + +
+ + +

Metadata about the fields defined on the model, +mapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.

+ +

This replaces Model.__fields__ from Pydantic V1.

+
+ + +
+
+
+ model_computed_fields: ClassVar[Dict[str, pydantic.fields.ComputedFieldInfo]] = +{} + + +
+ + +

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

+
+ + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
+
+
+
+ +
+
@validate_call(config=dict(arbitrary_types_allowed=True))
+ + def + model_from_list( peaks_list: List[PydPeakModel]) -> Tuple[lmfit.model.Model, lmfit.parameter.Parameters]: + + + +
+ +
56@validate_call(config=dict(arbitrary_types_allowed=True))
+57def model_from_list(peaks_list: List[PydPeakModel]
+58                    ) -> Tuple[Model, Parameters]:
+59    params = Parameters()
+60    params.add('amplitude', 1, min=0)
+61    params.add('sigma', 1, min=0)
+62    params.add('x0', 0)
+63    params.add('x1', 1, min=0)
+64    params.add('x2', 0, min=-1e-3, max=1e-3)
+65    params.add('x3', 0, min=-1e-5, max=1e-5)
+66
+67    peaks = list()
+68    for ii, peak in enumerate(peaks_list):
+69        if peak.model == 'gaussian':
+70            lm_model = GaussianModel
+71        elif peak.model == 'voigt':
+72            lm_model = VoigtModel
+73        else:
+74            raise ValueError(f'model {peak.model} not known')
+75        prefix = f'{peak.name}_' if peak.name else f'_{ii}_'
+76        name = f'{peak.name}' if peak.name else f'_{ii}'
+77        peaks.append(lm_model(prefix=prefix, name=name))
+78
+79        params.add(prefix+'amplitude', expr=f'({peak.inensity}*amplitude)')
+80        params.add(prefix+'center',
+81                   expr=f'{peak.position}**3*x3 + {peak.position}**2*x2 + {peak.position}*x1 + x0')
+82        params.add(prefix+'sigma', expr=f'{peak.sigma}*sigma')
+83    mod = np.sum(peaks)
+84
+85    return mod, params
+
+ + + + +
+
+ + \ No newline at end of file diff --git a/search.js b/search.js new file mode 100644 index 00000000..3e621509 --- /dev/null +++ b/search.js @@ -0,0 +1,46 @@ +window.pdocSearch = (function(){ +/** elasticlunr - http://weixsong.github.io * Copyright (C) 2017 Oliver Nightingale * Copyright (C) 2017 Wei Song * MIT Licensed */!function(){function e(e){if(null===e||"object"!=typeof e)return e;var t=e.constructor();for(var n in e)e.hasOwnProperty(n)&&(t[n]=e[n]);return t}var t=function(e){var n=new t.Index;return n.pipeline.add(t.trimmer,t.stopWordFilter,t.stemmer),e&&e.call(n,n),n};t.version="0.9.5",lunr=t,t.utils={},t.utils.warn=function(e){return function(t){e.console&&console.warn&&console.warn(t)}}(this),t.utils.toString=function(e){return void 0===e||null===e?"":e.toString()},t.EventEmitter=function(){this.events={}},t.EventEmitter.prototype.addListener=function(){var e=Array.prototype.slice.call(arguments),t=e.pop(),n=e;if("function"!=typeof t)throw new TypeError("last argument must be a function");n.forEach(function(e){this.hasHandler(e)||(this.events[e]=[]),this.events[e].push(t)},this)},t.EventEmitter.prototype.removeListener=function(e,t){if(this.hasHandler(e)){var n=this.events[e].indexOf(t);-1!==n&&(this.events[e].splice(n,1),0==this.events[e].length&&delete this.events[e])}},t.EventEmitter.prototype.emit=function(e){if(this.hasHandler(e)){var t=Array.prototype.slice.call(arguments,1);this.events[e].forEach(function(e){e.apply(void 0,t)},this)}},t.EventEmitter.prototype.hasHandler=function(e){return e in this.events},t.tokenizer=function(e){if(!arguments.length||null===e||void 0===e)return[];if(Array.isArray(e)){var n=e.filter(function(e){return null===e||void 0===e?!1:!0});n=n.map(function(e){return t.utils.toString(e).toLowerCase()});var i=[];return n.forEach(function(e){var n=e.split(t.tokenizer.seperator);i=i.concat(n)},this),i}return e.toString().trim().toLowerCase().split(t.tokenizer.seperator)},t.tokenizer.defaultSeperator=/[\s\-]+/,t.tokenizer.seperator=t.tokenizer.defaultSeperator,t.tokenizer.setSeperator=function(e){null!==e&&void 0!==e&&"object"==typeof e&&(t.tokenizer.seperator=e)},t.tokenizer.resetSeperator=function(){t.tokenizer.seperator=t.tokenizer.defaultSeperator},t.tokenizer.getSeperator=function(){return t.tokenizer.seperator},t.Pipeline=function(){this._queue=[]},t.Pipeline.registeredFunctions={},t.Pipeline.registerFunction=function(e,n){n in t.Pipeline.registeredFunctions&&t.utils.warn("Overwriting existing registered function: "+n),e.label=n,t.Pipeline.registeredFunctions[n]=e},t.Pipeline.getRegisteredFunction=function(e){return e in t.Pipeline.registeredFunctions!=!0?null:t.Pipeline.registeredFunctions[e]},t.Pipeline.warnIfFunctionNotRegistered=function(e){var n=e.label&&e.label in this.registeredFunctions;n||t.utils.warn("Function is not registered with pipeline. This may cause problems when serialising the index.\n",e)},t.Pipeline.load=function(e){var n=new t.Pipeline;return e.forEach(function(e){var i=t.Pipeline.getRegisteredFunction(e);if(!i)throw new Error("Cannot load un-registered function: "+e);n.add(i)}),n},t.Pipeline.prototype.add=function(){var e=Array.prototype.slice.call(arguments);e.forEach(function(e){t.Pipeline.warnIfFunctionNotRegistered(e),this._queue.push(e)},this)},t.Pipeline.prototype.after=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i+1,0,n)},t.Pipeline.prototype.before=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i,0,n)},t.Pipeline.prototype.remove=function(e){var t=this._queue.indexOf(e);-1!==t&&this._queue.splice(t,1)},t.Pipeline.prototype.run=function(e){for(var t=[],n=e.length,i=this._queue.length,o=0;n>o;o++){for(var r=e[o],s=0;i>s&&(r=this._queue[s](r,o,e),void 0!==r&&null!==r);s++);void 0!==r&&null!==r&&t.push(r)}return t},t.Pipeline.prototype.reset=function(){this._queue=[]},t.Pipeline.prototype.get=function(){return this._queue},t.Pipeline.prototype.toJSON=function(){return this._queue.map(function(e){return t.Pipeline.warnIfFunctionNotRegistered(e),e.label})},t.Index=function(){this._fields=[],this._ref="id",this.pipeline=new t.Pipeline,this.documentStore=new t.DocumentStore,this.index={},this.eventEmitter=new t.EventEmitter,this._idfCache={},this.on("add","remove","update",function(){this._idfCache={}}.bind(this))},t.Index.prototype.on=function(){var e=Array.prototype.slice.call(arguments);return this.eventEmitter.addListener.apply(this.eventEmitter,e)},t.Index.prototype.off=function(e,t){return this.eventEmitter.removeListener(e,t)},t.Index.load=function(e){e.version!==t.version&&t.utils.warn("version mismatch: current "+t.version+" importing "+e.version);var n=new this;n._fields=e.fields,n._ref=e.ref,n.documentStore=t.DocumentStore.load(e.documentStore),n.pipeline=t.Pipeline.load(e.pipeline),n.index={};for(var i in e.index)n.index[i]=t.InvertedIndex.load(e.index[i]);return n},t.Index.prototype.addField=function(e){return this._fields.push(e),this.index[e]=new t.InvertedIndex,this},t.Index.prototype.setRef=function(e){return this._ref=e,this},t.Index.prototype.saveDocument=function(e){return this.documentStore=new t.DocumentStore(e),this},t.Index.prototype.addDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.addDoc(i,e),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));this.documentStore.addFieldLength(i,n,o.length);var r={};o.forEach(function(e){e in r?r[e]+=1:r[e]=1},this);for(var s in r){var u=r[s];u=Math.sqrt(u),this.index[n].addToken(s,{ref:i,tf:u})}},this),n&&this.eventEmitter.emit("add",e,this)}},t.Index.prototype.removeDocByRef=function(e){if(e&&this.documentStore.isDocStored()!==!1&&this.documentStore.hasDoc(e)){var t=this.documentStore.getDoc(e);this.removeDoc(t,!1)}},t.Index.prototype.removeDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.hasDoc(i)&&(this.documentStore.removeDoc(i),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));o.forEach(function(e){this.index[n].removeToken(e,i)},this)},this),n&&this.eventEmitter.emit("remove",e,this))}},t.Index.prototype.updateDoc=function(e,t){var t=void 0===t?!0:t;this.removeDocByRef(e[this._ref],!1),this.addDoc(e,!1),t&&this.eventEmitter.emit("update",e,this)},t.Index.prototype.idf=function(e,t){var n="@"+t+"/"+e;if(Object.prototype.hasOwnProperty.call(this._idfCache,n))return this._idfCache[n];var i=this.index[t].getDocFreq(e),o=1+Math.log(this.documentStore.length/(i+1));return this._idfCache[n]=o,o},t.Index.prototype.getFields=function(){return this._fields.slice()},t.Index.prototype.search=function(e,n){if(!e)return[];e="string"==typeof e?{any:e}:JSON.parse(JSON.stringify(e));var i=null;null!=n&&(i=JSON.stringify(n));for(var o=new t.Configuration(i,this.getFields()).get(),r={},s=Object.keys(e),u=0;u0&&t.push(e);for(var i in n)"docs"!==i&&"df"!==i&&this.expandToken(e+i,t,n[i]);return t},t.InvertedIndex.prototype.toJSON=function(){return{root:this.root}},t.Configuration=function(e,n){var e=e||"";if(void 0==n||null==n)throw new Error("fields should not be null");this.config={};var i;try{i=JSON.parse(e),this.buildUserConfig(i,n)}catch(o){t.utils.warn("user configuration parse failed, will use default configuration"),this.buildDefaultConfig(n)}},t.Configuration.prototype.buildDefaultConfig=function(e){this.reset(),e.forEach(function(e){this.config[e]={boost:1,bool:"OR",expand:!1}},this)},t.Configuration.prototype.buildUserConfig=function(e,n){var i="OR",o=!1;if(this.reset(),"bool"in e&&(i=e.bool||i),"expand"in e&&(o=e.expand||o),"fields"in e)for(var r in e.fields)if(n.indexOf(r)>-1){var s=e.fields[r],u=o;void 0!=s.expand&&(u=s.expand),this.config[r]={boost:s.boost||0===s.boost?s.boost:1,bool:s.bool||i,expand:u}}else t.utils.warn("field name in user configuration not found in index instance fields");else this.addAllFields2UserConfig(i,o,n)},t.Configuration.prototype.addAllFields2UserConfig=function(e,t,n){n.forEach(function(n){this.config[n]={boost:1,bool:e,expand:t}},this)},t.Configuration.prototype.get=function(){return this.config},t.Configuration.prototype.reset=function(){this.config={}},lunr.SortedSet=function(){this.length=0,this.elements=[]},lunr.SortedSet.load=function(e){var t=new this;return t.elements=e,t.length=e.length,t},lunr.SortedSet.prototype.add=function(){var e,t;for(e=0;e1;){if(r===e)return o;e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o]}return r===e?o:-1},lunr.SortedSet.prototype.locationFor=function(e){for(var t=0,n=this.elements.length,i=n-t,o=t+Math.floor(i/2),r=this.elements[o];i>1;)e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o];return r>e?o:e>r?o+1:void 0},lunr.SortedSet.prototype.intersect=function(e){for(var t=new lunr.SortedSet,n=0,i=0,o=this.length,r=e.length,s=this.elements,u=e.elements;;){if(n>o-1||i>r-1)break;s[n]!==u[i]?s[n]u[i]&&i++:(t.add(s[n]),n++,i++)}return t},lunr.SortedSet.prototype.clone=function(){var e=new lunr.SortedSet;return e.elements=this.toArray(),e.length=e.elements.length,e},lunr.SortedSet.prototype.union=function(e){var t,n,i;this.length>=e.length?(t=this,n=e):(t=e,n=this),i=t.clone();for(var o=0,r=n.toArray();oPurpose\n\n

ramanchada2 software package is meant to fill the gap between the theoretical\nRaman analysis and the experimental Raman spectroscopy by providing means to\ncompare data of different origin. The software is in early development stage\nbut still able to solve practical problems.

\n\n

Features

\n\n

Read simulated data

\n\n

Process simulated data by VASP and CRYSTAL and provide same interface.\nCRYSTAL data contain intensities for multiple orientations -- laser beam\nincidents perpendicularly or parallelly to the observation and information\nfor mono-crystals. VASP data provide data only for poly-crystals but in\ndifferent format. So the perpendicular and parallel intensities are calculated\nby an implemented algorithm.

\n\n

Models

\n\n

LMFIT theoretical models can be build by spectral information obtained by\nsimulations or by provided by the user. These models can be fit to experimental\ndata, providing calibration information. At poor initial calibration the minimisation\nprocedure naturally fails. An iterative procedure aiming to solve this problem\nwas adopted in the code. On the first iteration the experimental spectrum lines\nare artificially broadened. This makes it possible for the minimisation procedure\nto find a parameters that are close enough to be used as an initial guess for\nthe second iteration. In few iterations the algorithm is able to fit to the original\nexperimental data. This idea is implemented and is at proof-of-concept level.

\n\n

Generate spectra

\n\n

Spectra can be generated by the theoretical models. Random Poissonian noise and\nartificial random-generated baseline can be added to the generated spectra, making\nthem convenient tools to test new methods for analysis.

\n\n

Spectrum manipulation

\n\n

A number of filters can be applied to spectra (experimental and generated).\nScaling on both x and y axes is possible. Scaling could be linear or arbitrary\nuser defined function. A convolution is possible with set of predefined functions\nas well as user defined model.

\n\n

Concept

\n\n

The code is object oriented, written in python. Main elements are Spectrum and\ntheoretical models. Theoretical models are based on LMFIT library, while\nSpectrum is a custom made class. Spectrum object contains data for x and y axes\nand metadata coming from experimental files or other sources. It is planned\nto add information about the uncertainties in x and y. All filters and manipulation\nprocedures are available as class methods. Measures are taken to preserve spectrum\ninstances immutable, so filters are generating new spectra, preserving the original\nunchanged. Additionally, Spectrum has information about its history -- the sequence\nof applied filters.

\n\n

File formats

\n\n

.cha

\n\n

ramanchada software package introduced .cha file format, which is an HDF5\nwith a simple layout.

\n\n

Cache in .cha files

\n\n

The concept to keep previous variants of data is employed in ramanchada2. If\nconfigured so, the software saves the data for all Spectrum instances to a\ntree-organized .cha file. When a particular chain of operations is requested\nby the user, the software checks if the final result is present in the cache file,\nif so it is provided, otherwise the software checks for its parent. When a parent\nor some of the grand parents are present, they are taken as a starting point and\nthe needed steps are applied to provide the final result. The current implementation\nuses h5py library to access local hdf files. It is foreseen to have implementation\nwith h5pyd that support network operations.

\n\n

Nexus format

\n\n

The latest ramanchada2 package allows export of a spectrum to NeXus format.

\n\n

Decorated Functions in Spectrum

\n\n

Function: __add__

\n\n

Docstring: No docstring available

\n\n
\n\n

Function: __init__

\n\n

Docstring: No docstring available

\n\n
\n\n

Function: __mul__

\n\n

Docstring: No docstring available

\n\n
\n\n

Function: __sub__

\n\n

Docstring: No docstring available

\n\n
\n\n

Function: __truediv__

\n\n

Docstring: No docstring available

\n\n
\n\n

Function: abs_nm_to_shift_cm_1

\n\n

Docstring: \n Convert wavelength to Ramanshift in wavenumber

\n\n
Args:\n    spe: internal use only\n    laser_wave_length_nm: Laser wave length\n\nReturns: Corrected x-values\n
\n\n
\n\n

Function: abs_nm_to_shift_cm_1_filter

\n\n

Docstring: \n Convert wavelength to Ramanshift in wavenumber

\n\n
Args:\n    spe: internal use only\n    laser_wave_length_nm: Laser wave length\n\nReturns: Spectrum with corrected x-values\n
\n\n
\n\n

Function: add_baseline

\n\n

Docstring: \n Add artificial baseline to the spectrum.\n A random baseline is generated in frequency domain using uniform random numbers.\n The baseline in frequency domain is tapered with bohman window to reduce the bandwidth\n of the baseline to first n_freq frequencies and is transformed to \"time\" domain.\n Additionaly by using func parameter the user can define arbitrary function\n to be added as baseline.

\n\n
Args:\n    n_freq:\n        Must be `> 2`. Number of lowest frequency bins distinct from zero.\n    amplitude:\n        Upper boundary for the uniform random generator.\n    pedestal:\n        Additive constant pedestal to the spectrum.\n    func:\n        Callable. User-defined function to be added as baseline. Example: `func = lambda x: x*.01 + x**2*.0001`.\n    rng_seed:\n        `int`, optional. Seed for the random generator.\n
\n\n
\n\n

Function: add_gaussian_noise

\n\n

Docstring: \n Add gaussian noise to the spectrum.

\n\n
Random number i.i.d. $N(0, \\sigma)$ is added to every sample\n\nArgs:\n    old_spe: internal use only\n    new_spe: internal use only\n    sigma:\n        Sigma of the gaussian noise.\n    rng_seed:\n        `int` or rng state, optional, seed for the random generator.\n        If a state is provided, it is updated in-place.\n\nReturns: modified Spectrum\n
\n\n
\n\n

Function: add_gaussian_noise_drift

\n\n

Docstring: \n Add cumulative gaussian noise to the spectrum.

\n\n
Exponential-moving-average-like gaussian noise is added\nto each sample. The goal is to mimic the low-frequency noise\n(or random substructures in spectra).\nThe additive noise is\n$$a_i = coef*\\sum_{j=0}^{i-1}g_j + g_i,$$\n\nwhere\n$$g_i = \\mathcal{N}(0, 1+\\frac{coef}{\\sqrt 2}).$$\n\nThis way drifting is possible while keeping the\n$$\\sigma(\\Delta(a)) \\approx 1.$$\n\nArgs:\n    old_spe: internal use only\n    new_spe: internal use only\n    sigma:\n        Sigma of the gaussian noise.\n    coef:\n        `float` in `[0, 1]`, drifting coefficient. If `coef == 0`,\n        the result is identical to `add_gaussian_noise()`.\n    rng_seed:\n        `int` or rng state, optional. Seed for the random generator.\n        If a state is provided, it is updated in-place.\n\nReturns: modified Spectrum\n
\n\n
\n\n

Function: add_poisson_noise

\n\n

Docstring: \n Add poisson noise to the spectrum.

\n\n
For each particular sample the noise is proportional to $\\sqrt{scale*a_i}$.\n\nArgs:\n    old_spe: internal use only\n    new_spe: internal use only\n    scale:\n        `float`, optional, default is `1`. Scale the amplitude of the noise.\n    rng_seed:\n        `int` or rng state, optional. Seed for the random generator.\n        If a state is provided, it is updated in-place.\n\nReturns: modified Spectrum\n
\n\n
\n\n

Function: apply_processing

\n\n

Docstring: No docstring available

\n\n
\n\n

Function: bayesian_gaussian_mixture

\n\n

Docstring: \n Decompose the spectrum to Bayesian Gaussian Mixture

\n\n
Args:\n    spe: internal use only\n    n_samples: optional. Defaults to 5000.\n        Resampled dataset size\n    n_components: optional. Defaults to 50.\n        Number of expected gaussian components\n    max_iter: optional. Defaults to 100.\n        Maximal number of iterations.\n    moving_minimum_window: optional. Defaults to None.\n        If None no moving minimum is subtracted, otherwise as specified.\n    random_state: optional. Defaults to None.\n        Random generator seed to be used.\n    trim_range: optional. Defaults to None:\n        If None ignore trimming, otherwise trim range is in x-axis values.\n\nReturns:\n    BayesianGaussianMixture: Fitted Bayesian Gaussian Mixture\n
\n\n
\n\n

Function: calibrate_by_deltas_filter

\n\n

Docstring: No docstring available

\n\n
\n\n

Function: calibrate_by_deltas_model

\n\n

Docstring: \n - Builds a composite model based on a set of user specified delta lines.\n - Initial guess is calculated based on 10-th and 90-th percentiles of\n the distributions.

\n\n
The phasespace of the model is flat with big amount of narrow minima.\nIn order to find the best fit, the experimental data are successively\nconvolved with gaussians with different widths startign from wide to\nnarrow. The model for the calibration is 3-th order polynomial, which\npotentialy can be changed for higher order polynomial. In order to avoid\nsolving the inverse of the calibration function, the result is tabulated\nand interpolated linarly for each bin of the spectrum.\nThis alogrithm is useful for corse calibration.\n
\n\n
\n\n

Function: central_moments

\n\n

Docstring: No docstring available

\n\n
\n\n

Function: convolve

\n\n

Docstring: \n Convole spectrum with arbitrary lineshape.

\n\n
Args:\n    old_spe: internal use only\n    new_spe: internal use only\n    lineshape:callable, `str` or `np.ndarray`.\n         If callable: should have a single positional argument `x`, e.g.\n        `lambda x: np.exp((x/5)**2)`.\n        If predefined peak profile: can be `gaussian`, `lorentzian`, `voigt`,\n        `pvoigt`, `moffat` or `pearson4`.\n        If `np.ndarray`: lineshape in samples.\n    **kwargs:\n        Additional kwargs will be passed to lineshape function.\n\nReturns: modified Spectrum\n
\n\n
\n\n

Function: derivative_sharpening

\n\n

Docstring: \n Derivative-based sharpening.

\n\n
Sharpen the spectrum subtracting second derivative and add fourth derivative.\n\nArgs:\n    old_spe: internal use only\n    new_spe: internal use only\n    filter_fraction `float` in (0; 1]: Default is 0.6\n        Depth of filtration\n    signal_width: The width of features to be enhanced in sample count\n    der2_factor: Second derivative scaling factor\n    der4_factor: Fourth derivative scaling factor\n\nReturns: modified Spectrum\n
\n\n
\n\n

Function: drop_spikes

\n\n

Docstring: \n Removes single-bin spikes.

\n\n
Remove x, y pairs recognised as spikes using left and right\nsuccessive differences and standard-deviation-based threshold.\n\nArgs:\n    old_spe: internal use only\n    new_spe: internal use only\n    n_sigma: optional, default is `10`.\n        Threshold is `n_sigma` times the standard deviation.\n\nReturns: modified Spectrum\n
\n\n
\n\n

Function: find_peak_multipeak

\n\n

Docstring: \n Find groups of peaks in spectrum.

\n\n
Args:\n    spe: internal use only\n    prominence: Optional. Defaults to None\n        If None the prominence value will be `spe.y_nose`. Reasonable value for\n        promience is `const * spe.y_noise_MAD`.\n    wlen: optional. Defaults to None.\n        wlen value used in `scipy.signal.find_peaks`. If wlen is None, 200 will be used.\n    width: optional. Defaults to None.\n        width value used in `scipy.signal.find_peaks`. If width is None, 2 will be used.\n    hht_chain: optional. Defaults to None.\n        List of hht_chain window sizes. If None, no hht sharpening is performed.\n    bgm_kwargs: kwargs for bayesian_gaussian_mixture\n    sharpening 'hht' or None. Defaults to None.\n        If 'hht' hht sharpening will be performed before finding peaks.\n    strategy: optional. Defauts to 'topo'.\n        Peakfinding method\n\nReturns:\n    ListPeakCandidateMultiModel: Located peak groups\n
\n\n
\n\n

Function: find_peak_multipeak_filter

\n\n

Docstring: \n Same as find_peak_multipeak but the result is stored as metadata in the returned spectrum.

\n\n
Args:\n    old_spe: internal use only\n    new_spe: internal use only\n    *args, **kwargs: same as `find_peak_multipeak`\n
\n\n
\n\n

Function: fit_peak_multimodel

\n\n

Docstring: No docstring available

\n\n
\n\n

Function: fit_peak_positions

\n\n

Docstring: \n Calculate peak positions and amplitudes.

\n\n
Sequence of multiple processings:\n- `subtract_moving_minimum`\n- `find_peak_multipeak`\n- filter peaks with x-location better than threshold\n\nArgs:\n    spe: internal use only\n    mov_min: optional. Defaults to 40\n        subtract moving_minimum with the specified window.\n    center_err_threshold: optional. Defaults to 0.5.\n        threshold for centroid standard deviation. Only peaks\n        with better uncertainty will be returned.\n\n    find_peaks_kw: optional\n        keyword arguments to be used with find_peak_multipeak\n    fit_peaks_kw: optional\n        keyword arguments to be used with fit_peaks_multipeak\n\nReturns:\n    Dict[float, float]: {positions: amplitudes}\n
\n\n
\n\n

Function: fit_peaks_filter

\n\n

Docstring: \n Same as fit_peak_multipeak but the result is stored as metadata in the returned spectrum.

\n\n
Args:\n    old_spe: internal use only\n    new_spe: internal use only\n    should_break: same as in fit_peaks_multipeak\n    *args, **kwargs: same as `fit_peaks_multipeak`\n
\n\n
\n\n

Function: from_cache_or_calc

\n\n

Docstring: \n Load spectrum from cache or calculate if needed.

\n\n
The cache is a nested structure of spectra. All processings applied to\na spectrum result to spectra of the initial one. If part of the requred\nprocessings are available, only the needed steps are calculated and added\nto the cache.\n\nArgs:\n    required_steps: List of required steps in the form\n        [{'proc': str, 'args': List[Any], 'kwargs': Dict[str, Any]}, ...]\n    cachefile: optional. Defaults to None.\n        Filename of the cache. If None no cache is used\n
\n\n
\n\n

Function: from_chada

\n\n

Docstring: No docstring available

\n\n
\n\n

Function: from_delta_lines

\n\n

Docstring: \n Generate Spectrum with delta lines.

\n\n
Args:\n    deltas:\n        Keys of the dictionary are the `x` positions of the deltas; values are the amplitudes of the corresponding\n        deltas.\n    xcal:\n        Callable, optional. `x` axis calibration function.\n    nbins:\n        `int`, optional. Number of bins in the spectrum.\n\nExample:\n\nThis will produce spectrum with 1000 bins in the range `[-1000, 2000)`:\n\n\n
\n
xcal = lambda x: x*3 -1000, nbins=1000\n
\n
\n
\n\n
\n\n

Function: from_local_file

\n\n

Docstring: \n Read experimental spectrum from a local file.

\n\n
Args:\n    in_file_name:\n        Path to a local file containing a spectrum.\n    filetype:\n        Specify the filetype. Filetype can be any of: `spc`, `sp`, `spa`, `0`, `1`, `2`, `wdf`, `ngs`, `jdx`, `dx`,\n        `txt`, `txtr`, `csv`, `prn`, `rruf` or `None`. `None` used to determine by extension of the file.\n    backend:\n        `native`, `rc1_parser` or `None`. `None` means both.\n\nRaises:\n    ValueError:\n        When called with unsupported file formats.\n
\n\n
\n\n

Function: from_simulation

\n\n

Docstring: \n Generate spectrum from simulation file.

\n\n
The returned spectrum has only few x/y pairs -- one for each simulated line. Values along\nthe x-axis will not be uniform. To make it uniform, one needs to resample the spectrum.\n\nArgs:\n    in_file:\n        Path to a local file, or file-like object.\n    sim_type:\n        If `vasp`: `.dat` file from VASP simulation. If `crystal_out`: `.out` file from CRYSTAL simulation, not\n        preferred. If `crystal_dat`: `.dat` file from CRYSTAL simulation.\n    use:\n        One of the directions `I_tot`, `I_perp`, `I_par`, `I_xx`, `I_xy`,\n        `I_xz`, `I_yy`, `I_yz`, `I_zz`, `I_tot`, `I_perp`, `I_par` are\n        available for both CRYSTAL and VASP. `I_xx`, `I_xy`, `I_xz`,\n        `I_yy`, `I_yz`, `I_zz` are available only for CRYSTAL. If a Dict is\n        passed, the key should be directions and values should be weighting factor.\n        For example, `use={'I_perp': .1, 'I_par': .9}`\n
\n\n
\n\n

Function: from_spectral_component_collection

\n\n

Docstring: \n from_spectral_component_collection

\n\n
Args:\n    spe_components:\n        SpectralComponentCollection\n    x:\n        `int` or array-like, optional, default `2000`. `x` axis of the spectrum.\n
\n\n
\n\n

Function: from_test_spe

\n\n

Docstring: Create new spectrum from test data.

\n\n
Args:\n    index:\n        `int` or `None`, optional, default is `None`. If `int`: will be used as an index of filtered list. If\n        `None`: a random spectrum will be taken.\n    **kwargs:\n        The rest of the parameters will be used as filter.\n
\n\n
\n\n

Function: from_theoretical_lines

\n\n

Docstring: \n Generate spectrum from lmfit shapes.

\n\n
Args:\n    shapes:\n        The shapes to be used for spectrum generation.\n    params:\n        Shape parameters to be applied to be used with shapes.\n    x:\n        Array with `x` values, by default `np.array(2000)`.\n
\n\n
\n\n

Function: gen_samples

\n\n

Docstring: No docstring available

\n\n
\n\n

Function: get_spikes

\n\n

Docstring: \n Get single-bin spikes only.

\n\n
Get x, y pairs recognised as spikes using left and right\nsuccessive differences and standard-deviation-based threshold\nand linear interpolation.\n\nArgs:\n    old_spe: internal use only\n    new_spe: internal use only\n    n_sigma: optional, default is `10`.\n        Threshold is `n_sigma` times the standard deviation.\n\nReturns: modified Spectrum\n
\n\n
\n\n

Function: hdr_from_multi_exposure

\n\n

Docstring: Create an HDR spectrum from several spectra with different exposures.

\n\n
The resulting spectrum will have the details in low-intensity peaks\nfrom long-exposure-time spectrum. As long-exposure-time\nspectrum might be sturated, the information for high-intensity\npeaks will be taken from short-exposure-time spectrum.\nThis function will work on a very limited number of spectra,\nbecause we still do not have standardized metadata.\n
\n\n
\n\n

Function: hht_sharpening

\n\n

Docstring: \n Hilbert-Huang based sharpening.

\n\n
In order to reduce the overshooting, moving minimum is subtracted from the result\n\nArgs:\n    old_spe: internal use only\n    new_spe: internal use only\n    movmin: optional. Default is 100\n        Window size for moving minimum\n\nReturns: modified Spectrum\n
\n\n
\n\n

Function: hht_sharpening_chain

\n\n

Docstring: \n Hilbert-Huang based chain sharpening.

\n\n
Sequence of Hilbert-Huang sharpening procedures are performed.\n\nArgs:\n    old_spe: internal use only\n    new_spe: internal use only\n    movmin: List[int], optional. Default is [150, 50]\n        The numer of values in the list defines how many iterations\n        of HHT_sharpening will be performed and the values define\n        the moving minimum window sizes for the corresponding operations.\n\nReturns: modified Spectrum\n
\n\n
\n\n

Function: moving_average

\n\n

Docstring: \n Moving average filter.

\n\n
Args:\n    old_spe: internal use only\n    new_spe: internal use only\n    window_size:\n        `int`, optional, default is `10`.\n\nReturns: modified Spectrum\n
\n\n
\n\n

Function: moving_average_convolve

\n\n

Docstring: \n Moving average filter.

\n\n
Args:\n    old_spe: internal use only\n    new_spe: internal use only\n    window_size:\n        `int`, optional, default is `10`.\n\nReturns: modified Spectrum\n
\n\n
\n\n

Function: moving_median

\n\n

Docstring: \n Moving median filter.

\n\n
The resultant spectrum is moving minimum of the input.\n\nArgs:\n    old_spe: internal use only\n    new_spe: internal use only\n    window_size:\n        `int`, optional, default is `10`.\n\nReturns: modified Spectrum\n
\n\n
\n\n

Function: moving_minimum

\n\n

Docstring: \n Moving minimum baseline estimator.\n Successive values are calculated as minima of rolling rectangular window.

\n\n
\n\n

Function: normalize

\n\n

Docstring: \n Normalize the spectrum.

\n\n
Args:\n    strategy:\n        If `unity`: normalize to `sum(y)`. If `min_unity`: subtract the minimum and normalize to 'unity'. If\n        `unity_density`: normalize to `\u03a3(y_i*\u0394x_i)`. If `unity_area`: same as `unity_density`. If `minmax`: scale\n        amplitudes in range `[0, 1]`. If 'L1' or 'L2': L1 or L2 norm without subtracting the pedestal.\n
\n\n
\n\n

Function: pad_zeros

\n\n

Docstring: \n Extend x-axis by 100% in both directions.

\n\n
The x-axis of resultant spectrum will be:\n$[x_{lower}-(x_{upper}-x_{lower})..(x_{upper}+(x_{upper}-x_{lower}))]$.\nThe length of the new spectrum is 3 times the original. The added values\nare with an uniform step. In the middle is the original spectrum with\noriginal x and y values. The coresponding y vallues for the newly added\nx-values are always zeros.\n\nArgs:\n    old_spe: internal use only\n    new_spe: internal use only\n\nReturns: modified Spectrum\n
\n\n
\n\n

Function: recover_spikes

\n\n

Docstring: \n Recover single-bin spikes.

\n\n
Recover x, y pairs recognised as spikes using left and right\nsuccessive differences and standard-deviation-based threshold\nand linear interpolation.\n\nArgs:\n    old_spe: internal use only\n    new_spe: internal use only\n    n_sigma: optional, default is `10`.\n        Threshold is `n_sigma` times the standard deviation.\n\nReturns: modified Spectrum\n
\n\n
\n\n

Function: resample_NUDFT

\n\n

Docstring: \n Resample the spectrum using Non-uniform discrete fourier transform.

\n\n
The x-axis of the result will be uniform. The corresponding y-values\nwill be calculated with NUDFT and inverse FFT.\n\nArgs:\n    spe: internal use only\n    x_range: optional. Defaults to (0, 4000).\n        The x_range of the new spectrum.\n    xnew_bins: optional. Defaults to 100.\n        Number of bins of the new spectrum\n    window: optional, Defaults to None.\n        The window to be used for lowpass filter. If None 'blackmanharris' is used.\n        If no low-pass filter is required, one can use `window=lambda x: [1]*len(x)`.\n    cumulative: optional. Defaults to False.\n        If True, the resultant spectrum will be cumulative and normalized\n        (in analogy with CDF).\n\nReturns:\n    (x_values, y_values)\n
\n\n
\n\n

Function: resample_NUDFT_filter

\n\n

Docstring: \n Resample the spectrum using Non-uniform discrete fourier transform.

\n\n
The x-axis of the result will be uniform. The corresponding y-values\nwill be calculated with NUDFT and inverse FFT.\n\nArgs:\n    old_spe: internal use only\n    new_spe: internal use only\n    x_range: optional. Defaults to (0, 4000).\n        The x_range of the new spectrum.\n    xnew_bins: optional. Defaults to 100.\n        Number of bins of the new spectrum\n    window: optional, Defaults to None.\n        The window to be used for lowpass filter. If None 'blackmanharris' is used.\n        If no low-pass filter is required, one can use `window=lambda x: [1]*len(x)`.\n    cumulative: optional. Defaults to False.\n        If True, the resultant spectrum will be cumulative and normalized\n        (in analogy with CDF).\n\nReturns: modified Spectrum\n
\n\n
\n\n

Function: resample_spline

\n\n

Docstring: \n Resample the spectrum using spline interpolation.

\n\n
The x-axis of the result will be uniform. The corresponding y-values\nwill be calculated with spline interpolation.\n\nArgs:\n    spe: internal use only\n    x_range: optional. Defaults to (0, 4000).\n        The x_range of the new spectrum.\n    xnew_bins: optional. Defaults to 100.\n        Number of bins of the new spectrum\n    spline: optional, Defaults to 'pchip'.\n        Name of the spline funcion to be used.\n    cumulative: optional. Defaults to False.\n        If True, the resultant spectrum will be cumulative and normalized\n        (in analogy with CDF).\n\nReturns:\n    (x_values, y_values)\n
\n\n
\n\n

Function: resample_spline_filter

\n\n

Docstring: \n Resample the spectrum using spline interpolation.

\n\n
The x-axis of the result will be uniform. The corresponding y-values\nwill be calculated with spline interpolation.\n\nArgs:\n    old_spe: internal use only\n    new_spe: internal use only\n    x_range: optional. Defaults to (0, 4000).\n        The x_range of the new spectrum.\n    xnew_bins: optional. Defaults to 100.\n        Number of bins of the new spectrum\n    spline: optional, Defaults to 'pchip'.\n        Name of the spline funcion to be used.\n    cumulative: optional. Defaults to False.\n        If True, the resultant spectrum will be cumulative and normalized\n        (in analogy with CDF).\n\nReturns: modified Spectrum\n
\n\n
\n\n

Function: scale_xaxis_fun

\n\n

Docstring: \n Apply arbitrary calibration function to the x-axis values.

\n\n
Args:\n    old_spe: internal use only\n    new_spe: internal use only\n    fun: function to be applied\n    args: Additional arguments to the provided functions\n\nReturns: Corrected spectrum\n\nRaises:\n    ValueError: If the new x-values are not strictly monotonically increasing.\n
\n\n
\n\n

Function: scale_xaxis_linear

\n\n

Docstring: \n Scale x-axis using a factor.

\n\n
Args:\n    old_spe: internal use only\n    new_spe: internal use only\n    factor: Defaults to 1.\n        Multiply x-axis values with `factor`\n    preserve_integral: optional. Defaults to False.\n        If True, preserves the integral in sence\n        $\\sum y_{orig;\\,i}*{\\Delta x_{orig}}_i = \\sum y_{new;\\,i}*{\\Delta x_{new}}_i = $\nReturns: Corrected spectrum\n
\n\n
\n\n

Function: scale_yaxis_linear

\n\n

Docstring: \n Scale y-axis values

\n\n
This function provides the same result as `spe*const`\n\nArgs:\n    old_spe: internal use only\n    new_spe: internal use only\n    factor optional. Defaults to 1.\n        Y-values scaling factor\n\nReturns: corrected spectrum\n
\n\n
\n\n

Function: set_new_xaxis

\n\n

Docstring: \n Substitute x-axis values with new ones

\n\n
Args:\n    old_spe: internal use only\n    new_spe: internal use only\n    xaxis: new x-axis values\n\nReturns: corrected spectrum\n\nRaises:\n    ValueError: If the provided array does not match the shape of the spectrum.\n
\n\n
\n\n

Function: shift_cm_1_to_abs_nm

\n\n

Docstring: \n Convert Ramanshift in wavenumber to wavelength

\n\n
Args:\n    spe: internal use only\n    laser_wave_length_nm: Laser wave length\n\nReturns: Corrected x-values\n
\n\n
\n\n

Function: shift_cm_1_to_abs_nm_filter

\n\n

Docstring: \n Convert Ramanshift in wavenumber to wavelength

\n\n
Args:\n    spe: internal use only\n    laser_wave_length_nm: Laser wave length\n\nReturns: Spectrum with corrected x-values\n
\n\n
\n\n

Function: smoothing_RC1

\n\n

Docstring: \n Smooth the spectrum.

\n\n
The spectrum will be smoothed using the specified filter.\nThis method is inherited from ramanchada1 for compatibility reasons.\n\nArgs:\n    old_spe: internal use only\n    new_spe: internal use only\n    method: method to be used\n    **kwargs: keyword arguments to be passed to the selected method\n\nReturns: modified Spectrum\n
\n\n
\n\n

Function: spe_distribution

\n\n

Docstring: No docstring available

\n\n
\n\n

Function: spike_indices

\n\n

Docstring: \n Find spikes in spectrum

\n\n
Single-bin spikes are located using left and right successive\ndifferences. The threshold is based on the standart deviation\nof the metric which makes this algorithm less optimal.\n\nArgs:\n    spe: internal use only\n    n_sigma: Threshold value should be `n_sigma` times the standart\n      deviation of the metric.\n\nReturns: List of spike indices\n
\n\n
\n\n

Function: subtract_baseline_rc1_als

\n\n

Docstring: No docstring available

\n\n
\n\n

Function: subtract_baseline_rc1_snip

\n\n

Docstring: No docstring available

\n\n
\n\n

Function: subtract_moving_median

\n\n

Docstring: \n Subtract moving median filter.

\n\n
The resultant spectrum is moving minimum of the input subtracted from the input.\n\nArgs:\n    old_spe: internal use only\n    new_spe: internal use only\n    window_size:\n        `int`, optional, default is `10`.\n\nReturns: modified Spectrum\n
\n\n
\n\n

Function: subtract_moving_minimum

\n\n

Docstring: No docstring available

\n\n
\n\n

Function: trim_axes

\n\n

Docstring: \n Trim axes of the spectrum.

\n\n
Args:\n    old_spe: internal use only\n    new_spe: internal use only\n    method: 'x-axis' or 'bins'\n        If 'x-axis' boundaries will be interpreted as x-axis values.\n        If 'bins' boundaries will be interpreted as indices.\n    boundaries: lower and upper boundary for the trimming.\n\nReturns: modified Spectrum\n
\n\n
\n\n

Function: xcal_fine

\n\n

Docstring: No docstring available

\n\n
\n\n

Function: xcal_fine_RBF

\n\n

Docstring: Wavelength calibration using Radial basis fuction interpolation

\n\n
Please be cautious! Interpolation might not be the most appropriate\napproach for this type of calibration.\n\n**kwargs are passed to RBFInterpolator\n
\n\n
\n\n

Function: y_noise_savgol

\n\n

Docstring: No docstring available

\n\n
\n\n

Function: y_noise_savgol_DL

\n\n

Docstring: No docstring available

\n\n
\n"}, "ramanchada2.auxiliary": {"fullname": "ramanchada2.auxiliary", "modulename": "ramanchada2.auxiliary", "kind": "module", "doc": "

\n"}, "ramanchada2.auxiliary.spectra": {"fullname": "ramanchada2.auxiliary.spectra", "modulename": "ramanchada2.auxiliary.spectra", "kind": "module", "doc": "

\n"}, "ramanchada2.auxiliary.spectra.datasets2": {"fullname": "ramanchada2.auxiliary.spectra.datasets2", "modulename": "ramanchada2.auxiliary.spectra.datasets2", "kind": "module", "doc": "

\n"}, "ramanchada2.auxiliary.spectra.datasets2.data": {"fullname": "ramanchada2.auxiliary.spectra.datasets2.data", "modulename": "ramanchada2.auxiliary.spectra.datasets2", "qualname": "data", "kind": "variable", "doc": "

\n", "default_value": "[{'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/NeonSNQ043_iR532_Probe_5msx2.txt', 'laser_wl': '532', 'provider': 'FNMT', 'sample': 'Neon'}, {'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/NeonSNQ043_iR532_Probe_100msx2.txt', 'laser_wl': '532', 'provider': 'FNMT', 'sample': 'Neon'}, {'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/PST10_iR532_Probe_100_3000msx7.txt', 'laser_wl': '532', 'provider': 'FNMT', 'sample': 'PST'}, {'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/S0B10_iR532_Probe_100_60000msx2.txt', 'laser_wl': '532', 'provider': 'FNMT', 'sample': 'S0B'}, {'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/S0N10_iR532_Probe_100_30000msx3.txt', 'laser_wl': '532', 'provider': 'FNMT', 'sample': 'S0N'}, {'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/S0P10_iR532_Probe_100_60000msx2.txt', 'laser_wl': '532', 'provider': 'FNMT', 'sample': 'S0P'}, {'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/S1N10_iR532_Probe_100_22000msx2.txt', 'laser_wl': '532', 'provider': 'FNMT', 'sample': 'S1N'}, {'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/Sil10_iR532_Probe_100_60000msx2.txt', 'laser_wl': '532', 'provider': 'FNMT', 'sample': 'Sil_'}, {'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/nCAL10_iR532_Probe_100_2500msx3.txt', 'laser_wl': '532', 'provider': 'FNMT', 'sample': 'nCAL'}, {'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/sCAL10_iR532_Probe_100_3200msx4.txt', 'laser_wl': '532', 'provider': 'FNMT', 'sample': 'sCAL'}, {'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/LED532_Probe_40msx3_1.txt', 'laser_wl': '532', 'provider': 'FNMT', 'sample': 'LED532_EL0-9001'}, {'OP': '01', 'device': 'BWtek', 'filename': './FMNT-M_BW532/NIST532_Probe_3000msx8_1.txt', 'laser_wl': '532', 'provider': 'FNMT', 'sample': 'NIST532_SRM2242a'}, {'OP': '01', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/NeonSNQ043_iR785_OP01.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'Neon'}, {'OP': '01', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/PST10_iR785_OP01_40000msx4.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'PST'}, {'OP': '01', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S0B10_iR785_OP01_6000msx4.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S0B'}, {'OP': '01', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S0N10_iR785_OP01_6000msx4.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S0N'}, {'OP': '01', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S0P10_iR785_OP01_6000msx4.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S0P'}, {'OP': '01', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S1N10_iR785_OP01_6000msx4.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S1N'}, {'OP': '01', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/Sil10_iR785_OP01_6000msx4.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'Sil'}, {'OP': '01', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/nCAL10_iR785_OP01_6000msx4.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'nCAL'}, {'OP': '01', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/sCAL10_iR785_OP01_4000msx4.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'sCAL'}, {'OP': '02', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/NeonSNQ043_iR785_OP02.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'Neon'}, {'OP': '02', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/PST10_iR785_OP02_50000msx2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'PST'}, {'OP': '02', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S0B10_iR785_OP02_25000msx2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S0B'}, {'OP': '02', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S0N10_iR785_OP02_25000msx2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S0N'}, {'OP': '02', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S0P10_iR785_OP02_25000msx2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S0P'}, {'OP': '02', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S1N10_iR785_OP02_25000msx2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S1N'}, {'OP': '02', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/Sil10_iR785_OP02_25000msx2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'Sil'}, {'OP': '02', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/nCAL10_iR785_OP02_20000msx2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'nCAL'}, {'OP': '02', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/sCAL10_iR785_OP02_15000msx2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'sCAL'}, {'OP': '03', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/NeonSNQ043_iR785_OP03.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'Neon'}, {'OP': '03', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/PST10_iR785_OP03_8000msx2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'PST'}, {'OP': '03', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S0B10_iR785_OP03_8000msx2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S0B'}, {'OP': '03', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S0N10_iR785_OP03_8000msx2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S0N'}, {'OP': '03', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S0P10_iR785_OP03_8000msx2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S0P'}, {'OP': '03', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/S1N10_iR785_OP03_8000msx2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'S1N'}, {'OP': '03', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/Sil10_iR785_OP03_8000msx2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'Sil'}, {'OP': '03', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/nCAL10_iR785_OP03_8000msx2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'nCAL'}, {'OP': '03', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/sCAL10_iR785_OP03_8000msx2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'sCAL'}, {'OP': '03', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/LED785_Lens_1000x10_2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'NIR785_EL0-9002'}, {'OP': '03', 'device': 'Horiba', 'filename': './FMNT-M_Ho785/NIST785_Lens_80000x5_2.txt', 'laser_wl': '785', 'provider': 'FNMT', 'sample': 'NIST785_SRM2241'}, {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW532/Ne_532nm_x50_800ms.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'Neon'}, {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW532/Ne_532nm_x50_25ms.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'Neon'}, {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW532/PST02_iRPlus532_Z050_100_2500msx5.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'PST'}, {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW532/S0B02_iRPlus532_Z050_100_30000ms.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'S0B'}, {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW532/S0N02_iRPlus532_Z050_100_40000ms.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'S0N'}, {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW532/S0P02_iRPlus532_Z050_100_30000ms.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'S0P'}, {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW532/S1N02_iRPlus532_Z050_100_12000ms.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'S1N'}, {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW532/nCAL02_iRPlus532_Z050_100_9000ms.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'nCAL'}, {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW532/sCAL02_iRPlus532_Z050_100_20000ms.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'sCAL'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW532/Ne_532nm_x100_2000ms.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'Neon'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW532/Ne_532nm_x100_110ms.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'Neon'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW532/PST02_iRPlus532_Z100_100_50000ms.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'PST'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW532/S0B02_iRPlus532_Z100_100_22000ms.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'S0B'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW532/S0N02_iRPlus532_Z100_100_28000ms.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'S0N'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW532/S0P02_iRPlus532_Z100_100_20000ms.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'S0P'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW532/S1N02_iRPlus532_Z100_100_6500ms.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'S1N'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW532/nCAL02_iRPlus532_Z100_100_30000ms.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'nCAL'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW532/sCAL02_iRPlus532_Z100_100_65000ms.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'sCAL'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW532/Visible_532nm_130ms_100X_2.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'LED532_EL0-9001'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW532/NISTSRM2242aC_BW532_100x_800msx10.txt', 'laser_wl': '532', 'provider': 'ICV', 'sample': 'NIST532_SRM2242a'}, {'OP': '020', 'device': 'BWtek', 'filename': './ICV_BW785/PST02_iRPlus785_Z020_100_1300ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'PST'}, {'OP': '020', 'device': 'BWtek', 'filename': './ICV_BW785/S0B02_iRPlus785_Z020_100_full.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'S0B'}, {'OP': '020', 'device': 'BWtek', 'filename': './ICV_BW785/S0B02_iRPlus785_Z020_100_12000ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'S0B'}, {'OP': '020', 'device': 'BWtek', 'filename': './ICV_BW785/S0N02_iRPlus785_Z020_100_3800ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'S0N'}, {'OP': '020', 'device': 'BWtek', 'filename': './ICV_BW785/S0P02_iRPlus785_Z020_100_12000ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'S0P'}, {'OP': '020', 'device': 'BWtek', 'filename': './ICV_BW785/S1N02_iRPlus785_Z020_100_3800ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'S1N'}, {'OP': '020', 'device': 'BWtek', 'filename': './ICV_BW785/nCAL02_iRPlus785_Z020_100_1100ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'nCAL'}, {'OP': '020', 'device': 'BWtek', 'filename': './ICV_BW785/sCAL02_iRPlus785_Z020_100_2400ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'sCAL'}, {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW785/PST02_iRPlus785_Z050_100_3200ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'PST'}, {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW785/S0B02_iRPlus785_Z050_100_5500ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'S0B'}, {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW785/S0N02_iRPlus785_Z050_100_3200ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'S0N'}, {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW785/S0P02_iRPlus785_Z050_100_5700ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'S0P'}, {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW785/S1N02_iRPlus785_Z050_100_2100ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'S1N'}, {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW785/nCAL02_iRPlus785_Z050_100_2100ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'nCAL'}, {'OP': '050', 'device': 'BWtek', 'filename': './ICV_BW785/sCAL02_iRPlus785_Z050_100_3800ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'sCAL'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW785/PST02_iRPlus785_Z100_100_9000ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'PST'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW785/S0B02_iRPlus785_Z100_100_4700ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'S0B'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW785/S0N02_iRPlus785_Z100_100_3100ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'S0N'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW785/S0P02_iRPlus785_Z100_100_4800ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'S0P'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW785/S1N02_iRPlus785_Z100_100_2000ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'S1N'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW785/nCAL02_iRPlus785_Z100_100_6000ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'nCAL'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW785/sCAL02_iRPlus785_Z100_100_9500ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'sCAL'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW785/NIR_785nm_2000ms_100X_2.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'NIR785_EL0-9002'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW785/NISTSRM2241_BW785_100x_25sx5.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'NIST785_SRM2241'}, {'OP': '100', 'device': 'BWtek', 'filename': './ICV_BW785/Ne_785nm_x20_50ms.txt', 'laser_wl': '785', 'provider': 'ICV', 'sample': 'Neon'}, {'OP': '010', 'device': 'Horiba', 'filename': './TOP_Ho633/neon_new2_Z010.txt', 'laser_wl': '633', 'provider': 'TOP', 'sample': 'Neon'}, {'OP': '010', 'device': 'Horiba', 'filename': './TOP_Ho633/Pol_HLR633_Z010_100_15sx5.txt', 'laser_wl': '633', 'provider': 'TOP', 'sample': 'PST'}, {'OP': '010', 'device': 'Horiba', 'filename': './TOP_Ho633/S0B_HLR633_Z010_100_40sx5.txt', 'laser_wl': '633', 'provider': 'TOP', 'sample': 'S0B'}, {'OP': '010', 'device': 'Horiba', 'filename': './TOP_Ho633/S0N_HLR633_Z010_100_15sx5.txt', 'laser_wl': '633', 'provider': 'TOP', 'sample': 'S0N'}, {'OP': '010', 'device': 'Horiba', 'filename': './TOP_Ho633/S0P_HLR633_Z010_100_40sx5.txt', 'laser_wl': '633', 'provider': 'TOP', 'sample': 'S0P'}, {'OP': '010', 'device': 'Horiba', 'filename': './TOP_Ho633/S1N_HLR633_Z010_100_10sx5.txt', 'laser_wl': '633', 'provider': 'TOP', 'sample': 'S1N'}, {'OP': '010', 'device': 'Horiba', 'filename': './TOP_Ho633/Si_HLR633_Z010_100_40sx5.txt', 'laser_wl': '633', 'provider': 'TOP', 'sample': 'Sil'}, {'OP': '010', 'device': 'Horiba', 'filename': './TOP_Ho633/nCAL_HLR633_Z010_100_5sx5.txt', 'laser_wl': '633', 'provider': 'TOP', 'sample': 'nCAL'}, {'OP': '010', 'device': 'Horiba', 'filename': './TOP_Ho633/sCAL_HLR633_Z010_100_15sx5.txt', 'laser_wl': '633', 'provider': 'TOP', 'sample': 'sCAL'}]"}, "ramanchada2.auxiliary.spectra.datasets2.df": {"fullname": "ramanchada2.auxiliary.spectra.datasets2.df", "modulename": "ramanchada2.auxiliary.spectra.datasets2", "qualname": "df", "kind": "variable", "doc": "

\n", "default_value": " OP device ... provider sample\n0 01 BWtek ... FNMT Neon\n1 01 BWtek ... FNMT Neon\n2 01 BWtek ... FNMT PST\n3 01 BWtek ... FNMT S0B\n4 01 BWtek ... FNMT S0N\n.. ... ... ... ... ...\n90 010 Horiba ... TOP S0P\n91 010 Horiba ... TOP S1N\n92 010 Horiba ... TOP Sil\n93 010 Horiba ... TOP nCAL\n94 010 Horiba ... TOP sCAL\n\n[95 rows x 6 columns]"}, "ramanchada2.auxiliary.spectra.datasets2.loc": {"fullname": "ramanchada2.auxiliary.spectra.datasets2.loc", "modulename": "ramanchada2.auxiliary.spectra.datasets2", "qualname": "loc", "kind": "variable", "doc": "

\n", "default_value": "PosixPath('/home/runner/work/ramanchada2/ramanchada2/.tox/docs/lib/python3.11/site-packages/ramanchada2/auxiliary/spectra/datasets2')"}, "ramanchada2.auxiliary.spectra.datasets2.filtered_df": {"fullname": "ramanchada2.auxiliary.spectra.datasets2.filtered_df", "modulename": "ramanchada2.auxiliary.spectra.datasets2", "qualname": "filtered_df", "kind": "function", "doc": "

\n", "signature": "(**kwargs):", "funcdef": "def"}, "ramanchada2.auxiliary.spectra.datasets2.get_filters": {"fullname": "ramanchada2.auxiliary.spectra.datasets2.get_filters", "modulename": "ramanchada2.auxiliary.spectra.datasets2", "qualname": "get_filters", "kind": "function", "doc": "

\n", "signature": "(**kwargs):", "funcdef": "def"}, "ramanchada2.auxiliary.spectra.datasets2.get_filenames": {"fullname": "ramanchada2.auxiliary.spectra.datasets2.get_filenames", "modulename": "ramanchada2.auxiliary.spectra.datasets2", "qualname": "get_filenames", "kind": "function", "doc": "

\n", "signature": "(**kwargs):", "funcdef": "def"}, "ramanchada2.auxiliary.spectra.datasets2.prepend_prefix": {"fullname": "ramanchada2.auxiliary.spectra.datasets2.prepend_prefix", "modulename": "ramanchada2.auxiliary.spectra.datasets2", "qualname": "prepend_prefix", "kind": "function", "doc": "

\n", "signature": "(filenames):", "funcdef": "def"}, "ramanchada2.auxiliary.spectra.simulated": {"fullname": "ramanchada2.auxiliary.spectra.simulated", "modulename": "ramanchada2.auxiliary.spectra.simulated", "kind": "module", "doc": "

\n"}, "ramanchada2.auxiliary.spectra.simulated.loc": {"fullname": "ramanchada2.auxiliary.spectra.simulated.loc", "modulename": "ramanchada2.auxiliary.spectra.simulated", "qualname": "loc", "kind": "variable", "doc": "

\n", "default_value": "PosixPath('/home/runner/work/ramanchada2/ramanchada2/.tox/docs/lib/python3.11/site-packages/ramanchada2/auxiliary/spectra/simulated')"}, "ramanchada2.auxiliary.spectra.simulated.FILES": {"fullname": "ramanchada2.auxiliary.spectra.simulated.FILES", "modulename": "ramanchada2.auxiliary.spectra.simulated", "qualname": "FILES", "kind": "variable", "doc": "

\n", "default_value": "{'calcite_crystal_raw': '/home/runner/work/ramanchada2/ramanchada2/.tox/docs/lib/python3.11/site-packages/ramanchada2/auxiliary/spectra/simulated/crystal/calcite_CRYSTAL_PBE_raw_data.dat', 'calcite_crystal_convolved': '/home/runner/work/ramanchada2/ramanchada2/.tox/docs/lib/python3.11/site-packages/ramanchada2/auxiliary/spectra/simulated/crystal/calcite_CRYSTAL_PBE_convoluted.dat', 'calcite_vasp': '/home/runner/work/ramanchada2/ramanchada2/.tox/docs/lib/python3.11/site-packages/ramanchada2/auxiliary/spectra/simulated/vasp/snCAL_vasp_raman_ALL.dat'}"}, "ramanchada2.io": {"fullname": "ramanchada2.io", "modulename": "ramanchada2.io", "kind": "module", "doc": "

\n"}, "ramanchada2.io.HSDS": {"fullname": "ramanchada2.io.HSDS", "modulename": "ramanchada2.io.HSDS", "kind": "module", "doc": "

\n"}, "ramanchada2.io.HSDS.logger": {"fullname": "ramanchada2.io.HSDS.logger", "modulename": "ramanchada2.io.HSDS", "qualname": "logger", "kind": "variable", "doc": "

\n", "default_value": "<RootLogger root (WARNING)>"}, "ramanchada2.io.HSDS.write_nexus": {"fullname": "ramanchada2.io.HSDS.write_nexus", "modulename": "ramanchada2.io.HSDS", "qualname": "write_nexus", "kind": "function", "doc": "

\n", "signature": "(\tfilename: str,\tdataset: str,\tx: numpy.ndarray[typing.Any, numpy.dtype[+_ScalarType_co]],\ty: numpy.ndarray[typing.Any, numpy.dtype[+_ScalarType_co]],\tmeta: Dict,\th5module=None):", "funcdef": "def"}, "ramanchada2.io.HSDS.DatasetExistsError": {"fullname": "ramanchada2.io.HSDS.DatasetExistsError", "modulename": "ramanchada2.io.HSDS", "qualname": "DatasetExistsError", "kind": "class", "doc": "

Common base class for all non-exit exceptions.

\n", "bases": "builtins.Exception"}, "ramanchada2.io.HSDS.write_cha": {"fullname": "ramanchada2.io.HSDS.write_cha", "modulename": "ramanchada2.io.HSDS", "qualname": "write_cha", "kind": "function", "doc": "

\n", "signature": "(\tfilename: str,\tdataset: str,\tx: numpy.ndarray[typing.Any, numpy.dtype[+_ScalarType_co]],\ty: numpy.ndarray[typing.Any, numpy.dtype[+_ScalarType_co]],\tmeta: Dict,\th5module=None):", "funcdef": "def"}, "ramanchada2.io.HSDS.read_cha": {"fullname": "ramanchada2.io.HSDS.read_cha", "modulename": "ramanchada2.io.HSDS", "qualname": "read_cha", "kind": "function", "doc": "

\n", "signature": "(\tfilename: str,\tdataset: str,\th5module=None) -> Tuple[numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]], numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]], Dict]:", "funcdef": "def"}, "ramanchada2.io.HSDS.filter_dataset": {"fullname": "ramanchada2.io.HSDS.filter_dataset", "modulename": "ramanchada2.io.HSDS", "qualname": "filter_dataset", "kind": "function", "doc": "

\n", "signature": "(\ttopdomain,\tdomain,\tprocess_file,\tsample=None,\twavelength=None,\tinstrument=None,\tprovider=None,\tinvestigation=None,\tkwargs={},\th5module=None):", "funcdef": "def"}, "ramanchada2.io.HSDS.visit_domain": {"fullname": "ramanchada2.io.HSDS.visit_domain", "modulename": "ramanchada2.io.HSDS", "qualname": "visit_domain", "kind": "function", "doc": "

\n", "signature": "(topdomain='/', process_dataset=None, kwargs={}, h5module=None):", "funcdef": "def"}, "ramanchada2.io.experimental": {"fullname": "ramanchada2.io.experimental", "modulename": "ramanchada2.io.experimental", "kind": "module", "doc": "

\n"}, "ramanchada2.io.experimental.bw_format": {"fullname": "ramanchada2.io.experimental.bw_format", "modulename": "ramanchada2.io.experimental.bw_format", "kind": "module", "doc": "

\n"}, "ramanchada2.io.experimental.bw_format.bw_format": {"fullname": "ramanchada2.io.experimental.bw_format.bw_format", "modulename": "ramanchada2.io.experimental.bw_format", "qualname": "bw_format", "kind": "function", "doc": "

\n", "signature": "(lines: List[str]) -> Tuple[pandas.core.frame.DataFrame, Dict]:", "funcdef": "def"}, "ramanchada2.io.experimental.neegala_format": {"fullname": "ramanchada2.io.experimental.neegala_format", "modulename": "ramanchada2.io.experimental.neegala_format", "kind": "module", "doc": "

\n"}, "ramanchada2.io.experimental.neegala_format.neegala_format": {"fullname": "ramanchada2.io.experimental.neegala_format.neegala_format", "modulename": "ramanchada2.io.experimental.neegala_format", "qualname": "neegala_format", "kind": "function", "doc": "

\n", "signature": "(lines: List[str]) -> Tuple[pandas.core.frame.DataFrame, Dict]:", "funcdef": "def"}, "ramanchada2.io.experimental.rc1_parser": {"fullname": "ramanchada2.io.experimental.rc1_parser", "modulename": "ramanchada2.io.experimental.rc1_parser", "kind": "module", "doc": "

\n"}, "ramanchada2.io.experimental.rc1_parser.binary_readers": {"fullname": "ramanchada2.io.experimental.rc1_parser.binary_readers", "modulename": "ramanchada2.io.experimental.rc1_parser.binary_readers", "kind": "module", "doc": "

\n"}, "ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"fullname": "ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA", "modulename": "ramanchada2.io.experimental.rc1_parser.binary_readers", "qualname": "readSPA", "kind": "function", "doc": "

function to read k-vector and spectrum from a *.SPA file

\n\n
Arguments:
\n\n
    \n
  • filename: Full path to the file to be read.
  • \n
\n\n
Returns:
\n\n
\n

k-vector and spectrum as separate arrays: (np.array, np.array).

\n
\n", "signature": "(filename: str, flip=True):", "funcdef": "def"}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs": {"fullname": "ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs", "modulename": "ramanchada2.io.experimental.rc1_parser.binary_readers", "qualname": "read_ngs", "kind": "function", "doc": "

\n", "signature": "(file):", "funcdef": "def"}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_4byte_datablock": {"fullname": "ramanchada2.io.experimental.rc1_parser.binary_readers.read_4byte_datablock", "modulename": "ramanchada2.io.experimental.rc1_parser.binary_readers", "qualname": "read_4byte_datablock", "kind": "function", "doc": "

\n", "signature": "(f, length, skip=8):", "funcdef": "def"}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_bytestring": {"fullname": "ramanchada2.io.experimental.rc1_parser.binary_readers.read_bytestring", "modulename": "ramanchada2.io.experimental.rc1_parser.binary_readers", "qualname": "read_bytestring", "kind": "function", "doc": "

\n", "signature": "(f):", "funcdef": "def"}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs_meta": {"fullname": "ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs_meta", "modulename": "ramanchada2.io.experimental.rc1_parser.binary_readers", "qualname": "read_ngs_meta", "kind": "function", "doc": "

\n", "signature": "(f):", "funcdef": "def"}, "ramanchada2.io.experimental.rc1_parser.io": {"fullname": "ramanchada2.io.experimental.rc1_parser.io", "modulename": "ramanchada2.io.experimental.rc1_parser.io", "kind": "module", "doc": "

\n"}, "ramanchada2.io.experimental.rc1_parser.io.UnsupportedFileTypeError": {"fullname": "ramanchada2.io.experimental.rc1_parser.io.UnsupportedFileTypeError", "modulename": "ramanchada2.io.experimental.rc1_parser.io", "qualname": "UnsupportedFileTypeError", "kind": "class", "doc": "

Common base class for all non-exit exceptions.

\n", "bases": "builtins.Exception"}, "ramanchada2.io.experimental.rc1_parser.io.parse": {"fullname": "ramanchada2.io.experimental.rc1_parser.io.parse", "modulename": "ramanchada2.io.experimental.rc1_parser.io", "qualname": "parse", "kind": "function", "doc": "

\n", "signature": "(source_path, file_type=None):", "funcdef": "def"}, "ramanchada2.io.experimental.rc1_parser.io.cleanMeta": {"fullname": "ramanchada2.io.experimental.rc1_parser.io.cleanMeta", "modulename": "ramanchada2.io.experimental.rc1_parser.io", "qualname": "cleanMeta", "kind": "function", "doc": "

\n", "signature": "(meta):", "funcdef": "def"}, "ramanchada2.io.experimental.rc1_parser.third_party_readers": {"fullname": "ramanchada2.io.experimental.rc1_parser.third_party_readers", "modulename": "ramanchada2.io.experimental.rc1_parser.third_party_readers", "kind": "module", "doc": "

\n"}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readWDF": {"fullname": "ramanchada2.io.experimental.rc1_parser.third_party_readers.readWDF", "modulename": "ramanchada2.io.experimental.rc1_parser.third_party_readers", "qualname": "readWDF", "kind": "function", "doc": "

\n", "signature": "(file):", "funcdef": "def"}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readSPC": {"fullname": "ramanchada2.io.experimental.rc1_parser.third_party_readers.readSPC", "modulename": "ramanchada2.io.experimental.rc1_parser.third_party_readers", "qualname": "readSPC", "kind": "function", "doc": "

\n", "signature": "(file):", "funcdef": "def"}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readOPUS": {"fullname": "ramanchada2.io.experimental.rc1_parser.third_party_readers.readOPUS", "modulename": "ramanchada2.io.experimental.rc1_parser.third_party_readers", "qualname": "readOPUS", "kind": "function", "doc": "

\n", "signature": "(file, obj_no=0):", "funcdef": "def"}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers": {"fullname": "ramanchada2.io.experimental.rc1_parser.txt_format_readers", "modulename": "ramanchada2.io.experimental.rc1_parser.txt_format_readers", "kind": "module", "doc": "

\n"}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.logger": {"fullname": "ramanchada2.io.experimental.rc1_parser.txt_format_readers.logger", "modulename": "ramanchada2.io.experimental.rc1_parser.txt_format_readers", "qualname": "logger", "kind": "variable", "doc": "

\n", "default_value": "<Logger ramanchada2.io.experimental.rc1_parser.txt_format_readers (WARNING)>"}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.read_JCAMP": {"fullname": "ramanchada2.io.experimental.rc1_parser.txt_format_readers.read_JCAMP", "modulename": "ramanchada2.io.experimental.rc1_parser.txt_format_readers", "qualname": "read_JCAMP", "kind": "function", "doc": "

\n", "signature": "(file, verbose=True):", "funcdef": "def"}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.readTXT": {"fullname": "ramanchada2.io.experimental.rc1_parser.txt_format_readers.readTXT", "modulename": "ramanchada2.io.experimental.rc1_parser.txt_format_readers", "qualname": "readTXT", "kind": "function", "doc": "

\n", "signature": "(file, x_col=0, y_col=0, verbose=True):", "funcdef": "def"}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.dataFromTxtLines": {"fullname": "ramanchada2.io.experimental.rc1_parser.txt_format_readers.dataFromTxtLines", "modulename": "ramanchada2.io.experimental.rc1_parser.txt_format_readers", "qualname": "dataFromTxtLines", "kind": "function", "doc": "

\n", "signature": "(data_lines):", "funcdef": "def"}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.isDataLine": {"fullname": "ramanchada2.io.experimental.rc1_parser.txt_format_readers.isDataLine", "modulename": "ramanchada2.io.experimental.rc1_parser.txt_format_readers", "qualname": "isDataLine", "kind": "function", "doc": "

\n", "signature": "(line):", "funcdef": "def"}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.startStop": {"fullname": "ramanchada2.io.experimental.rc1_parser.txt_format_readers.startStop", "modulename": "ramanchada2.io.experimental.rc1_parser.txt_format_readers", "qualname": "startStop", "kind": "function", "doc": "

\n", "signature": "(lines):", "funcdef": "def"}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.getYDataType": {"fullname": "ramanchada2.io.experimental.rc1_parser.txt_format_readers.getYDataType", "modulename": "ramanchada2.io.experimental.rc1_parser.txt_format_readers", "qualname": "getYDataType", "kind": "function", "doc": "

\n", "signature": "(y_data):", "funcdef": "def"}, "ramanchada2.io.experimental.read_csv": {"fullname": "ramanchada2.io.experimental.read_csv", "modulename": "ramanchada2.io.experimental.read_csv", "kind": "module", "doc": "

\n"}, "ramanchada2.io.experimental.read_csv.read_csv": {"fullname": "ramanchada2.io.experimental.read_csv.read_csv", "modulename": "ramanchada2.io.experimental.read_csv", "qualname": "read_csv", "kind": "function", "doc": "

\n", "signature": "(\tdata_in: <class 'TextIO'>) -> Tuple[numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]], numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]], Dict]:", "funcdef": "def"}, "ramanchada2.io.experimental.read_txt": {"fullname": "ramanchada2.io.experimental.read_txt", "modulename": "ramanchada2.io.experimental.read_txt", "kind": "module", "doc": "

\n"}, "ramanchada2.io.experimental.read_txt.read_txt": {"fullname": "ramanchada2.io.experimental.read_txt.read_txt", "modulename": "ramanchada2.io.experimental.read_txt", "qualname": "read_txt", "kind": "function", "doc": "

\n", "signature": "(\tdata_in: <class 'TextIO'>) -> Tuple[numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]], numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]], Dict]:", "funcdef": "def"}, "ramanchada2.io.experimental.rruf_format": {"fullname": "ramanchada2.io.experimental.rruf_format", "modulename": "ramanchada2.io.experimental.rruf_format", "kind": "module", "doc": "

\n"}, "ramanchada2.io.experimental.rruf_format.rruf_format": {"fullname": "ramanchada2.io.experimental.rruf_format.rruf_format", "modulename": "ramanchada2.io.experimental.rruf_format", "qualname": "rruf_format", "kind": "function", "doc": "

\n", "signature": "(\tlines: List[str]) -> Tuple[numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]], numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]], Dict]:", "funcdef": "def"}, "ramanchada2.io.output": {"fullname": "ramanchada2.io.output", "modulename": "ramanchada2.io.output", "kind": "module", "doc": "

\n"}, "ramanchada2.io.output.write_csv": {"fullname": "ramanchada2.io.output.write_csv", "modulename": "ramanchada2.io.output.write_csv", "kind": "module", "doc": "

\n"}, "ramanchada2.io.output.write_csv.write_csv": {"fullname": "ramanchada2.io.output.write_csv.write_csv", "modulename": "ramanchada2.io.output.write_csv", "qualname": "write_csv", "kind": "function", "doc": "

\n", "signature": "(x, y, delimiter=',') -> List[str]:", "funcdef": "def"}, "ramanchada2.io.simulated": {"fullname": "ramanchada2.io.simulated", "modulename": "ramanchada2.io.simulated", "kind": "module", "doc": "

\n"}, "ramanchada2.io.simulated.crystal": {"fullname": "ramanchada2.io.simulated.crystal", "modulename": "ramanchada2.io.simulated.crystal", "kind": "module", "doc": "

\n"}, "ramanchada2.io.simulated.crystal.discrete_lines_dat": {"fullname": "ramanchada2.io.simulated.crystal.discrete_lines_dat", "modulename": "ramanchada2.io.simulated.crystal.discrete_lines_dat", "kind": "module", "doc": "

\n"}, "ramanchada2.io.simulated.crystal.discrete_lines_dat.lines_from_crystal_dat": {"fullname": "ramanchada2.io.simulated.crystal.discrete_lines_dat.lines_from_crystal_dat", "modulename": "ramanchada2.io.simulated.crystal.discrete_lines_dat", "qualname": "lines_from_crystal_dat", "kind": "function", "doc": "

\n", "signature": "(data_in: io.TextIOBase) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "ramanchada2.io.simulated.crystal.discrete_lines_out": {"fullname": "ramanchada2.io.simulated.crystal.discrete_lines_out", "modulename": "ramanchada2.io.simulated.crystal.discrete_lines_out", "kind": "module", "doc": "

\n"}, "ramanchada2.io.simulated.crystal.discrete_lines_out.lines_from_crystal_out": {"fullname": "ramanchada2.io.simulated.crystal.discrete_lines_out.lines_from_crystal_out", "modulename": "ramanchada2.io.simulated.crystal.discrete_lines_out", "qualname": "lines_from_crystal_out", "kind": "function", "doc": "

\n", "signature": "(data_in: io.TextIOBase) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "ramanchada2.io.simulated.lines_from_raw_dat": {"fullname": "ramanchada2.io.simulated.lines_from_raw_dat", "modulename": "ramanchada2.io.simulated.lines_from_raw_dat", "kind": "module", "doc": "

\n"}, "ramanchada2.io.simulated.lines_from_raw_dat.lines_from_raw_dat": {"fullname": "ramanchada2.io.simulated.lines_from_raw_dat.lines_from_raw_dat", "modulename": "ramanchada2.io.simulated.lines_from_raw_dat", "qualname": "lines_from_raw_dat", "kind": "function", "doc": "

\n", "signature": "(data_in: io.TextIOBase) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "ramanchada2.io.simulated.read_simulated_lines": {"fullname": "ramanchada2.io.simulated.read_simulated_lines", "modulename": "ramanchada2.io.simulated.read_simulated_lines", "kind": "module", "doc": "

\n"}, "ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"fullname": "ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines", "modulename": "ramanchada2.io.simulated.read_simulated_lines", "qualname": "read_simulated_lines", "kind": "function", "doc": "

\n", "signature": "(\tdata_in: io.TextIOBase,\tsim_type: Literal['vasp', 'crystal_out', 'crystal_dat', 'raw_dat'],\tuse: Set[Literal['I_tot', 'I_perp', 'I_par', 'I_xx', 'I_xy', 'I_xz', 'I_yy', 'I_yz', 'I_zz']] = {'I_tot'}) -> Tuple[List[str], List[float], Dict[str, List[float]]]:", "funcdef": "def"}, "ramanchada2.io.simulated.vasp": {"fullname": "ramanchada2.io.simulated.vasp", "modulename": "ramanchada2.io.simulated.vasp", "kind": "module", "doc": "

\n"}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat": {"fullname": "ramanchada2.io.simulated.vasp.vasp_simulation_dat", "modulename": "ramanchada2.io.simulated.vasp.vasp_simulation_dat", "kind": "module", "doc": "

\n"}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"fullname": "ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat", "modulename": "ramanchada2.io.simulated.vasp.vasp_simulation_dat", "qualname": "lines_from_vasp_dat", "kind": "function", "doc": "

calculates perpendicular and parallel intensities using\nhttps://doi.org/10.1103/PhysRevB.54.7830

\n", "signature": "(data_in: io.TextIOBase) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "ramanchada2.misc": {"fullname": "ramanchada2.misc", "modulename": "ramanchada2.misc", "kind": "module", "doc": "

\n"}, "ramanchada2.misc.base_class": {"fullname": "ramanchada2.misc.base_class", "modulename": "ramanchada2.misc.base_class", "kind": "module", "doc": "

\n"}, "ramanchada2.misc.base_class.BaseClass": {"fullname": "ramanchada2.misc.base_class.BaseClass", "modulename": "ramanchada2.misc.base_class", "qualname": "BaseClass", "kind": "class", "doc": "

\n"}, "ramanchada2.misc.base_class.BaseClass.origin": {"fullname": "ramanchada2.misc.base_class.BaseClass.origin", "modulename": "ramanchada2.misc.base_class", "qualname": "BaseClass.origin", "kind": "variable", "doc": "

\n"}, "ramanchada2.misc.base_class.BaseClass.origin_list_str": {"fullname": "ramanchada2.misc.base_class.BaseClass.origin_list_str", "modulename": "ramanchada2.misc.base_class", "qualname": "BaseClass.origin_list_str", "kind": "variable", "doc": "

\n"}, "ramanchada2.misc.constants": {"fullname": "ramanchada2.misc.constants", "modulename": "ramanchada2.misc.constants", "kind": "module", "doc": "

\n"}, "ramanchada2.misc.constants.PST_RS_dict": {"fullname": "ramanchada2.misc.constants.PST_RS_dict", "modulename": "ramanchada2.misc.constants", "qualname": "PST_RS_dict", "kind": "variable", "doc": "

\n", "default_value": "{620.9: 16, 795.8: 10, 1001.4: 100, 1031.8: 27, 1155.3: 13, 1450.5: 8, 1583.1: 12, 1602.3: 28, 2852.4: 9, 2904.5: 13, 3054.3: 32}"}, "ramanchada2.misc.constants.neon_nist_wl_nm": {"fullname": "ramanchada2.misc.constants.neon_nist_wl_nm", "modulename": "ramanchada2.misc.constants", "qualname": "neon_nist_wl_nm", "kind": "variable", "doc": "

\n", "default_value": "{200.7009: 80, 202.55599999999998: 80, 208.54659999999998: 150, 209.61060000000003: 200, 209.6248: 120, 256.2123: 80, 256.7121: 90, 262.3107: 80, 262.98850000000004: 80, 263.6069: 90, 263.82890000000003: 80, 264.40970000000004: 80, 276.2921: 80, 279.20189999999997: 90, 279.4221: 80, 280.9485: 100, 290.6592: 80, 290.6816: 80, 291.0061: 90, 291.0408: 90, 291.11379999999997: 80, 291.5122: 80, 292.5618: 80, 293.2103: 80, 294.0653: 80, 294.6044: 90, 295.5725: 150, 296.3236: 150, 296.71840000000003: 150, 297.2997: 100, 297.47189: 30, 297.9461: 100, 298.26696000000004: 30, 300.1668: 150, 301.7311: 120, 302.7016: 300, 302.8864: 300, 303.07869999999997: 100, 303.4461: 120, 303.59229999999997: 100, 303.772: 100, 303.9586: 100, 304.40880000000004: 100, 304.5556: 100, 304.7556: 120, 305.43449999999996: 100, 305.46770000000004: 100, 305.73906999999997: 30, 305.91060000000004: 100, 306.2491: 100, 306.3301: 100, 307.0887: 100, 307.1529: 100, 307.5731: 100, 308.8166: 120, 309.2092: 100, 309.2901: 120, 309.4006: 100, 309.51030000000003: 100, 309.7131: 100, 311.798: 100, 311.816: 120, 314.1332: 300, 314.3721: 100, 314.8681: 100, 316.4429: 100, 316.5648: 100, 318.8743: 100, 319.4579: 120, 319.85859999999997: 500, 320.8965: 60, 320.9356: 120, 321.37350000000004: 120, 321.4329: 150, 321.8193: 150, 322.4818: 120, 322.9573: 120, 323.007: 200, 323.0419: 120, 323.2022: 120, 323.2372: 150, 324.3396: 100, 324.4095: 100, 324.8345: 100, 325.0355: 100, 329.7726: 150, 330.974: 150, 331.97220000000004: 300, 332.3745: 1000, 332.71529999999996: 150, 332.9158: 100, 333.48359999999997: 200, 334.4395: 150, 334.5453: 300, 334.5829: 150, 335.5016: 200, 335.78200000000004: 120, 336.0597: 200, 336.2161: 120, 336.2707: 100, 336.7218: 120, 336.98076000000003: 50, 336.99072: 70, 337.1799: 100, 337.8216: 500, 338.8417: 150, 338.8945: 120, 339.27979999999997: 300, 340.48220000000003: 100, 340.6947: 120, 341.3148: 100, 341.69140000000004: 120, 341.7688: 120, 341.79031: 50, 341.80055000000004: 5, 342.8687: 120, 344.77024: 20, 345.41944: 10, 345.661: 100, 345.9321: 100, 346.05237: 10, 346.43382: 10, 346.65781000000004: 20, 347.25706: 50, 347.95189999999997: 150, 348.0718: 200, 348.1933: 200, 349.80636: 10, 350.12159: 20, 351.51902: 20, 352.04711000000003: 100, 354.28470000000004: 120, 355.78049999999996: 120, 356.1198: 100, 356.8502: 250, 357.4181: 100, 357.4612: 200, 359.35257: 50, 359.36388999999997: 30, 360.01685000000003: 10, 363.3664: 10, 364.3927: 150, 366.40729999999996: 200, 368.22420999999997: 10, 368.57352000000003: 10, 369.42130000000003: 200, 370.12244: 4, 370.9622: 150, 371.3079: 250, 372.7107: 250, 376.6259: 800, 377.7133: 1000, 381.84270000000004: 100, 382.9749: 120, 421.9745: 150, 423.38500000000005: 100, 425.0649: 120, 436.9862: 120, 437.93999999999994: 70, 437.95500000000004: 150, 438.5059: 100, 439.1991: 200, 439.799: 150, 440.9299: 150, 441.3215: 100, 442.13890000000004: 100, 442.85159999999996: 100, 442.8634: 100, 443.09040000000005: 150, 443.0942: 150, 445.7049: 120, 452.27200000000005: 100, 453.77545: 100, 456.90569999999997: 100, 470.43949000000003: 150, 470.88594: 120, 471.00649999999996: 100, 471.20633: 150, 471.5344: 150, 475.2732: 50, 478.89258: 100, 479.02195: 50, 482.7338: 100, 488.49170000000004: 100, 500.51587: 50, 503.77511999999996: 50, 514.49384: 50, 533.07775: 60, 534.10938: 100, 534.32834: 60, 540.05618: 200, 556.27662: 50, 565.66588: 50, 571.92248: 50, 574.82985: 50, 576.4418800000001: 70, 580.44496: 50, 582.01558: 50, 585.24879: 200, 587.2827500000001: 50, 588.18952: 100, 590.24623: 5, 590.64294: 5, 594.48342: 50, 596.5471: 50, 597.46273: 50, 597.5534: 60, 598.79074: 15, 602.99969: 100, 607.43377: 100, 609.61631: 30, 612.8449899999999: 10, 614.3062600000001: 100, 616.35939: 100, 618.2146: 15, 621.72812: 100, 626.6495: 100, 630.47889: 10, 632.81646: 30, 633.4427800000001: 100, 638.29917: 100, 640.2248: 200, 650.65281: 150, 653.28822: 10, 659.89529: 100, 665.2092700000001: 15, 667.82762: 50, 671.7043: 7, 692.94673: 1000, 702.40504: 300, 703.24131: 800, 705.12923: 20, 705.91074: 100, 717.39381: 800, 721.3199999999999: 150, 723.5188: 150, 724.51666: 800, 734.3945: 150, 747.24386: 30, 748.88712: 300, 749.2102: 100, 752.2818: 150, 753.57741: 300, 754.4044299999999: 130, 772.4623300000001: 1, 774.0738: 120, 783.9052899999999: 2, 792.6201: 120, 792.71177: 3, 793.69961: 13, 794.3181400000001: 80, 808.2457999999999: 60, 808.4345000000001: 100, 811.85492: 40, 812.89108: 12, 813.64054: 170, 825.9379000000001: 30, 826.4807000000001: 100, 826.60772: 70, 826.71162: 10, 830.03258: 300, 831.4995000000001: 100, 836.57466: 50, 837.2106: 100, 837.7608: 800, 841.71606: 30, 841.84274: 250, 846.33575: 40, 848.44435: 13, 849.53598: 700, 854.46958: 15, 857.13524: 30, 859.12584: 400, 863.4647000000001: 350, 864.70411: 60, 865.4383099999999: 600, 865.5522000000001: 80, 866.8255999999999: 100, 867.94925: 130, 868.19211: 150, 870.41116: 30, 877.1656300000001: 100, 878.06226: 600, 878.3753300000001: 400, 883.0907199999999: 6, 885.38668: 300, 886.53063: 20, 886.57552: 150, 891.9500599999999: 60, 898.85564: 20, 907.9462: 100, 914.86716: 120, 920.1759099999999: 90, 922.0060100000001: 60, 922.1580099999999: 20, 922.66903: 20, 927.55196: 9, 928.7563: 200, 930.0852699999999: 80, 931.0583899999999: 8, 931.39726: 30, 932.65068: 70, 937.33078: 15, 942.5378800000001: 50, 945.9209500000001: 30, 948.66818: 50, 953.4162899999999: 60, 954.7404899999999: 30, 957.7013000000001: 120, 966.54197: 180, 980.8860000000001: 100, 1029.5417400000001: 4, 1056.24075: 80, 1079.80429: 60, 1084.44772: 90, 1114.3020000000001: 300, 1117.7523999999999: 500, 1139.04339: 150, 1140.91343: 90, 1152.27459: 300, 1152.5019399999999: 150, 1153.63445: 90, 1160.15366: 30, 1161.40807: 130, 1168.80017: 30, 1176.67924: 150, 1178.90435: 130, 1178.98891: 30, 1198.4912: 70, 1206.6334000000002: 200, 1245.9388999999999: 40, 1268.9200999999998: 60, 1291.2014: 80, 1321.9241: 40, 1523.0714: 50, 1716.1929: 20, 1803.5812: 20, 1808.3181: 40, 1808.3263: 9, 1822.1087: 15, 1822.7015999999999: 13, 1827.6642: 140, 1828.2614: 100, 1830.3967: 70, 1835.9094: 20, 1838.4826: 60, 1838.9937000000002: 90, 1840.2836: 40, 1842.2401999999997: 60, 1845.864: 13, 1847.58: 40, 1859.1541000000002: 70, 1859.7698: 100, 1861.8908: 16, 1862.5158999999999: 20, 2104.127: 30, 2170.811: 30, 2224.736: 13, 2242.814: 13, 2253.038: 80, 2266.179: 13, 2310.048: 25, 2326.027: 40, 2337.296: 50, 2356.5330000000004: 30, 2363.648: 170, 2370.166: 12, 2370.913: 60, 2395.1400000000003: 110, 2395.643: 50, 2397.816: 60, 2409.857: 11, 2416.143: 20, 2424.9610000000002: 30, 2436.5009999999997: 70, 2437.161: 40, 2444.786: 20, 2445.939: 30, 2477.6490000000003: 17, 2492.889: 30, 2516.17: 13, 2552.433: 50, 2838.62: 6, 3020.049: 6, 3317.3089999999997: 8, 3335.238: 17, 3389.9809999999998: 5, 3390.3019999999997: 4, 3391.31: 12, 3413.1339999999996: 4, 3447.143: 6, 3583.4809999999998: 8}"}, "ramanchada2.misc.constants.polystyrene_rs": {"fullname": "ramanchada2.misc.constants.polystyrene_rs", "modulename": "ramanchada2.misc.constants", "qualname": "polystyrene_rs", "kind": "variable", "doc": "

\n", "default_value": "{620.9: 16, 795.8: 10, 1001.4: 100, 1031.8: 27, 1155.3: 13, 1450.5: 8, 1583.1: 12, 1602.3: 28, 2852.4: 9, 2904.5: 13, 3054.3: 32}"}, "ramanchada2.misc.constants.neon_rs_dict": {"fullname": "ramanchada2.misc.constants.neon_rs_dict", "modulename": "ramanchada2.misc.constants", "qualname": "neon_rs_dict", "kind": "variable", "doc": "

\n", "default_value": "{785: {np.float64(122.46893256885171): np.float64(120.0), np.float64(123.92790418673181): np.float64(3.0), np.float64(139.62846387796614): np.float64(13.0), np.float64(149.43939261183922): np.float64(80.0), np.float64(366.3796839579363): np.float64(60.0), np.float64(369.2675936274158): np.float64(100.0), np.float64(421.38180516260735): np.float64(40.0), np.float64(437.0823975157964): np.float64(12.0), np.float64(448.4137962350071): np.float64(170.0), np.float64(631.4057156452395): np.float64(30.0), np.float64(639.3574108984682): np.float64(100.0), np.float64(641.2166700808558): np.float64(70.0), np.float64(642.737084741243): np.float64(10.0), np.float64(691.1336413932653): np.float64(300.0), np.float64(712.3880633377877): np.float64(100.0), np.float64(785.3477634818161): np.float64(50.0), np.float64(794.42757260046): np.float64(100.0), np.float64(802.2720828079191): np.float64(800.0), np.float64(858.3625927463404): np.float64(30.0), np.float64(860.1503620255945): np.float64(250.0), np.float64(923.2117794361885): np.float64(40.0), np.float64(952.5766542670426): np.float64(13.0), np.float64(967.7216907334014): np.float64(700.0), np.float64(1035.6867269022846): np.float64(15.0), np.float64(1072.08315781891): np.float64(30.0), np.float64(1099.115138430138): np.float64(400.0), np.float64(1157.604148115537): np.float64(350.0), np.float64(1174.2039492465462): np.float64(60.0), np.float64(1184.0148919843368): np.float64(600.0), np.float64(1185.5352862129364): np.float64(80.0), np.float64(1202.5075530881757): np.float64(100.0), np.float64(1217.4425451131438): np.float64(130.0), np.float64(1220.665437642399): np.float64(150.0), np.float64(1250.0302210935215): np.float64(30.0), np.float64(1338.4980195800945): np.float64(100.0), np.float64(1350.1394500377296): np.float64(600.0), np.float64(1354.1986085623885): np.float64(400.0), np.float64(1414.9886119309567): np.float64(6.0), np.float64(1444.3533419670161): np.float64(300.0), np.float64(1458.9273939198806): np.float64(20.0), np.float64(1459.498530694608): np.float64(150.0), np.float64(1527.4634843309643): np.float64(60.0), np.float64(1613.5965041854067): np.float64(20.0), np.float64(1724.9850603188252): np.float64(100.0), np.float64(1808.3048539141466): np.float64(120.0), np.float64(1871.3662202368241): np.float64(90.0), np.float64(1892.9372168038894): np.float64(60.0), np.float64(1894.7249573620707): np.float64(20.0), np.float64(1900.7309751098303): np.float64(20.0), np.float64(1957.786316393365): np.float64(9.0), np.float64(1971.7663781767853): np.float64(200.0), np.float64(1987.151135078183): np.float64(80.0), np.float64(1998.388557694021): np.float64(8.0), np.float64(2002.2962579980554): np.float64(30.0), np.float64(2016.7254712832068): np.float64(70.0), np.float64(2070.2611413719483): np.float64(15.0), np.float64(2129.200339961183): np.float64(50.0), np.float64(2167.1455819255425): np.float64(30.0), np.float64(2197.759988274157): np.float64(50.0), np.float64(2250.2557050497553): np.float64(60.0), np.float64(2264.8031148954296): np.float64(30.0), np.float64(2297.184477570986): np.float64(120.0), np.float64(2392.6912977297347): np.float64(180.0), np.float64(2543.988860402575): np.float64(100.0)}, 633: {np.float64(131.15349323856475): np.float64(100.0), np.float64(178.27466380474812): np.float64(200.0), np.float64(428.6085469303318): np.float64(150.0), np.float64(490.60888429816987): np.float64(10.0), np.float64(643.8689658571262): np.float64(100.0), np.float64(764.9250424124886): np.float64(15.0), np.float64(823.8643500376157): np.float64(50.0), np.float64(910.2849841405953): np.float64(7.0), np.float64(1366.664578090937): np.float64(1000.0), np.float64(1560.9884142372662): np.float64(300.0), np.float64(1577.918319348396): np.float64(800.0), np.float64(1615.9907404166095): np.float64(20.0), np.float64(1631.6913325599187): np.float64(100.0), np.float64(1858.4430565740402): np.float64(800.0), np.float64(1934.3157870391897): np.float64(150.0), np.float64(1976.4473852543142): np.float64(150.0), np.float64(1995.483197701751): np.float64(800.0), np.float64(2181.1285988136524): np.float64(150.0), np.float64(2415.276207094919): np.float64(30.0), np.float64(2444.6410422620947): np.float64(300.0), np.float64(2450.3992858353195): np.float64(100.0), np.float64(2504.8972680083675): np.float64(150.0), np.float64(2527.75145967322): np.float64(300.0), np.float64(2542.2988104564824): np.float64(130.0), np.float64(2852.1732140759405): np.float64(1.0), np.float64(2879.1234484825845): np.float64(120.0), np.float64(3041.1452207757484): np.float64(2.0), np.float64(3181.4037390207895): np.float64(120.0), np.float64(3182.86271063867): np.float64(3.0), np.float64(3198.563270329904): np.float64(13.0), np.float64(3208.3741990637773): np.float64(80.0), np.float64(3425.314490409874): np.float64(60.0), np.float64(3428.2024000793535): np.float64(100.0), np.float64(3480.3166116145453): np.float64(40.0), np.float64(3496.0172039677345): np.float64(12.0), np.float64(3507.348602686945): np.float64(170.0), np.float64(3690.340522097177): np.float64(30.0), np.float64(3698.292217350406): np.float64(100.0), np.float64(3700.151476532794): np.float64(70.0), np.float64(3701.671891193181): np.float64(10.0), np.float64(3750.068447845203): np.float64(300.0), np.float64(3771.3228697897257): np.float64(100.0), np.float64(3844.282569933754): np.float64(50.0), np.float64(3853.362379052398): np.float64(100.0), np.float64(3861.206889259857): np.float64(800.0), np.float64(3917.2973991982785): np.float64(30.0), np.float64(3919.0851684775325): np.float64(250.0), np.float64(3982.1465858881265): np.float64(40.0), np.float64(4011.5114607189803): np.float64(13.0), np.float64(4026.6564971853395): np.float64(700.0), np.float64(4094.6215333542223): np.float64(15.0), np.float64(4131.017964270848): np.float64(30.0), np.float64(4158.049944882076): np.float64(400.0), np.float64(4216.538954567475): np.float64(350.0), np.float64(4233.138755698485): np.float64(60.0), np.float64(4242.949698436275): np.float64(600.0), np.float64(4244.470092664874): np.float64(80.0), np.float64(4261.442359540114): np.float64(100.0), np.float64(4276.377351565082): np.float64(130.0), np.float64(4279.600244094337): np.float64(150.0), np.float64(4308.96502754546): np.float64(30.0), np.float64(4397.432826032033): np.float64(100.0), np.float64(4409.074256489667): np.float64(600.0), np.float64(4413.133415014327): np.float64(400.0), np.float64(4473.923418382895): np.float64(6.0)}, 532: {np.float64(280.400374063339): np.float64(200.0), np.float64(820.3246859611342): np.float64(50.0), np.float64(1118.7121507719057): np.float64(50.0), np.float64(1312.1053685299726): np.float64(50.0), np.float64(1400.5402962651492): np.float64(50.0), np.float64(1449.1897851185397): np.float64(70.0), np.float64(1568.8301417453613): np.float64(50.0), np.float64(1615.3218462004172): np.float64(50.0), np.float64(1710.2420754482148): np.float64(200.0), np.float64(1769.419306271512): np.float64(50.0), np.float64(1795.6695062543874): np.float64(100.0), np.float64(1854.9105300823699): np.float64(5.0), np.float64(1866.2898133610774): np.float64(5.0), np.float64(1975.6654877605317): np.float64(50.0), np.float64(2033.8567623301808): np.float64(50.0), np.float64(2059.546783125738): np.float64(50.0), np.float64(2062.0864460269026): np.float64(60.0), np.float64(2096.667422736005): np.float64(15.0), np.float64(2213.236028525559): np.float64(100.0), np.float64(2334.292358356692): np.float64(100.0), np.float64(2393.2318928421078): np.float64(30.0), np.float64(2479.652593999227): np.float64(10.0), np.float64(2518.4671736471323): np.float64(100.0), np.float64(2572.691915262086): np.float64(100.0), np.float64(2621.3796761996955): np.float64(15.0), np.float64(2712.79156071062): np.float64(100.0), np.float64(2839.1085285308986): np.float64(100.0), np.float64(2936.033203089824): np.float64(10.0), np.float64(2994.6222331219114): np.float64(30.0), np.float64(3010.246912802971): np.float64(100.0), np.float64(3130.3576648049207): np.float64(100.0), np.float64(3177.4788353711037): np.float64(200.0), np.float64(3427.8127184966875): np.float64(150.0), np.float64(3489.8130558645257): np.float64(10.0), np.float64(3643.073137423482): np.float64(100.0), np.float64(3764.1292139788443): np.float64(15.0), np.float64(3823.0685216039715): np.float64(50.0), np.float64(3909.4891557069514): np.float64(7.0)}}"}, "ramanchada2.misc.constants.neon_wl_dict": {"fullname": "ramanchada2.misc.constants.neon_wl_dict", "modulename": "ramanchada2.misc.constants", "qualname": "neon_wl_dict", "kind": "variable", "doc": "

\n", "default_value": "{785: {np.float64(792.6201): np.float64(120.0), np.float64(792.71177): np.float64(3.0), np.float64(793.69961): np.float64(13.0), np.float64(794.3181400000001): np.float64(80.0), np.float64(808.2457999999999): np.float64(60.0), np.float64(808.4345000000001): np.float64(100.0), np.float64(811.85492): np.float64(40.0), np.float64(812.89108): np.float64(12.0), np.float64(813.64054): np.float64(170.0), np.float64(825.9379000000001): np.float64(30.0), np.float64(826.4807): np.float64(100.0), np.float64(826.60772): np.float64(70.0), np.float64(826.7116200000002): np.float64(10.0), np.float64(830.0325800000002): np.float64(300.0), np.float64(831.4995000000001): np.float64(100.0), np.float64(836.5746600000001): np.float64(50.0), np.float64(837.2106): np.float64(100.0), np.float64(837.7608000000001): np.float64(800.0), np.float64(841.7160600000001): np.float64(30.0), np.float64(841.84274): np.float64(250.0), np.float64(846.33575): np.float64(40.0), np.float64(848.4443499999999): np.float64(13.0), np.float64(849.5359799999999): np.float64(700.0), np.float64(854.46958): np.float64(15.0), np.float64(857.13524): np.float64(30.0), np.float64(859.1258399999999): np.float64(400.0), np.float64(863.4647000000001): np.float64(350.0), np.float64(864.7041100000001): np.float64(60.0), np.float64(865.43831): np.float64(600.0), np.float64(865.5522000000001): np.float64(80.0), np.float64(866.8255999999999): np.float64(100.0), np.float64(867.94925): np.float64(130.0), np.float64(868.1921100000001): np.float64(150.0), np.float64(870.4111599999999): np.float64(30.0), np.float64(877.1656300000001): np.float64(100.0), np.float64(878.06226): np.float64(600.0), np.float64(878.3753300000001): np.float64(400.0), np.float64(883.0907199999999): np.float64(6.0), np.float64(885.3866799999998): np.float64(300.0), np.float64(886.53063): np.float64(20.0), np.float64(886.57552): np.float64(150.0), np.float64(891.9500599999998): np.float64(60.0), np.float64(898.85564): np.float64(20.0), np.float64(907.9462): np.float64(100.0), np.float64(914.8671600000001): np.float64(120.0), np.float64(920.1759099999999): np.float64(90.0), np.float64(922.00601): np.float64(60.0), np.float64(922.1580099999999): np.float64(20.0), np.float64(922.66903): np.float64(20.0), np.float64(927.5519599999999): np.float64(9.0), np.float64(928.7563): np.float64(200.0), np.float64(930.0852699999999): np.float64(80.0), np.float64(931.0583899999999): np.float64(8.0), np.float64(931.39726): np.float64(30.0), np.float64(932.6506799999999): np.float64(70.0), np.float64(937.3307799999999): np.float64(15.0), np.float64(942.5378800000001): np.float64(50.0), np.float64(945.9209500000001): np.float64(30.0), np.float64(948.66818): np.float64(50.0), np.float64(953.41629): np.float64(60.0), np.float64(954.74049): np.float64(30.0), np.float64(957.7013000000001): np.float64(120.0), np.float64(966.5419700000001): np.float64(180.0), np.float64(980.8860000000001): np.float64(100.0)}, 633: {np.float64(638.29917): np.float64(100.0), np.float64(640.2248): np.float64(200.0), np.float64(650.65281): np.float64(150.0), np.float64(653.28822): np.float64(10.0), np.float64(659.89529): np.float64(100.0), np.float64(665.2092700000001): np.float64(15.0), np.float64(667.82762): np.float64(50.0), np.float64(671.7043): np.float64(7.0), np.float64(692.94673): np.float64(1000.0), np.float64(702.40504): np.float64(300.0), np.float64(703.24131): np.float64(800.0), np.float64(705.12923): np.float64(20.0), np.float64(705.91074): np.float64(100.0), np.float64(717.39381): np.float64(800.0), np.float64(721.3199999999999): np.float64(150.0), np.float64(723.5188): np.float64(150.0), np.float64(724.51666): np.float64(800.0), np.float64(734.3945): np.float64(150.0), np.float64(747.24386): np.float64(30.0), np.float64(748.8871199999999): np.float64(300.0), np.float64(749.2102): np.float64(100.0), np.float64(752.2818): np.float64(150.0), np.float64(753.57741): np.float64(300.0), np.float64(754.4044299999999): np.float64(130.0), np.float64(772.4623300000001): np.float64(1.0), np.float64(774.0738): np.float64(120.0), np.float64(783.9052899999999): np.float64(2.0), np.float64(792.6201): np.float64(120.0), np.float64(792.71177): np.float64(3.0), np.float64(793.69961): np.float64(13.0), np.float64(794.3181400000001): np.float64(80.0), np.float64(808.2457999999999): np.float64(60.0), np.float64(808.4345000000001): np.float64(100.0), np.float64(811.85492): np.float64(40.0), np.float64(812.89108): np.float64(12.0), np.float64(813.64054): np.float64(170.0), np.float64(825.9379000000001): np.float64(30.0), np.float64(826.4807): np.float64(100.0), np.float64(826.60772): np.float64(70.0), np.float64(826.7116200000002): np.float64(10.0), np.float64(830.0325800000002): np.float64(300.0), np.float64(831.4995000000001): np.float64(100.0), np.float64(836.5746600000001): np.float64(50.0), np.float64(837.2106): np.float64(100.0), np.float64(837.7608000000001): np.float64(800.0), np.float64(841.7160600000001): np.float64(30.0), np.float64(841.84274): np.float64(250.0), np.float64(846.33575): np.float64(40.0), np.float64(848.4443499999999): np.float64(13.0), np.float64(849.5359799999999): np.float64(700.0), np.float64(854.46958): np.float64(15.0), np.float64(857.13524): np.float64(30.0), np.float64(859.1258399999999): np.float64(400.0), np.float64(863.4647000000001): np.float64(350.0), np.float64(864.7041100000001): np.float64(60.0), np.float64(865.43831): np.float64(600.0), np.float64(865.5522000000001): np.float64(80.0), np.float64(866.8255999999999): np.float64(100.0), np.float64(867.94925): np.float64(130.0), np.float64(868.1921100000001): np.float64(150.0), np.float64(870.4111599999999): np.float64(30.0), np.float64(877.1656300000001): np.float64(100.0), np.float64(878.06226): np.float64(600.0), np.float64(878.3753300000001): np.float64(400.0), np.float64(883.0907199999999): np.float64(6.0)}, 532: {np.float64(540.05618): np.float64(200.0), np.float64(556.27662): np.float64(50.0), np.float64(565.66588): np.float64(50.0), np.float64(571.92248): np.float64(50.0), np.float64(574.82985): np.float64(50.0), np.float64(576.4418800000001): np.float64(70.0), np.float64(580.44496): np.float64(50.0), np.float64(582.01558): np.float64(50.0), np.float64(585.24879): np.float64(200.0), np.float64(587.2827500000001): np.float64(50.0), np.float64(588.18952): np.float64(100.0), np.float64(590.24623): np.float64(5.0), np.float64(590.64294): np.float64(5.0), np.float64(594.48342): np.float64(50.0), np.float64(596.5471): np.float64(50.0), np.float64(597.46273): np.float64(50.0), np.float64(597.5534): np.float64(60.0), np.float64(598.79074): np.float64(15.0), np.float64(602.99969): np.float64(100.0), np.float64(607.43377): np.float64(100.0), np.float64(609.61631): np.float64(30.0), np.float64(612.8449899999999): np.float64(10.0), np.float64(614.3062600000001): np.float64(100.0), np.float64(616.35939): np.float64(100.0), np.float64(618.2146): np.float64(15.0), np.float64(621.72812): np.float64(100.0), np.float64(626.6495): np.float64(100.0), np.float64(630.47889): np.float64(10.0), np.float64(632.81646): np.float64(30.0), np.float64(633.4427800000001): np.float64(100.0), np.float64(638.29917): np.float64(100.0), np.float64(640.2248): np.float64(200.0), np.float64(650.65281): np.float64(150.0), np.float64(653.28822): np.float64(10.0), np.float64(659.89529): np.float64(100.0), np.float64(665.2092700000001): np.float64(15.0), np.float64(667.82762): np.float64(50.0), np.float64(671.7043): np.float64(7.0)}}"}, "ramanchada2.misc.constants.neon_rs_spe": {"fullname": "ramanchada2.misc.constants.neon_rs_spe", "modulename": "ramanchada2.misc.constants", "qualname": "neon_rs_spe", "kind": "variable", "doc": "

\n", "default_value": "{785: from_delta_lines({np.float64(122.46893256885171): np.float64(120.0), np.float64(123.92790418673181): np.float64(3.0), np.float64(139.62846387796614): np.float64(13.0), np.float64(149.43939261183922): np.float64(80.0), np.float64(366.3796839579363): np.float64(60.0), np.float64(369.2675936274158): np.float64(100.0), np.float64(421.38180516260735): np.float64(40.0), np.float64(437.0823975157964): np.float64(12.0), np.float64(448.4137962350071): np.float64(170.0), np.float64(631.4057156452395): np.float64(30.0), np.float64(639.3574108984682): np.float64(100.0), np.float64(641.2166700808558): np.float64(70.0), np.float64(642.737084741243): np.float64(10.0), np.float64(691.1336413932653): np.float64(300.0), np.float64(712.3880633377877): np.float64(100.0), np.float64(785.3477634818161): np.float64(50.0), np.float64(794.42757260046): np.float64(100.0), np.float64(802.2720828079191): np.float64(800.0), np.float64(858.3625927463404): np.float64(30.0), np.float64(860.1503620255945): np.float64(250.0), np.float64(923.2117794361885): np.float64(40.0), np.float64(952.5766542670426): np.float64(13.0), np.float64(967.7216907334014): np.float64(700.0), np.float64(1035.6867269022846): np.float64(15.0), np.float64(1072.08315781891): np.float64(30.0), np.float64(1099.115138430138): np.float64(400.0), np.float64(1157.604148115537): np.float64(350.0), np.float64(1174.2039492465462): np.float64(60.0), np.float64(1184.0148919843368): np.float64(600.0), np.float64(1185.5352862129364): np.float64(80.0), np.float64(1202.5075530881757): np.float64(100.0), np.float64(1217.4425451131438): np.float64(130.0), np.float64(1220.665437642399): np.float64(150.0), np.float64(1250.0302210935215): np.float64(30.0), np.float64(1338.4980195800945): np.float64(100.0), np.float64(1350.1394500377296): np.float64(600.0), np.float64(1354.1986085623885): np.float64(400.0), np.float64(1414.9886119309567): np.float64(6.0), np.float64(1444.3533419670161): np.float64(300.0), np.float64(1458.9273939198806): np.float64(20.0), np.float64(1459.498530694608): np.float64(150.0), np.float64(1527.4634843309643): np.float64(60.0), np.float64(1613.5965041854067): np.float64(20.0), np.float64(1724.9850603188252): np.float64(100.0), np.float64(1808.3048539141466): np.float64(120.0), np.float64(1871.3662202368241): np.float64(90.0), np.float64(1892.9372168038894): np.float64(60.0), np.float64(1894.7249573620707): np.float64(20.0), np.float64(1900.7309751098303): np.float64(20.0), np.float64(1957.786316393365): np.float64(9.0), np.float64(1971.7663781767853): np.float64(200.0), np.float64(1987.151135078183): np.float64(80.0), np.float64(1998.388557694021): np.float64(8.0), np.float64(2002.2962579980554): np.float64(30.0), np.float64(2016.7254712832068): np.float64(70.0), np.float64(2070.2611413719483): np.float64(15.0), np.float64(2129.200339961183): np.float64(50.0), np.float64(2167.1455819255425): np.float64(30.0), np.float64(2197.759988274157): np.float64(50.0), np.float64(2250.2557050497553): np.float64(60.0), np.float64(2264.8031148954296): np.float64(30.0), np.float64(2297.184477570986): np.float64(120.0), np.float64(2392.6912977297347): np.float64(180.0), np.float64(2543.988860402575): np.float64(100.0)}, xcal=<function <lambda>>, nbins=4500).convolve('gaussian', sigma=1), 633: from_delta_lines({np.float64(131.15349323856475): np.float64(100.0), np.float64(178.27466380474812): np.float64(200.0), np.float64(428.6085469303318): np.float64(150.0), np.float64(490.60888429816987): np.float64(10.0), np.float64(643.8689658571262): np.float64(100.0), np.float64(764.9250424124886): np.float64(15.0), np.float64(823.8643500376157): np.float64(50.0), np.float64(910.2849841405953): np.float64(7.0), np.float64(1366.664578090937): np.float64(1000.0), np.float64(1560.9884142372662): np.float64(300.0), np.float64(1577.918319348396): np.float64(800.0), np.float64(1615.9907404166095): np.float64(20.0), np.float64(1631.6913325599187): np.float64(100.0), np.float64(1858.4430565740402): np.float64(800.0), np.float64(1934.3157870391897): np.float64(150.0), np.float64(1976.4473852543142): np.float64(150.0), np.float64(1995.483197701751): np.float64(800.0), np.float64(2181.1285988136524): np.float64(150.0), np.float64(2415.276207094919): np.float64(30.0), np.float64(2444.6410422620947): np.float64(300.0), np.float64(2450.3992858353195): np.float64(100.0), np.float64(2504.8972680083675): np.float64(150.0), np.float64(2527.75145967322): np.float64(300.0), np.float64(2542.2988104564824): np.float64(130.0), np.float64(2852.1732140759405): np.float64(1.0), np.float64(2879.1234484825845): np.float64(120.0), np.float64(3041.1452207757484): np.float64(2.0), np.float64(3181.4037390207895): np.float64(120.0), np.float64(3182.86271063867): np.float64(3.0), np.float64(3198.563270329904): np.float64(13.0), np.float64(3208.3741990637773): np.float64(80.0), np.float64(3425.314490409874): np.float64(60.0), np.float64(3428.2024000793535): np.float64(100.0), np.float64(3480.3166116145453): np.float64(40.0), np.float64(3496.0172039677345): np.float64(12.0), np.float64(3507.348602686945): np.float64(170.0), np.float64(3690.340522097177): np.float64(30.0), np.float64(3698.292217350406): np.float64(100.0), np.float64(3700.151476532794): np.float64(70.0), np.float64(3701.671891193181): np.float64(10.0), np.float64(3750.068447845203): np.float64(300.0), np.float64(3771.3228697897257): np.float64(100.0), np.float64(3844.282569933754): np.float64(50.0), np.float64(3853.362379052398): np.float64(100.0), np.float64(3861.206889259857): np.float64(800.0), np.float64(3917.2973991982785): np.float64(30.0), np.float64(3919.0851684775325): np.float64(250.0), np.float64(3982.1465858881265): np.float64(40.0), np.float64(4011.5114607189803): np.float64(13.0), np.float64(4026.6564971853395): np.float64(700.0), np.float64(4094.6215333542223): np.float64(15.0), np.float64(4131.017964270848): np.float64(30.0), np.float64(4158.049944882076): np.float64(400.0), np.float64(4216.538954567475): np.float64(350.0), np.float64(4233.138755698485): np.float64(60.0), np.float64(4242.949698436275): np.float64(600.0), np.float64(4244.470092664874): np.float64(80.0), np.float64(4261.442359540114): np.float64(100.0), np.float64(4276.377351565082): np.float64(130.0), np.float64(4279.600244094337): np.float64(150.0), np.float64(4308.96502754546): np.float64(30.0), np.float64(4397.432826032033): np.float64(100.0), np.float64(4409.074256489667): np.float64(600.0), np.float64(4413.133415014327): np.float64(400.0), np.float64(4473.923418382895): np.float64(6.0)}, xcal=<function <lambda>>, nbins=4500).convolve('gaussian', sigma=2), 532: from_delta_lines({np.float64(280.400374063339): np.float64(200.0), np.float64(820.3246859611342): np.float64(50.0), np.float64(1118.7121507719057): np.float64(50.0), np.float64(1312.1053685299726): np.float64(50.0), np.float64(1400.5402962651492): np.float64(50.0), np.float64(1449.1897851185397): np.float64(70.0), np.float64(1568.8301417453613): np.float64(50.0), np.float64(1615.3218462004172): np.float64(50.0), np.float64(1710.2420754482148): np.float64(200.0), np.float64(1769.419306271512): np.float64(50.0), np.float64(1795.6695062543874): np.float64(100.0), np.float64(1854.9105300823699): np.float64(5.0), np.float64(1866.2898133610774): np.float64(5.0), np.float64(1975.6654877605317): np.float64(50.0), np.float64(2033.8567623301808): np.float64(50.0), np.float64(2059.546783125738): np.float64(50.0), np.float64(2062.0864460269026): np.float64(60.0), np.float64(2096.667422736005): np.float64(15.0), np.float64(2213.236028525559): np.float64(100.0), np.float64(2334.292358356692): np.float64(100.0), np.float64(2393.2318928421078): np.float64(30.0), np.float64(2479.652593999227): np.float64(10.0), np.float64(2518.4671736471323): np.float64(100.0), np.float64(2572.691915262086): np.float64(100.0), np.float64(2621.3796761996955): np.float64(15.0), np.float64(2712.79156071062): np.float64(100.0), np.float64(2839.1085285308986): np.float64(100.0), np.float64(2936.033203089824): np.float64(10.0), np.float64(2994.6222331219114): np.float64(30.0), np.float64(3010.246912802971): np.float64(100.0), np.float64(3130.3576648049207): np.float64(100.0), np.float64(3177.4788353711037): np.float64(200.0), np.float64(3427.8127184966875): np.float64(150.0), np.float64(3489.8130558645257): np.float64(10.0), np.float64(3643.073137423482): np.float64(100.0), np.float64(3764.1292139788443): np.float64(15.0), np.float64(3823.0685216039715): np.float64(50.0), np.float64(3909.4891557069514): np.float64(7.0)}, xcal=<function <lambda>>, nbins=4500).convolve('gaussian', sigma=3)}"}, "ramanchada2.misc.constants.neon_wl_spe": {"fullname": "ramanchada2.misc.constants.neon_wl_spe", "modulename": "ramanchada2.misc.constants", "qualname": "neon_wl_spe", "kind": "variable", "doc": "

\n", "default_value": "{785: from_delta_lines({np.float64(792.6201): np.float64(120.0), np.float64(792.71177): np.float64(3.0), np.float64(793.69961): np.float64(13.0), np.float64(794.3181400000001): np.float64(80.0), np.float64(808.2457999999999): np.float64(60.0), np.float64(808.4345000000001): np.float64(100.0), np.float64(811.85492): np.float64(40.0), np.float64(812.89108): np.float64(12.0), np.float64(813.64054): np.float64(170.0), np.float64(825.9379000000001): np.float64(30.0), np.float64(826.4807): np.float64(100.0), np.float64(826.60772): np.float64(70.0), np.float64(826.7116200000002): np.float64(10.0), np.float64(830.0325800000002): np.float64(300.0), np.float64(831.4995000000001): np.float64(100.0), np.float64(836.5746600000001): np.float64(50.0), np.float64(837.2106): np.float64(100.0), np.float64(837.7608000000001): np.float64(800.0), np.float64(841.7160600000001): np.float64(30.0), np.float64(841.84274): np.float64(250.0), np.float64(846.33575): np.float64(40.0), np.float64(848.4443499999999): np.float64(13.0), np.float64(849.5359799999999): np.float64(700.0), np.float64(854.46958): np.float64(15.0), np.float64(857.13524): np.float64(30.0), np.float64(859.1258399999999): np.float64(400.0), np.float64(863.4647000000001): np.float64(350.0), np.float64(864.7041100000001): np.float64(60.0), np.float64(865.43831): np.float64(600.0), np.float64(865.5522000000001): np.float64(80.0), np.float64(866.8255999999999): np.float64(100.0), np.float64(867.94925): np.float64(130.0), np.float64(868.1921100000001): np.float64(150.0), np.float64(870.4111599999999): np.float64(30.0), np.float64(877.1656300000001): np.float64(100.0), np.float64(878.06226): np.float64(600.0), np.float64(878.3753300000001): np.float64(400.0), np.float64(883.0907199999999): np.float64(6.0), np.float64(885.3866799999998): np.float64(300.0), np.float64(886.53063): np.float64(20.0), np.float64(886.57552): np.float64(150.0), np.float64(891.9500599999998): np.float64(60.0), np.float64(898.85564): np.float64(20.0), np.float64(907.9462): np.float64(100.0), np.float64(914.8671600000001): np.float64(120.0), np.float64(920.1759099999999): np.float64(90.0), np.float64(922.00601): np.float64(60.0), np.float64(922.1580099999999): np.float64(20.0), np.float64(922.66903): np.float64(20.0), np.float64(927.5519599999999): np.float64(9.0), np.float64(928.7563): np.float64(200.0), np.float64(930.0852699999999): np.float64(80.0), np.float64(931.0583899999999): np.float64(8.0), np.float64(931.39726): np.float64(30.0), np.float64(932.6506799999999): np.float64(70.0), np.float64(937.3307799999999): np.float64(15.0), np.float64(942.5378800000001): np.float64(50.0), np.float64(945.9209500000001): np.float64(30.0), np.float64(948.66818): np.float64(50.0), np.float64(953.41629): np.float64(60.0), np.float64(954.74049): np.float64(30.0), np.float64(957.7013000000001): np.float64(120.0), np.float64(966.5419700000001): np.float64(180.0), np.float64(980.8860000000001): np.float64(100.0)}, xcal=<function <lambda>>, nbins=4500).convolve('gaussian', sigma=1.5), 633: from_delta_lines({np.float64(638.29917): np.float64(100.0), np.float64(640.2248): np.float64(200.0), np.float64(650.65281): np.float64(150.0), np.float64(653.28822): np.float64(10.0), np.float64(659.89529): np.float64(100.0), np.float64(665.2092700000001): np.float64(15.0), np.float64(667.82762): np.float64(50.0), np.float64(671.7043): np.float64(7.0), np.float64(692.94673): np.float64(1000.0), np.float64(702.40504): np.float64(300.0), np.float64(703.24131): np.float64(800.0), np.float64(705.12923): np.float64(20.0), np.float64(705.91074): np.float64(100.0), np.float64(717.39381): np.float64(800.0), np.float64(721.3199999999999): np.float64(150.0), np.float64(723.5188): np.float64(150.0), np.float64(724.51666): np.float64(800.0), np.float64(734.3945): np.float64(150.0), np.float64(747.24386): np.float64(30.0), np.float64(748.8871199999999): np.float64(300.0), np.float64(749.2102): np.float64(100.0), np.float64(752.2818): np.float64(150.0), np.float64(753.57741): np.float64(300.0), np.float64(754.4044299999999): np.float64(130.0), np.float64(772.4623300000001): np.float64(1.0), np.float64(774.0738): np.float64(120.0), np.float64(783.9052899999999): np.float64(2.0), np.float64(792.6201): np.float64(120.0), np.float64(792.71177): np.float64(3.0), np.float64(793.69961): np.float64(13.0), np.float64(794.3181400000001): np.float64(80.0), np.float64(808.2457999999999): np.float64(60.0), np.float64(808.4345000000001): np.float64(100.0), np.float64(811.85492): np.float64(40.0), np.float64(812.89108): np.float64(12.0), np.float64(813.64054): np.float64(170.0), np.float64(825.9379000000001): np.float64(30.0), np.float64(826.4807): np.float64(100.0), np.float64(826.60772): np.float64(70.0), np.float64(826.7116200000002): np.float64(10.0), np.float64(830.0325800000002): np.float64(300.0), np.float64(831.4995000000001): np.float64(100.0), np.float64(836.5746600000001): np.float64(50.0), np.float64(837.2106): np.float64(100.0), np.float64(837.7608000000001): np.float64(800.0), np.float64(841.7160600000001): np.float64(30.0), np.float64(841.84274): np.float64(250.0), np.float64(846.33575): np.float64(40.0), np.float64(848.4443499999999): np.float64(13.0), np.float64(849.5359799999999): np.float64(700.0), np.float64(854.46958): np.float64(15.0), np.float64(857.13524): np.float64(30.0), np.float64(859.1258399999999): np.float64(400.0), np.float64(863.4647000000001): np.float64(350.0), np.float64(864.7041100000001): np.float64(60.0), np.float64(865.43831): np.float64(600.0), np.float64(865.5522000000001): np.float64(80.0), np.float64(866.8255999999999): np.float64(100.0), np.float64(867.94925): np.float64(130.0), np.float64(868.1921100000001): np.float64(150.0), np.float64(870.4111599999999): np.float64(30.0), np.float64(877.1656300000001): np.float64(100.0), np.float64(878.06226): np.float64(600.0), np.float64(878.3753300000001): np.float64(400.0), np.float64(883.0907199999999): np.float64(6.0)}, xcal=<function <lambda>>, nbins=4500).convolve('gaussian', sigma=1.5), 532: from_delta_lines({np.float64(540.05618): np.float64(200.0), np.float64(556.27662): np.float64(50.0), np.float64(565.66588): np.float64(50.0), np.float64(571.92248): np.float64(50.0), np.float64(574.82985): np.float64(50.0), np.float64(576.4418800000001): np.float64(70.0), np.float64(580.44496): np.float64(50.0), np.float64(582.01558): np.float64(50.0), np.float64(585.24879): np.float64(200.0), np.float64(587.2827500000001): np.float64(50.0), np.float64(588.18952): np.float64(100.0), np.float64(590.24623): np.float64(5.0), np.float64(590.64294): np.float64(5.0), np.float64(594.48342): np.float64(50.0), np.float64(596.5471): np.float64(50.0), np.float64(597.46273): np.float64(50.0), np.float64(597.5534): np.float64(60.0), np.float64(598.79074): np.float64(15.0), np.float64(602.99969): np.float64(100.0), np.float64(607.43377): np.float64(100.0), np.float64(609.61631): np.float64(30.0), np.float64(612.8449899999999): np.float64(10.0), np.float64(614.3062600000001): np.float64(100.0), np.float64(616.35939): np.float64(100.0), np.float64(618.2146): np.float64(15.0), np.float64(621.72812): np.float64(100.0), np.float64(626.6495): np.float64(100.0), np.float64(630.47889): np.float64(10.0), np.float64(632.81646): np.float64(30.0), np.float64(633.4427800000001): np.float64(100.0), np.float64(638.29917): np.float64(100.0), np.float64(640.2248): np.float64(200.0), np.float64(650.65281): np.float64(150.0), np.float64(653.28822): np.float64(10.0), np.float64(659.89529): np.float64(100.0), np.float64(665.2092700000001): np.float64(15.0), np.float64(667.82762): np.float64(50.0), np.float64(671.7043): np.float64(7.0)}, xcal=<function <lambda>>, nbins=4500).convolve('gaussian', sigma=1.5)}"}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"fullname": "ramanchada2.misc.constants.neon_wl_785_nist_dict", "modulename": "ramanchada2.misc.constants", "qualname": "neon_wl_785_nist_dict", "kind": "variable", "doc": "

\n", "default_value": "{792.6841221569385: 5.37437266023976, 793.7330415754924: 0.5689277951354417, 794.3457330415755: 3.501094091821991, 808.4285595693893: 7.202537154952434, 811.8949671772428: 1.7505470455873593, 812.945295404814: 0.5251641209139684, 813.6892778993436: 7.439824945294173, 825.9868433097755: 1.3120972814694163, 826.5665828089599: 7.94695465954125, 830.0568927789934: 13.129102844632756, 831.5448577680525: 4.3763676148399115, 836.6214442013129: 2.1881838071971296, 837.234135667396: 4.376367614845547, 837.8030634573304: 35.010940919002735, 841.8664541909187: 12.03028296382178, 846.3807439824946: 1.750547045586516, 848.4814004376367: 0.568927789934395, 849.5754923413567: 30.634573304125958, 854.5207877461706: 0.6564551422317848, 857.1903719912473: 1.3129102839767155, 859.1597374179431: 17.50547045950853, 863.4923413566739: 15.317286652068542, 865.469184130712: 29.20051773802159, 866.8621444201312: 4.376367614840063, 868.0: 5.689277899344474, 868.218818380744: 6.564551422319682, 870.4507658643327: 1.3129102839772355, 877.190371991244: 4.376367613743546, 878.1094091903724: 26.2582056879645, 878.4157549234137: 17.505470458778227, 883.1422319474835: 0.262582056892803, 885.4179431072209: 13.129102844635762, 886.5947874281137: 7.437997551100201, 891.9824945295405: 2.6258205687594547, 898.8971553610503: 0.8752735229757134, 908.0: 4.376367614838839, 914.9146608315099: 5.251641137834712, 920.2100656455142: 3.9387308533338343, 922.0688951698448: 3.3797527091026245, 927.6061269146609: 0.39387308533920273, 928.7877461706784: 8.752735229757006, 930.144420131291: 3.5010940918132034, 931.1072210065647: 0.35010940916879774, 931.4573304157549: 1.3129102844605525, 932.6827133479212: 3.0634573302989097, 937.3654266958424: 0.6564551422320757, 942.5733041575493: 2.188183807192464, 945.9431072210066: 1.3129102839781117, 948.7002188183808: 2.188183807191779, 953.4704595185996: 2.6258205687594476, 954.7833698030635: 1.3129102839777373, 957.7592997811817: 5.2516411378370345, 966.5995623632385: 7.877461706780519, 980.910284463895: 4.376367614839546}"}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"fullname": "ramanchada2.misc.constants.neon_wl_633_nist_dict", "modulename": "ramanchada2.misc.constants", "qualname": "neon_wl_633_nist_dict", "kind": "variable", "doc": "

\n", "default_value": "{638.3287981859411: 5.6689342403499765, 640.2562358276643: 11.337868480727586, 650.6870748299319: 8.503401360545043, 653.3514739229025: 0.566893424036351, 659.9274376417234: 5.668934240348053, 665.2562358276643: 0.8503401360546983, 667.8639455782313: 2.8344671200402334, 671.7755102040816: 0.39682539682552465, 692.9773242630386: 56.68934240353873, 702.4444444444445: 17.006802721074873, 703.2947845804988: 45.351473922858105, 705.1655328798186: 1.1337868476493322, 705.9591836734694: 5.668934240348062, 717.4671201814059: 45.351473922836774, 721.3786848072563: 8.503401360545148, 723.5895691609977: 8.50340136054297, 724.5532879818594: 45.351473922833904, 734.4739229024943: 8.503401360542986, 747.2857142857143: 1.7006802717293952, 748.9297052154195: 17.00680272108454, 749.2698412698412: 5.6689342403646865, 752.3310657596371: 8.503401360527796, 753.6349206349206: 17.006802721048707, 754.4852607709751: 7.369614512457517, 772.5124716553288: 0.05668934240365808, 774.156462585034: 6.802721088429488, 783.9637188208617: 0.11337868480724644, 792.6951245635115: 6.971961625854252, 793.77097505694: 0.7369614305162637, 794.3945578231699: 4.535147381418968, 808.4417565814348: 9.329816961551543, 811.9115646254535: 2.2675736482945825, 812.9319727898597: 0.6802720427342306, 813.6689342404153: 9.63718817885658, 825.9704271162868: 1.6978631010464373, 826.5881899888147: 10.231887665802304, 830.1088435374149: 17.00680272107302, 831.5827664399093: 5.668934240348589, 836.6281179138335: 2.8344671202589966, 837.2517006802728: 5.6689342195710095, 837.8185941043079: 45.351473923298364, 841.8913979246645: 15.8101670633123, 846.3786848072561: 2.26757369591529, 848.4761904759695: 0.7369614416713715, 849.6099773242671: 39.68253967290885, 854.5419501133787: 0.8503401360543106, 857.2063492063492: 1.7006802717279004, 859.1904761904761: 22.67573696142483, 863.4988662131518: 19.841269841214043, 864.7460316744742: 3.401354571136033, 865.4928040619619: 38.396369552201875, 866.9002267573604: 5.668934237269633, 868.034013605442: 7.369614508413964, 868.26077097504: 8.503401360112813, 870.4716553287982: 1.7006802717287801, 877.2176870748299: 5.668934240361571, 878.1247165532881: 34.01360544219461, 878.4081632653063: 22.675736961434616, 883.1700680272108: 0.3401360544216929}"}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"fullname": "ramanchada2.misc.constants.neon_wl_532_nist_dict", "modulename": "ramanchada2.misc.constants", "qualname": "neon_wl_532_nist_dict", "kind": "variable", "doc": "

\n", "default_value": "{540.0804670242978: 6.311139160610751, 556.3000946670874: 1.5777847897339283, 565.7036920164089: 1.5777847897345527, 571.9517197854212: 1.5777847897346757, 574.8548437993057: 1.5777847897345527, 576.4641842852635: 2.2088987059726164, 580.4717576522562: 1.5777847897345527, 582.0495424424108: 1.5777847897345523, 585.2682234143263: 6.311139160610822, 587.3193436415273: 1.5777847897341903, 588.234458819817: 3.1555695802011297, 590.285579047018: 0.15777847901546926, 590.6642473966551: 0.15777847901546949, 594.5140422846324: 1.5777847897344977, 596.5651625118334: 1.5777847897347166, 597.5336867539808: 3.5612432617200778, 598.837172609656: 0.4733354370464895, 603.0340801514673: 3.155569580200976, 607.4518775639002: 3.155569580201294, 609.6607762701167: 0.9466708739111769, 612.8794572420321: 0.31555695803092476, 614.3310192489744: 3.1555695802009724, 616.3821394761754: 3.1555695802010364, 618.2439255285578: 0.4733354370463865, 621.7466077627012: 3.1555695802013357, 626.6692963079836: 3.1555695802012638, 630.5190911959609: 0.31555695803092476, 632.8542126853799: 0.9466708729394551, 633.4853266014544: 3.1555695792292964, 638.3449037551278: 3.1555695802011074, 640.2698011991164: 6.31113916061083, 650.6831808141369: 4.733354370433662, 653.3338592615967: 0.3155569580309239, 659.928999684443: 3.155569580201134, 665.2303565793626: 0.4733354370463867, 667.8494793310192: 1.5777847897339252, 671.7308299147995: 0.22088987062164733}"}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"fullname": "ramanchada2.misc.constants.neon_rs_532_nist_dict", "modulename": "ramanchada2.misc.constants", "qualname": "neon_rs_532_nist_dict", "kind": "variable", "doc": "

\n", "default_value": "{np.float64(281.2330516917239): np.float64(6.311139160610751), np.float64(821.0832626643922): np.float64(1.5777847897339283), np.float64(1119.893778955298): np.float64(1.5777847897345527), np.float64(1312.9992452849574): np.float64(1.5777847897346757), np.float64(1401.2966670937728): np.float64(1.5777847897345527), np.float64(1449.8609982668593): np.float64(2.2088987059726164), np.float64(1569.6254850110745): np.float64(1.5777847897345527), np.float64(1616.3243923015864): np.float64(1.5777847897345523), np.float64(1710.8094288202951): np.float64(6.311139160610822), np.float64(1770.4802297973397): np.float64(1.5777847897341903), np.float64(1796.9683410614377): np.float64(3.1555695802011297), np.float64(1856.0399067822946): np.float64(0.15777847901546926), np.float64(1866.9005650681333): np.float64(0.15777847901546949), np.float64(1976.5319222371818): np.float64(1.5777847897344977), np.float64(2034.3643084564255): np.float64(1.5777847897347166), np.float64(2061.5343444013483): np.float64(3.5612432617200778), np.float64(2097.962331786471): np.float64(0.4733354370464895), np.float64(2214.1817758971847): np.float64(3.155569580200976), np.float64(2334.7830958215923): np.float64(3.155569580201294), np.float64(2394.428318916479): np.float64(0.9466708739111769), np.float64(2480.5702519441434): np.float64(0.31555695803092476), np.float64(2519.123243499371): np.float64(3.1555695802009724), np.float64(2573.290722910054): np.float64(3.1555695802010364), np.float64(2622.1469435769654): np.float64(0.4733354370463865), np.float64(2713.269827718664): np.float64(3.1555695802013357), np.float64(2839.6126336264497): np.float64(3.1555695802012638), np.float64(2937.0444802120724): np.float64(0.31555695803092476), np.float64(2995.564917709097): np.float64(0.9466708729394551), np.float64(3011.3071936709794): np.float64(3.1555695792292964), np.float64(3131.480089431727): np.float64(3.1555695802011074), np.float64(3178.576648890281): np.float64(6.31113916061083), np.float64(3428.5300791351247): np.float64(4.733354370433662), np.float64(3490.88235352329): np.float64(0.3155569580309239), np.float64(3643.8472113608263): np.float64(3.155569580201134), np.float64(3764.6057281084186): np.float64(0.4733354370463867), np.float64(3823.558631981562): np.float64(1.5777847897339252), np.float64(3910.0771355602096): np.float64(0.22088987062164733)}"}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"fullname": "ramanchada2.misc.constants.neon_rs_633_nist_dict", "modulename": "ramanchada2.misc.constants", "qualname": "neon_rs_633_nist_dict", "kind": "variable", "doc": "

\n", "default_value": "{np.float64(131.88066389220208): np.float64(5.6689342403499765), np.float64(179.04156354222116): np.float64(11.337868480727586), np.float64(429.41787963591844): np.float64(8.503401360545043), np.float64(492.0908418445599): np.float64(0.566893424036351), np.float64(644.6071724264865): np.float64(5.668934240348053), np.float64(765.9863340283906): np.float64(0.8503401360546983), np.float64(824.6787920356078): np.float64(2.8344671200402334), np.float64(911.8631038159482): np.float64(0.39682539682552465), np.float64(1367.3016979214524): np.float64(56.68934240353873), np.float64(1561.7870442143164): np.float64(17.006802721074873), np.float64(1578.9995182981806): np.float64(45.351473922858105), np.float64(1616.7208386258383): np.float64(1.1337868476493322), np.float64(1632.6634252703236): np.float64(5.668934240348062), np.float64(1859.8673670412886): np.float64(45.351473922836774), np.float64(1935.4435930445873): np.float64(8.503401360545148), np.float64(1977.799152530638): np.float64(8.50340136054297), np.float64(1996.1809387646144): np.float64(45.351473922833904), np.float64(2182.601046783266): np.float64(8.503401360542986), np.float64(2416.025740338238): np.float64(1.7006802717293952), np.float64(2445.4003213358865): np.float64(17.00680272108454), np.float64(2451.46172714364): np.float64(5.6689342403646865), np.float64(2505.7677416665): np.float64(8.503401360527796), np.float64(2528.764109463943): np.float64(17.006802721048707), np.float64(2543.718919624388): np.float64(7.369614512457517), np.float64(2853.013478270963): np.float64(0.05668934240365808), np.float64(2880.502872777571): np.float64(6.802721088429488), np.float64(3042.0959734648623): np.float64(0.11337868480724644), np.float64(3182.5978156792344): np.float64(6.971961625854252), np.float64(3199.69602075866): np.float64(0.7369614305162637), np.float64(3209.585254214946): np.float64(4.535147381418968), np.float64(3428.313429608364): np.float64(9.329816961551543), np.float64(3481.175964530883): np.float64(2.2675736482945825), np.float64(3496.636018035287): np.float64(0.6802720427342306), np.float64(3507.7774966574075): np.float64(9.63718817885658), np.float64(3690.8173192671397): np.float64(1.6978631010464373), np.float64(3699.8656425642857): np.float64(10.231887665802304), np.float64(3751.175292738612): np.float64(17.00680272107302), np.float64(3772.5270806058697): np.float64(5.668934240348589), np.float64(3845.04636147525): np.float64(2.8344671202589966), np.float64(3853.948730839821): np.float64(5.6689342195710095), np.float64(3862.03029427443): np.float64(45.351473923298364), np.float64(3919.7717095729495): np.float64(15.8101670633123), np.float64(3982.7459657037134): np.float64(2.26757369591529), np.float64(4011.9537603014455): np.float64(0.7369614416713715), np.float64(4027.681711437721): np.float64(39.68253967290885), np.float64(4095.6126602455083): np.float64(0.8503401360543106), np.float64(4131.985776490957): np.float64(1.7006802717279004), np.float64(4158.925592793552): np.float64(22.67573696142483), np.float64(4216.997191919614): np.float64(19.841269841214043), np.float64(4233.699393684956): np.float64(3.401354571136033), np.float64(4243.677226254282): np.float64(38.396369552201875), np.float64(4262.435461241407): np.float64(5.668934237269633), np.float64(4277.502418460247): np.float64(7.369614508413964), np.float64(4280.511087990217): np.float64(8.503401360112813), np.float64(4309.7634684110535): np.float64(1.7006802717287801), np.float64(4398.109361819262): np.float64(5.668934240361571), np.float64(4409.8842779054585): np.float64(34.01360544219461), np.float64(4413.558952264782): np.float64(22.675736961434616), np.float64(4474.940806054933): np.float64(0.3401360544216929)}"}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"fullname": "ramanchada2.misc.constants.neon_rs_785_nist_dict", "modulename": "ramanchada2.misc.constants", "qualname": "neon_rs_785_nist_dict", "kind": "variable", "doc": "

\n", "default_value": "{np.float64(123.48791116373066): np.float64(5.37437266023976), np.float64(140.15913593139325): np.float64(0.5689277951354417), np.float64(149.87670877344723): np.float64(3.501094091821991), np.float64(369.17670041748454): np.float64(7.202537154952434), np.float64(421.9893714023522): np.float64(1.7505470455873593), np.float64(437.9028038877788): np.float64(0.5251641209139684), np.float64(449.1499620289975): np.float64(7.439824945294173), np.float64(632.1231345393229): np.float64(1.3120972814694163), np.float64(640.6145857383626): np.float64(7.94695465954125), np.float64(691.4865250966848): np.float64(13.129102844632756), np.float64(713.0440635821694): np.float64(4.3763676148399115), np.float64(786.0162082399527): np.float64(2.1881838071971296), np.float64(794.7633449059146): np.float64(4.376367614845547), np.float64(802.8742305220228): np.float64(35.010940919002735), np.float64(860.4849683432024): np.float64(12.03028296382178), np.float64(923.8399042850345): np.float64(1.750547045586516), np.float64(953.0913228444969): np.float64(0.568927789934395), np.float64(968.2691464716178): np.float64(30.634573304125958), np.float64(1036.3880472238798): np.float64(0.6564551422317848), np.float64(1072.833530550081): np.float64(1.3129102839767155), np.float64(1099.5743744242316): np.float64(17.50547045950853), np.float64(1157.9748768745785): np.float64(15.317286652068542), np.float64(1184.4270910599143): np.float64(29.20051773802159), np.float64(1202.993892324344): np.float64(4.376367614840063), np.float64(1218.1161759957727): np.float64(5.689277899344474), np.float64(1221.0197632407637): np.float64(6.564551422319682), np.float64(1250.5529672316122): np.float64(1.3129102839772355), np.float64(1338.8195774819583): np.float64(4.376367613743546), np.float64(1350.7509554394137): np.float64(26.2582056879645), np.float64(1354.7225333663616): np.float64(17.505470458778227), np.float64(1415.6491106733881): np.float64(0.262582056892803), np.float64(1444.7521380071198): np.float64(13.129102844635762), np.float64(1459.7436530032244): np.float64(7.437997551100201), np.float64(1527.8711561888636): np.float64(2.6258205687594547), np.float64(1614.11032165422): np.float64(0.8752735229757134), np.float64(1725.6376441538746): np.float64(4.376367614838839), np.float64(1808.8723496292414): np.float64(5.251641137834712), np.float64(1871.7695912247377): np.float64(3.9387308533338343), np.float64(1893.6769091320486): np.float64(3.3797527091026245), np.float64(1958.415869313852): np.float64(0.39387308533920273), np.float64(1972.1309218099645): np.float64(8.752735229757006), np.float64(1987.834861812345): np.float64(3.5010940918132034), np.float64(1998.9518308621705): np.float64(0.35010940916879774), np.float64(2002.9886670182382): np.float64(1.3129102844605525), np.float64(2017.093726910536): np.float64(3.0634573302989097), np.float64(2070.6554715489538): np.float64(0.6564551422320757), np.float64(2129.599076084452): np.float64(2.188183807192464), np.float64(2167.393207461413): np.float64(1.3129102839781117), np.float64(2198.1159744687006): np.float64(2.188183807191779), np.float64(2250.851593771674): np.float64(2.6258205687594476), np.float64(2265.27350978513): np.float64(1.3129102839777373), np.float64(2297.8168019125974): np.float64(5.2516411378370345), np.float64(2393.3077473486487): np.float64(7.877461706780519), np.float64(2544.241255373098): np.float64(4.376367614839546)}"}, "ramanchada2.misc.constants.neon_wl_D3_3": {"fullname": "ramanchada2.misc.constants.neon_wl_D3_3", "modulename": "ramanchada2.misc.constants", "qualname": "neon_wl_D3_3", "kind": "variable", "doc": "

\n", "default_value": "[533.07775, 540.05616, 556.27662, 565.66588, 571.92248, 574.82985, 576.44188, 580.44496, 580.44496, 582.01558, 585.24878, 587.28275, 588.1895, 590.24623, 594.4834, 596.5471, 598.79074, 602.99968, 607.43376, 609.6163, 612.84498, 614.30627, 616.35937, 618.2146, 621.72812, 626.64952, 630.47893, 633.44276, 638.29914, 640.2248, 650.65277, 653.28824, 659.89528, 667.82766, 671.7043, 692.94672, 702.405, 703.24128, 705.91079, 717.3938, 724.51665, 748.88712, 753.57739, 754.40439, 794.31805, 808.24576, 811.85495, 813.64061, 830.03248, 836.57464, 837.7607, 846.33569, 849.53591, 854.46952, 857.13535, 859.12583, 863.46472, 870.41122, 877.16575, 878.37539, 885.38669, 891.95007, 898.85564, 898.85564, 914.8672, 920.17588, 927.55191, 930.08532, 932.65072, 937.33079, 942.53797, 945.9211, 948.66825, 953.4164, 954.74052, 966.542]"}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"fullname": "ramanchada2.misc.constants.neon_wl_D3_3_dict", "modulename": "ramanchada2.misc.constants", "qualname": "neon_wl_D3_3_dict", "kind": "variable", "doc": "

\n", "default_value": "{533.07775: 1, 540.05616: 1, 556.27662: 1, 565.66588: 1, 571.92248: 1, 574.82985: 1, 576.44188: 1, 580.44496: 1, 582.01558: 1, 585.24878: 1, 587.28275: 1, 588.1895: 1, 590.24623: 1, 594.4834: 1, 596.5471: 1, 598.79074: 1, 602.99968: 1, 607.43376: 1, 609.6163: 1, 612.84498: 1, 614.30627: 1, 616.35937: 1, 618.2146: 1, 621.72812: 1, 626.64952: 1, 630.47893: 1, 633.44276: 1, 638.29914: 1, 640.2248: 1, 650.65277: 1, 653.28824: 1, 659.89528: 1, 667.82766: 1, 671.7043: 1, 692.94672: 1, 702.405: 1, 703.24128: 1, 705.91079: 1, 717.3938: 1, 724.51665: 1, 748.88712: 1, 753.57739: 1, 754.40439: 1, 794.31805: 1, 808.24576: 1, 811.85495: 1, 813.64061: 1, 830.03248: 1, 836.57464: 1, 837.7607: 1, 846.33569: 1, 849.53591: 1, 854.46952: 1, 857.13535: 1, 859.12583: 1, 863.46472: 1, 870.41122: 1, 877.16575: 1, 878.37539: 1, 885.38669: 1, 891.95007: 1, 898.85564: 1, 914.8672: 1, 920.17588: 1, 927.55191: 1, 930.08532: 1, 932.65072: 1, 937.33079: 1, 942.53797: 1, 945.9211: 1, 948.66825: 1, 953.4164: 1, 954.74052: 1, 966.542: 1}"}, "ramanchada2.misc.constants.NEON_WL": {"fullname": "ramanchada2.misc.constants.NEON_WL", "modulename": "ramanchada2.misc.constants", "qualname": "NEON_WL", "kind": "variable", "doc": "

\n", "annotation": ": Final", "default_value": "{785: {792.6841221569385: 5.37437266023976, 793.7330415754924: 0.5689277951354417, 794.3457330415755: 3.501094091821991, 808.4285595693893: 7.202537154952434, 811.8949671772428: 1.7505470455873593, 812.945295404814: 0.5251641209139684, 813.6892778993436: 7.439824945294173, 825.9868433097755: 1.3120972814694163, 826.5665828089599: 7.94695465954125, 830.0568927789934: 13.129102844632756, 831.5448577680525: 4.3763676148399115, 836.6214442013129: 2.1881838071971296, 837.234135667396: 4.376367614845547, 837.8030634573304: 35.010940919002735, 841.8664541909187: 12.03028296382178, 846.3807439824946: 1.750547045586516, 848.4814004376367: 0.568927789934395, 849.5754923413567: 30.634573304125958, 854.5207877461706: 0.6564551422317848, 857.1903719912473: 1.3129102839767155, 859.1597374179431: 17.50547045950853, 863.4923413566739: 15.317286652068542, 865.469184130712: 29.20051773802159, 866.8621444201312: 4.376367614840063, 868.0: 5.689277899344474, 868.218818380744: 6.564551422319682, 870.4507658643327: 1.3129102839772355, 877.190371991244: 4.376367613743546, 878.1094091903724: 26.2582056879645, 878.4157549234137: 17.505470458778227, 883.1422319474835: 0.262582056892803, 885.4179431072209: 13.129102844635762, 886.5947874281137: 7.437997551100201, 891.9824945295405: 2.6258205687594547, 898.8971553610503: 0.8752735229757134, 908.0: 4.376367614838839, 914.9146608315099: 5.251641137834712, 920.2100656455142: 3.9387308533338343, 922.0688951698448: 3.3797527091026245, 927.6061269146609: 0.39387308533920273, 928.7877461706784: 8.752735229757006, 930.144420131291: 3.5010940918132034, 931.1072210065647: 0.35010940916879774, 931.4573304157549: 1.3129102844605525, 932.6827133479212: 3.0634573302989097, 937.3654266958424: 0.6564551422320757, 942.5733041575493: 2.188183807192464, 945.9431072210066: 1.3129102839781117, 948.7002188183808: 2.188183807191779, 953.4704595185996: 2.6258205687594476, 954.7833698030635: 1.3129102839777373, 957.7592997811817: 5.2516411378370345, 966.5995623632385: 7.877461706780519, 980.910284463895: 4.376367614839546}, 633: {638.3287981859411: 5.6689342403499765, 640.2562358276643: 11.337868480727586, 650.6870748299319: 8.503401360545043, 653.3514739229025: 0.566893424036351, 659.9274376417234: 5.668934240348053, 665.2562358276643: 0.8503401360546983, 667.8639455782313: 2.8344671200402334, 671.7755102040816: 0.39682539682552465, 692.9773242630386: 56.68934240353873, 702.4444444444445: 17.006802721074873, 703.2947845804988: 45.351473922858105, 705.1655328798186: 1.1337868476493322, 705.9591836734694: 5.668934240348062, 717.4671201814059: 45.351473922836774, 721.3786848072563: 8.503401360545148, 723.5895691609977: 8.50340136054297, 724.5532879818594: 45.351473922833904, 734.4739229024943: 8.503401360542986, 747.2857142857143: 1.7006802717293952, 748.9297052154195: 17.00680272108454, 749.2698412698412: 5.6689342403646865, 752.3310657596371: 8.503401360527796, 753.6349206349206: 17.006802721048707, 754.4852607709751: 7.369614512457517, 772.5124716553288: 0.05668934240365808, 774.156462585034: 6.802721088429488, 783.9637188208617: 0.11337868480724644, 792.6951245635115: 6.971961625854252, 793.77097505694: 0.7369614305162637, 794.3945578231699: 4.535147381418968, 808.4417565814348: 9.329816961551543, 811.9115646254535: 2.2675736482945825, 812.9319727898597: 0.6802720427342306, 813.6689342404153: 9.63718817885658, 825.9704271162868: 1.6978631010464373, 826.5881899888147: 10.231887665802304, 830.1088435374149: 17.00680272107302, 831.5827664399093: 5.668934240348589, 836.6281179138335: 2.8344671202589966, 837.2517006802728: 5.6689342195710095, 837.8185941043079: 45.351473923298364, 841.8913979246645: 15.8101670633123, 846.3786848072561: 2.26757369591529, 848.4761904759695: 0.7369614416713715, 849.6099773242671: 39.68253967290885, 854.5419501133787: 0.8503401360543106, 857.2063492063492: 1.7006802717279004, 859.1904761904761: 22.67573696142483, 863.4988662131518: 19.841269841214043, 864.7460316744742: 3.401354571136033, 865.4928040619619: 38.396369552201875, 866.9002267573604: 5.668934237269633, 868.034013605442: 7.369614508413964, 868.26077097504: 8.503401360112813, 870.4716553287982: 1.7006802717287801, 877.2176870748299: 5.668934240361571, 878.1247165532881: 34.01360544219461, 878.4081632653063: 22.675736961434616, 883.1700680272108: 0.3401360544216929}, 532: {540.0804670242978: 6.311139160610751, 556.3000946670874: 1.5777847897339283, 565.7036920164089: 1.5777847897345527, 571.9517197854212: 1.5777847897346757, 574.8548437993057: 1.5777847897345527, 576.4641842852635: 2.2088987059726164, 580.4717576522562: 1.5777847897345527, 582.0495424424108: 1.5777847897345523, 585.2682234143263: 6.311139160610822, 587.3193436415273: 1.5777847897341903, 588.234458819817: 3.1555695802011297, 590.285579047018: 0.15777847901546926, 590.6642473966551: 0.15777847901546949, 594.5140422846324: 1.5777847897344977, 596.5651625118334: 1.5777847897347166, 597.5336867539808: 3.5612432617200778, 598.837172609656: 0.4733354370464895, 603.0340801514673: 3.155569580200976, 607.4518775639002: 3.155569580201294, 609.6607762701167: 0.9466708739111769, 612.8794572420321: 0.31555695803092476, 614.3310192489744: 3.1555695802009724, 616.3821394761754: 3.1555695802010364, 618.2439255285578: 0.4733354370463865, 621.7466077627012: 3.1555695802013357, 626.6692963079836: 3.1555695802012638, 630.5190911959609: 0.31555695803092476, 632.8542126853799: 0.9466708729394551, 633.4853266014544: 3.1555695792292964, 638.3449037551278: 3.1555695802011074, 640.2698011991164: 6.31113916061083, 650.6831808141369: 4.733354370433662, 653.3338592615967: 0.3155569580309239, 659.928999684443: 3.155569580201134, 665.2303565793626: 0.4733354370463867, 667.8494793310192: 1.5777847897339252, 671.7308299147995: 0.22088987062164733}}"}, "ramanchada2.misc.exceptions": {"fullname": "ramanchada2.misc.exceptions", "modulename": "ramanchada2.misc.exceptions", "kind": "module", "doc": "

\n"}, "ramanchada2.misc.exceptions.ApplicationException": {"fullname": "ramanchada2.misc.exceptions.ApplicationException", "modulename": "ramanchada2.misc.exceptions", "qualname": "ApplicationException", "kind": "class", "doc": "

Common base class for all non-exit exceptions.

\n", "bases": "builtins.Exception"}, "ramanchada2.misc.exceptions.InputParserError": {"fullname": "ramanchada2.misc.exceptions.InputParserError", "modulename": "ramanchada2.misc.exceptions", "qualname": "InputParserError", "kind": "class", "doc": "

Common base class for all non-exit exceptions.

\n", "bases": "ApplicationException"}, "ramanchada2.misc.exceptions.ChadaReadNotFoundError": {"fullname": "ramanchada2.misc.exceptions.ChadaReadNotFoundError", "modulename": "ramanchada2.misc.exceptions", "qualname": "ChadaReadNotFoundError", "kind": "class", "doc": "

Common base class for all non-exit exceptions.

\n", "bases": "ApplicationException"}, "ramanchada2.misc.plottable": {"fullname": "ramanchada2.misc.plottable", "modulename": "ramanchada2.misc.plottable", "kind": "module", "doc": "

\n"}, "ramanchada2.misc.plottable.Plottable": {"fullname": "ramanchada2.misc.plottable.Plottable", "modulename": "ramanchada2.misc.plottable", "qualname": "Plottable", "kind": "class", "doc": "

Helper class that provides a standard way to create an ABC using\ninheritance.

\n", "bases": "abc.ABC"}, "ramanchada2.misc.plottable.Plottable.plot": {"fullname": "ramanchada2.misc.plottable.Plottable.plot", "modulename": "ramanchada2.misc.plottable", "qualname": "Plottable.plot", "kind": "function", "doc": "

\n", "signature": "(self, ax=None, label=' ', **kwargs) -> matplotlib.axes._axes.Axes:", "funcdef": "def"}, "ramanchada2.misc.spectrum_deco": {"fullname": "ramanchada2.misc.spectrum_deco", "modulename": "ramanchada2.misc.spectrum_deco", "kind": "module", "doc": "

\n"}, "ramanchada2.misc.spectrum_deco.dynamically_added": {"fullname": "ramanchada2.misc.spectrum_deco.dynamically_added", "modulename": "ramanchada2.misc.spectrum_deco.dynamically_added", "kind": "module", "doc": "

\n"}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"fullname": "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters", "modulename": "ramanchada2.misc.spectrum_deco.dynamically_added", "qualname": "dynamically_added_filters", "kind": "variable", "doc": "

\n", "annotation": ": Set[str]", "default_value": "{'trim_axes', 'convolve', 'fit_peaks_filter', 'add_poisson_noise', 'drop_spikes', 'smoothing_RC1', '__sub__', 'moving_minimum', 'set_new_xaxis', 'hht_sharpening', 'hht_sharpening_chain', 'recover_spikes', 'xcal_fine_RBF', 'scale_yaxis_linear', 'add_gaussian_noise', 'normalize', 'calibrate_by_deltas_filter', '__add__', '__truediv__', 'add_baseline', 'derivative_sharpening', 'subtract_moving_median', 'subtract_baseline_rc1_als', 'abs_nm_to_shift_cm_1_filter', 'scale_xaxis_linear', 'moving_median', 'add_gaussian_noise_drift', 'moving_average', 'subtract_moving_minimum', 'moving_average_convolve', 'get_spikes', 'shift_cm_1_to_abs_nm_filter', 'resample_NUDFT_filter', '__mul__', 'subtract_baseline_rc1_snip', 'pad_zeros', 'xcal_fine', 'scale_xaxis_fun', 'resample_spline_filter', 'find_peak_multipeak_filter'}"}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"fullname": "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors", "modulename": "ramanchada2.misc.spectrum_deco.dynamically_added", "qualname": "dynamically_added_constructors", "kind": "variable", "doc": "

\n", "annotation": ": Set[str]", "default_value": "{'from_chada', 'from_cache_or_calc', 'from_test_spe', 'from_simulation', 'hdr_from_multi_exposure', 'from_spectral_component_collection', 'from_theoretical_lines', 'from_local_file', 'from_delta_lines'}"}, "ramanchada2.misc.spectrum_deco.spectrum_constructor": {"fullname": "ramanchada2.misc.spectrum_deco.spectrum_constructor", "modulename": "ramanchada2.misc.spectrum_deco.spectrum_constructor", "kind": "module", "doc": "

\n"}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor": {"fullname": "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor", "modulename": "ramanchada2.misc.spectrum_deco.spectrum_constructor", "qualname": "add_spectrum_constructor", "kind": "class", "doc": "

\n"}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.__init__": {"fullname": "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.__init__", "modulename": "ramanchada2.misc.spectrum_deco.spectrum_constructor", "qualname": "add_spectrum_constructor.__init__", "kind": "function", "doc": "

\n", "signature": "(set_applied_processing=True)"}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.set_proc": {"fullname": "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.set_proc", "modulename": "ramanchada2.misc.spectrum_deco.spectrum_constructor", "qualname": "add_spectrum_constructor.set_proc", "kind": "variable", "doc": "

\n"}, "ramanchada2.misc.spectrum_deco.spectrum_filter": {"fullname": "ramanchada2.misc.spectrum_deco.spectrum_filter", "modulename": "ramanchada2.misc.spectrum_deco.spectrum_filter", "kind": "module", "doc": "

\n"}, "ramanchada2.misc.spectrum_deco.spectrum_filter.logger": {"fullname": "ramanchada2.misc.spectrum_deco.spectrum_filter.logger", "modulename": "ramanchada2.misc.spectrum_deco.spectrum_filter", "qualname": "logger", "kind": "variable", "doc": "

\n", "default_value": "<Logger ramanchada2.misc.spectrum_deco.spectrum_filter (WARNING)>"}, "ramanchada2.misc.spectrum_deco.spectrum_filter.add_spectrum_filter": {"fullname": "ramanchada2.misc.spectrum_deco.spectrum_filter.add_spectrum_filter", "modulename": "ramanchada2.misc.spectrum_deco.spectrum_filter", "qualname": "add_spectrum_filter", "kind": "function", "doc": "

\n", "signature": "(fun):", "funcdef": "def"}, "ramanchada2.misc.spectrum_deco.spectrum_method": {"fullname": "ramanchada2.misc.spectrum_deco.spectrum_method", "modulename": "ramanchada2.misc.spectrum_deco.spectrum_method", "kind": "module", "doc": "

\n"}, "ramanchada2.misc.spectrum_deco.spectrum_method.add_spectrum_method": {"fullname": "ramanchada2.misc.spectrum_deco.spectrum_method.add_spectrum_method", "modulename": "ramanchada2.misc.spectrum_deco.spectrum_method", "qualname": "add_spectrum_method", "kind": "function", "doc": "

\n", "signature": "(fun):", "funcdef": "def"}, "ramanchada2.misc.types": {"fullname": "ramanchada2.misc.types", "modulename": "ramanchada2.misc.types", "kind": "module", "doc": "

\n"}, "ramanchada2.misc.types.fit_peaks_result": {"fullname": "ramanchada2.misc.types.fit_peaks_result", "modulename": "ramanchada2.misc.types.fit_peaks_result", "kind": "module", "doc": "

\n"}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult": {"fullname": "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult", "modulename": "ramanchada2.misc.types.fit_peaks_result", "qualname": "FitPeaksResult", "kind": "class", "doc": "

A more or less complete user-defined wrapper around list objects.

\n", "bases": "collections.UserList, ramanchada2.misc.plottable.Plottable"}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.valuesdict": {"fullname": "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.valuesdict", "modulename": "ramanchada2.misc.types.fit_peaks_result", "qualname": "FitPeaksResult.valuesdict", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.locations": {"fullname": "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.locations", "modulename": "ramanchada2.misc.types.fit_peaks_result", "qualname": "FitPeaksResult.locations", "kind": "variable", "doc": "

\n"}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.centers": {"fullname": "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.centers", "modulename": "ramanchada2.misc.types.fit_peaks_result", "qualname": "FitPeaksResult.centers", "kind": "variable", "doc": "

\n"}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.fwhm": {"fullname": "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.fwhm", "modulename": "ramanchada2.misc.types.fit_peaks_result", "qualname": "FitPeaksResult.fwhm", "kind": "variable", "doc": "

\n"}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.boundaries": {"fullname": "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.boundaries", "modulename": "ramanchada2.misc.types.fit_peaks_result", "qualname": "FitPeaksResult.boundaries", "kind": "function", "doc": "

\n", "signature": "(self, n_sigma=5):", "funcdef": "def"}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.center_amplitude": {"fullname": "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.center_amplitude", "modulename": "ramanchada2.misc.types.fit_peaks_result", "qualname": "FitPeaksResult.center_amplitude", "kind": "function", "doc": "

\n", "signature": "(self, threshold):", "funcdef": "def"}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.centers_err": {"fullname": "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.centers_err", "modulename": "ramanchada2.misc.types.fit_peaks_result", "qualname": "FitPeaksResult.centers_err", "kind": "variable", "doc": "

\n"}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.fwhms": {"fullname": "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.fwhms", "modulename": "ramanchada2.misc.types.fit_peaks_result", "qualname": "FitPeaksResult.fwhms", "kind": "variable", "doc": "

\n"}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.amplitudes": {"fullname": "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.amplitudes", "modulename": "ramanchada2.misc.types.fit_peaks_result", "qualname": "FitPeaksResult.amplitudes", "kind": "variable", "doc": "

\n"}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.dumps": {"fullname": "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.dumps", "modulename": "ramanchada2.misc.types.fit_peaks_result", "qualname": "FitPeaksResult.dumps", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.loads": {"fullname": "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.loads", "modulename": "ramanchada2.misc.types.fit_peaks_result", "qualname": "FitPeaksResult.loads", "kind": "function", "doc": "

\n", "signature": "(cls, json_str: List[str]):", "funcdef": "def"}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe": {"fullname": "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe", "modulename": "ramanchada2.misc.types.fit_peaks_result", "qualname": "FitPeaksResult.to_dataframe", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe_peaks": {"fullname": "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe_peaks", "modulename": "ramanchada2.misc.types.fit_peaks_result", "qualname": "FitPeaksResult.to_dataframe_peaks", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_csv": {"fullname": "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_csv", "modulename": "ramanchada2.misc.types.fit_peaks_result", "qualname": "FitPeaksResult.to_csv", "kind": "function", "doc": "

\n", "signature": "(self, path_or_buf=None, sep=',', **kwargs):", "funcdef": "def"}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.gen_fake_spectrum": {"fullname": "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.gen_fake_spectrum", "modulename": "ramanchada2.misc.types.fit_peaks_result", "qualname": "FitPeaksResult.gen_fake_spectrum", "kind": "function", "doc": "

\n", "signature": "(self, xarr):", "funcdef": "def"}, "ramanchada2.misc.types.peak_candidates": {"fullname": "ramanchada2.misc.types.peak_candidates", "modulename": "ramanchada2.misc.types.peak_candidates", "kind": "module", "doc": "

\n"}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"fullname": "ramanchada2.misc.types.peak_candidates.PeakModel", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "PeakModel", "kind": "class", "doc": "

Usage docs: https://docs.pydantic.dev/2.9/concepts/models/

\n\n

A base class for creating Pydantic models.

\n\n
Attributes:
\n\n
    \n
  • __class_vars__: The names of the class variables defined on the model.
  • \n
  • __private_attributes__: Metadata about the private attributes of the model.
  • \n
  • __signature__: The synthesized __init__ [Signature][inspect.Signature] of the model.
  • \n
  • __pydantic_complete__: Whether model building is completed, or if there are still undefined fields.
  • \n
  • __pydantic_core_schema__: The core schema of the model.
  • \n
  • __pydantic_custom_init__: Whether the model has a custom __init__ function.
  • \n
  • __pydantic_decorators__: Metadata containing the decorators defined on the model.\nThis replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.
  • \n
  • __pydantic_generic_metadata__: Metadata for generic models; contains data used for a similar purpose to\n__args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
  • \n
  • __pydantic_parent_namespace__: Parent namespace of the model, used for automatic rebuilding of models.
  • \n
  • __pydantic_post_init__: The name of the post-init method for the model, if defined.
  • \n
  • __pydantic_root_model__: Whether the model is a [RootModel][pydantic.root_model.RootModel].
  • \n
  • __pydantic_serializer__: The pydantic-core SchemaSerializer used to dump instances of the model.
  • \n
  • __pydantic_validator__: The pydantic-core SchemaValidator used to validate instances of the model.
  • \n
  • __pydantic_extra__: A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra]\nis set to 'allow'.
  • \n
  • __pydantic_fields_set__: The names of fields explicitly set during instantiation.
  • \n
  • __pydantic_private__: Values of private attributes set on the model instance.
  • \n
\n", "bases": "ramanchada2.misc.types.pydantic_base_model.PydBaseModel"}, "ramanchada2.misc.types.peak_candidates.PeakModel.amplitude": {"fullname": "ramanchada2.misc.types.peak_candidates.PeakModel.amplitude", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "PeakModel.amplitude", "kind": "variable", "doc": "

\n", "annotation": ": typing.Annotated[float, Gt(gt=0)]"}, "ramanchada2.misc.types.peak_candidates.PeakModel.position": {"fullname": "ramanchada2.misc.types.peak_candidates.PeakModel.position", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "PeakModel.position", "kind": "variable", "doc": "

\n", "annotation": ": float"}, "ramanchada2.misc.types.peak_candidates.PeakModel.sigma": {"fullname": "ramanchada2.misc.types.peak_candidates.PeakModel.sigma", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "PeakModel.sigma", "kind": "variable", "doc": "

\n", "annotation": ": typing.Annotated[float, Gt(gt=0)]"}, "ramanchada2.misc.types.peak_candidates.PeakModel.skew": {"fullname": "ramanchada2.misc.types.peak_candidates.PeakModel.skew", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "PeakModel.skew", "kind": "variable", "doc": "

\n", "annotation": ": float"}, "ramanchada2.misc.types.peak_candidates.PeakModel.fwhm": {"fullname": "ramanchada2.misc.types.peak_candidates.PeakModel.fwhm", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "PeakModel.fwhm", "kind": "variable", "doc": "

\n", "annotation": ": float"}, "ramanchada2.misc.types.peak_candidates.PeakModel.lwhm": {"fullname": "ramanchada2.misc.types.peak_candidates.PeakModel.lwhm", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "PeakModel.lwhm", "kind": "variable", "doc": "

Left width at half maximum.

\n", "annotation": ": float"}, "ramanchada2.misc.types.peak_candidates.PeakModel.rwhm": {"fullname": "ramanchada2.misc.types.peak_candidates.PeakModel.rwhm", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "PeakModel.rwhm", "kind": "variable", "doc": "

Right width at half maximum.

\n", "annotation": ": float"}, "ramanchada2.misc.types.peak_candidates.PeakModel.serialize": {"fullname": "ramanchada2.misc.types.peak_candidates.PeakModel.serialize", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "PeakModel.serialize", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_config": {"fullname": "ramanchada2.misc.types.peak_candidates.PeakModel.model_config", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "PeakModel.model_config", "kind": "variable", "doc": "

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

\n", "default_value": "{'arbitrary_types_allowed': True}"}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"fullname": "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "PeakModel.model_fields", "kind": "variable", "doc": "

Metadata about the fields defined on the model,\nmapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.

\n\n

This replaces Model.__fields__ from Pydantic V1.

\n", "annotation": ": ClassVar[Dict[str, pydantic.fields.FieldInfo]]", "default_value": "{'amplitude': FieldInfo(annotation=float, required=True, metadata=[Gt(gt=0)]), 'position': FieldInfo(annotation=float, required=True), 'sigma': FieldInfo(annotation=float, required=True, metadata=[Gt(gt=0)]), 'skew': FieldInfo(annotation=float, required=False, default=0)}"}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_computed_fields": {"fullname": "ramanchada2.misc.types.peak_candidates.PeakModel.model_computed_fields", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "PeakModel.model_computed_fields", "kind": "variable", "doc": "

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

\n", "annotation": ": ClassVar[Dict[str, pydantic.fields.ComputedFieldInfo]]", "default_value": "{}"}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"fullname": "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "PeakCandidateMultiModel", "kind": "class", "doc": "

Usage docs: https://docs.pydantic.dev/2.9/concepts/models/

\n\n

A base class for creating Pydantic models.

\n\n
Attributes:
\n\n
    \n
  • __class_vars__: The names of the class variables defined on the model.
  • \n
  • __private_attributes__: Metadata about the private attributes of the model.
  • \n
  • __signature__: The synthesized __init__ [Signature][inspect.Signature] of the model.
  • \n
  • __pydantic_complete__: Whether model building is completed, or if there are still undefined fields.
  • \n
  • __pydantic_core_schema__: The core schema of the model.
  • \n
  • __pydantic_custom_init__: Whether the model has a custom __init__ function.
  • \n
  • __pydantic_decorators__: Metadata containing the decorators defined on the model.\nThis replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.
  • \n
  • __pydantic_generic_metadata__: Metadata for generic models; contains data used for a similar purpose to\n__args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
  • \n
  • __pydantic_parent_namespace__: Parent namespace of the model, used for automatic rebuilding of models.
  • \n
  • __pydantic_post_init__: The name of the post-init method for the model, if defined.
  • \n
  • __pydantic_root_model__: Whether the model is a [RootModel][pydantic.root_model.RootModel].
  • \n
  • __pydantic_serializer__: The pydantic-core SchemaSerializer used to dump instances of the model.
  • \n
  • __pydantic_validator__: The pydantic-core SchemaValidator used to validate instances of the model.
  • \n
  • __pydantic_extra__: A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra]\nis set to 'allow'.
  • \n
  • __pydantic_fields_set__: The names of fields explicitly set during instantiation.
  • \n
  • __pydantic_private__: Values of private attributes set on the model instance.
  • \n
\n", "bases": "ramanchada2.misc.types.pydantic_base_model.PydBaseModel, ramanchada2.misc.plottable.Plottable"}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.peaks": {"fullname": "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.peaks", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "PeakCandidateMultiModel.peaks", "kind": "variable", "doc": "

\n", "annotation": ": List[ramanchada2.misc.types.peak_candidates.PeakModel]"}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.base_slope": {"fullname": "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.base_slope", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "PeakCandidateMultiModel.base_slope", "kind": "variable", "doc": "

\n", "annotation": ": float"}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.base_intercept": {"fullname": "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.base_intercept", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "PeakCandidateMultiModel.base_intercept", "kind": "variable", "doc": "

\n", "annotation": ": float"}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.boundaries": {"fullname": "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.boundaries", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "PeakCandidateMultiModel.boundaries", "kind": "variable", "doc": "

\n", "annotation": ": Tuple[float, float]"}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_baseline": {"fullname": "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_baseline", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "PeakCandidateMultiModel.plot_params_baseline", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_errorbar": {"fullname": "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_errorbar", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "PeakCandidateMultiModel.plot_params_errorbar", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.positions": {"fullname": "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.positions", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "PeakCandidateMultiModel.positions", "kind": "variable", "doc": "

\n"}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.sigmas": {"fullname": "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.sigmas", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "PeakCandidateMultiModel.sigmas", "kind": "variable", "doc": "

\n"}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.fwhms": {"fullname": "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.fwhms", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "PeakCandidateMultiModel.fwhms", "kind": "variable", "doc": "

\n"}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.lwhms": {"fullname": "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.lwhms", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "PeakCandidateMultiModel.lwhms", "kind": "variable", "doc": "

\n"}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.rwhms": {"fullname": "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.rwhms", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "PeakCandidateMultiModel.rwhms", "kind": "variable", "doc": "

\n"}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.skews": {"fullname": "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.skews", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "PeakCandidateMultiModel.skews", "kind": "variable", "doc": "

\n"}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.amplitudes": {"fullname": "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.amplitudes", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "PeakCandidateMultiModel.amplitudes", "kind": "variable", "doc": "

\n"}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.bases": {"fullname": "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.bases", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "PeakCandidateMultiModel.bases", "kind": "variable", "doc": "

\n"}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_pos_ampl_dict": {"fullname": "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_pos_ampl_dict", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "PeakCandidateMultiModel.get_pos_ampl_dict", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_ampl_pos_fwhm": {"fullname": "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_ampl_pos_fwhm", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "PeakCandidateMultiModel.get_ampl_pos_fwhm", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.peak_bases": {"fullname": "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.peak_bases", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "PeakCandidateMultiModel.peak_bases", "kind": "variable", "doc": "

\n"}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.serialize": {"fullname": "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.serialize", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "PeakCandidateMultiModel.serialize", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_config": {"fullname": "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_config", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "PeakCandidateMultiModel.model_config", "kind": "variable", "doc": "

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

\n", "default_value": "{'arbitrary_types_allowed': True}"}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"fullname": "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "PeakCandidateMultiModel.model_fields", "kind": "variable", "doc": "

Metadata about the fields defined on the model,\nmapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.

\n\n

This replaces Model.__fields__ from Pydantic V1.

\n", "annotation": ": ClassVar[Dict[str, pydantic.fields.FieldInfo]]", "default_value": "{'peaks': FieldInfo(annotation=List[PeakModel], required=True), 'base_slope': FieldInfo(annotation=float, required=False, default=0), 'base_intercept': FieldInfo(annotation=float, required=False, default=0), 'boundaries': FieldInfo(annotation=Tuple[float, float], required=True)}"}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_computed_fields": {"fullname": "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_computed_fields", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "PeakCandidateMultiModel.model_computed_fields", "kind": "variable", "doc": "

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

\n", "annotation": ": ClassVar[Dict[str, pydantic.fields.ComputedFieldInfo]]", "default_value": "{}"}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"fullname": "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "ListPeakCandidateMultiModel", "kind": "class", "doc": "

Usage docs: https://docs.pydantic.dev/2.9/concepts/models/#rootmodel-and-custom-root-types

\n\n

A Pydantic BaseModel for the root object of the model.

\n\n
Attributes:
\n\n
    \n
  • root: The root object of the model.
  • \n
  • __pydantic_root_model__: Whether the model is a RootModel.
  • \n
  • __pydantic_private__: Private fields in the model.
  • \n
  • __pydantic_extra__: Extra fields in the model.
  • \n
\n", "bases": "pydantic.main.BaseModel, typing.Generic[~RootModelRootType]"}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.root": {"fullname": "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.root", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "ListPeakCandidateMultiModel.root", "kind": "variable", "doc": "

\n", "annotation": ": List[ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel]"}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_ampl_pos_fwhm": {"fullname": "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_ampl_pos_fwhm", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "ListPeakCandidateMultiModel.get_ampl_pos_fwhm", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_pos_ampl_dict": {"fullname": "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_pos_ampl_dict", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "ListPeakCandidateMultiModel.get_pos_ampl_dict", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.serialize": {"fullname": "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.serialize", "modulename": "ramanchada2.misc.types.peak_candidates", "qualname": "ListPeakCandidateMultiModel.serialize", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "ramanchada2.misc.types.positive_not_multiple": {"fullname": "ramanchada2.misc.types.positive_not_multiple", "modulename": "ramanchada2.misc.types.positive_not_multiple", "kind": "module", "doc": "

\n"}, "ramanchada2.misc.types.positive_not_multiple.PositiveOddInt": {"fullname": "ramanchada2.misc.types.positive_not_multiple.PositiveOddInt", "modulename": "ramanchada2.misc.types.positive_not_multiple", "qualname": "PositiveOddInt", "kind": "variable", "doc": "

\n", "default_value": "typing.Annotated[int, Gt(gt=0)]"}, "ramanchada2.misc.types.pydantic_base_model": {"fullname": "ramanchada2.misc.types.pydantic_base_model", "modulename": "ramanchada2.misc.types.pydantic_base_model", "kind": "module", "doc": "

\n"}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"fullname": "ramanchada2.misc.types.pydantic_base_model.PydBaseModel", "modulename": "ramanchada2.misc.types.pydantic_base_model", "qualname": "PydBaseModel", "kind": "class", "doc": "

Usage docs: https://docs.pydantic.dev/2.9/concepts/models/

\n\n

A base class for creating Pydantic models.

\n\n
Attributes:
\n\n
    \n
  • __class_vars__: The names of the class variables defined on the model.
  • \n
  • __private_attributes__: Metadata about the private attributes of the model.
  • \n
  • __signature__: The synthesized __init__ [Signature][inspect.Signature] of the model.
  • \n
  • __pydantic_complete__: Whether model building is completed, or if there are still undefined fields.
  • \n
  • __pydantic_core_schema__: The core schema of the model.
  • \n
  • __pydantic_custom_init__: Whether the model has a custom __init__ function.
  • \n
  • __pydantic_decorators__: Metadata containing the decorators defined on the model.\nThis replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.
  • \n
  • __pydantic_generic_metadata__: Metadata for generic models; contains data used for a similar purpose to\n__args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
  • \n
  • __pydantic_parent_namespace__: Parent namespace of the model, used for automatic rebuilding of models.
  • \n
  • __pydantic_post_init__: The name of the post-init method for the model, if defined.
  • \n
  • __pydantic_root_model__: Whether the model is a [RootModel][pydantic.root_model.RootModel].
  • \n
  • __pydantic_serializer__: The pydantic-core SchemaSerializer used to dump instances of the model.
  • \n
  • __pydantic_validator__: The pydantic-core SchemaValidator used to validate instances of the model.
  • \n
  • __pydantic_extra__: A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra]\nis set to 'allow'.
  • \n
  • __pydantic_fields_set__: The names of fields explicitly set during instantiation.
  • \n
  • __pydantic_private__: Values of private attributes set on the model instance.
  • \n
\n", "bases": "pydantic.main.BaseModel, abc.ABC"}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_config": {"fullname": "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_config", "modulename": "ramanchada2.misc.types.pydantic_base_model", "qualname": "PydBaseModel.model_config", "kind": "variable", "doc": "

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

\n", "default_value": "{'arbitrary_types_allowed': True}"}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.serialize": {"fullname": "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.serialize", "modulename": "ramanchada2.misc.types.pydantic_base_model", "qualname": "PydBaseModel.serialize", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"fullname": "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields", "modulename": "ramanchada2.misc.types.pydantic_base_model", "qualname": "PydBaseModel.model_fields", "kind": "variable", "doc": "

Metadata about the fields defined on the model,\nmapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.

\n\n

This replaces Model.__fields__ from Pydantic V1.

\n", "annotation": ": ClassVar[Dict[str, pydantic.fields.FieldInfo]]", "default_value": "{}"}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_computed_fields": {"fullname": "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_computed_fields", "modulename": "ramanchada2.misc.types.pydantic_base_model", "qualname": "PydBaseModel.model_computed_fields", "kind": "variable", "doc": "

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

\n", "annotation": ": ClassVar[Dict[str, pydantic.fields.ComputedFieldInfo]]", "default_value": "{}"}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"fullname": "ramanchada2.misc.types.pydantic_base_model.PydRootModel", "modulename": "ramanchada2.misc.types.pydantic_base_model", "qualname": "PydRootModel", "kind": "class", "doc": "

Usage docs: https://docs.pydantic.dev/2.9/concepts/models/#rootmodel-and-custom-root-types

\n\n

A Pydantic BaseModel for the root object of the model.

\n\n
Attributes:
\n\n
    \n
  • root: The root object of the model.
  • \n
  • __pydantic_root_model__: Whether the model is a RootModel.
  • \n
  • __pydantic_private__: Private fields in the model.
  • \n
  • __pydantic_extra__: Extra fields in the model.
  • \n
\n", "bases": "pydantic.main.BaseModel, typing.Generic[~RootModelRootType]"}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel.serialize": {"fullname": "ramanchada2.misc.types.pydantic_base_model.PydRootModel.serialize", "modulename": "ramanchada2.misc.types.pydantic_base_model", "qualname": "PydRootModel.serialize", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "ramanchada2.misc.types.spectrum": {"fullname": "ramanchada2.misc.types.spectrum", "modulename": "ramanchada2.misc.types.spectrum", "kind": "module", "doc": "

\n"}, "ramanchada2.misc.types.spectrum.applied_processings": {"fullname": "ramanchada2.misc.types.spectrum.applied_processings", "modulename": "ramanchada2.misc.types.spectrum.applied_processings", "kind": "module", "doc": "

\n"}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"fullname": "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel", "modulename": "ramanchada2.misc.types.spectrum.applied_processings", "qualname": "SpeProcessingModel", "kind": "class", "doc": "

Usage docs: https://docs.pydantic.dev/2.9/concepts/models/

\n\n

A base class for creating Pydantic models.

\n\n
Attributes:
\n\n
    \n
  • __class_vars__: The names of the class variables defined on the model.
  • \n
  • __private_attributes__: Metadata about the private attributes of the model.
  • \n
  • __signature__: The synthesized __init__ [Signature][inspect.Signature] of the model.
  • \n
  • __pydantic_complete__: Whether model building is completed, or if there are still undefined fields.
  • \n
  • __pydantic_core_schema__: The core schema of the model.
  • \n
  • __pydantic_custom_init__: Whether the model has a custom __init__ function.
  • \n
  • __pydantic_decorators__: Metadata containing the decorators defined on the model.\nThis replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.
  • \n
  • __pydantic_generic_metadata__: Metadata for generic models; contains data used for a similar purpose to\n__args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
  • \n
  • __pydantic_parent_namespace__: Parent namespace of the model, used for automatic rebuilding of models.
  • \n
  • __pydantic_post_init__: The name of the post-init method for the model, if defined.
  • \n
  • __pydantic_root_model__: Whether the model is a [RootModel][pydantic.root_model.RootModel].
  • \n
  • __pydantic_serializer__: The pydantic-core SchemaSerializer used to dump instances of the model.
  • \n
  • __pydantic_validator__: The pydantic-core SchemaValidator used to validate instances of the model.
  • \n
  • __pydantic_extra__: A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra]\nis set to 'allow'.
  • \n
  • __pydantic_fields_set__: The names of fields explicitly set during instantiation.
  • \n
  • __pydantic_private__: Values of private attributes set on the model instance.
  • \n
\n", "bases": "pydantic.main.BaseModel"}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.proc": {"fullname": "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.proc", "modulename": "ramanchada2.misc.types.spectrum.applied_processings", "qualname": "SpeProcessingModel.proc", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.args": {"fullname": "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.args", "modulename": "ramanchada2.misc.types.spectrum.applied_processings", "qualname": "SpeProcessingModel.args", "kind": "variable", "doc": "

\n", "annotation": ": List"}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.kwargs": {"fullname": "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.kwargs", "modulename": "ramanchada2.misc.types.spectrum.applied_processings", "qualname": "SpeProcessingModel.kwargs", "kind": "variable", "doc": "

\n", "annotation": ": Dict"}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.is_constructor": {"fullname": "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.is_constructor", "modulename": "ramanchada2.misc.types.spectrum.applied_processings", "qualname": "SpeProcessingModel.is_constructor", "kind": "variable", "doc": "

\n"}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.check_proc": {"fullname": "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.check_proc", "modulename": "ramanchada2.misc.types.spectrum.applied_processings", "qualname": "SpeProcessingModel.check_proc", "kind": "function", "doc": "

\n", "signature": "(cls, val: str):", "funcdef": "def"}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_config": {"fullname": "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_config", "modulename": "ramanchada2.misc.types.spectrum.applied_processings", "qualname": "SpeProcessingModel.model_config", "kind": "variable", "doc": "

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

\n", "annotation": ": ClassVar[pydantic.config.ConfigDict]", "default_value": "{}"}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"fullname": "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields", "modulename": "ramanchada2.misc.types.spectrum.applied_processings", "qualname": "SpeProcessingModel.model_fields", "kind": "variable", "doc": "

Metadata about the fields defined on the model,\nmapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.

\n\n

This replaces Model.__fields__ from Pydantic V1.

\n", "annotation": ": ClassVar[Dict[str, pydantic.fields.FieldInfo]]", "default_value": "{'proc': FieldInfo(annotation=str, required=True), 'args': FieldInfo(annotation=List, required=False, default=[]), 'kwargs': FieldInfo(annotation=Dict, required=False, default={})}"}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields": {"fullname": "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields", "modulename": "ramanchada2.misc.types.spectrum.applied_processings", "qualname": "SpeProcessingModel.model_computed_fields", "kind": "variable", "doc": "

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

\n", "annotation": ": ClassVar[Dict[str, pydantic.fields.ComputedFieldInfo]]", "default_value": "{}"}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"fullname": "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel", "modulename": "ramanchada2.misc.types.spectrum.applied_processings", "qualname": "SpeProcessingListModel", "kind": "class", "doc": "

Usage docs: https://docs.pydantic.dev/2.9/concepts/models/#rootmodel-and-custom-root-types

\n\n

A Pydantic BaseModel for the root object of the model.

\n\n
Attributes:
\n\n
    \n
  • root: The root object of the model.
  • \n
  • __pydantic_root_model__: Whether the model is a RootModel.
  • \n
  • __pydantic_private__: Private fields in the model.
  • \n
  • __pydantic_extra__: Extra fields in the model.
  • \n
\n", "bases": "pydantic.main.BaseModel, typing.Generic[~RootModelRootType]"}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.root": {"fullname": "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.root", "modulename": "ramanchada2.misc.types.spectrum.applied_processings", "qualname": "SpeProcessingListModel.root", "kind": "variable", "doc": "

\n", "annotation": ": List[ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel]"}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.append": {"fullname": "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.append", "modulename": "ramanchada2.misc.types.spectrum.applied_processings", "qualname": "SpeProcessingListModel.append", "kind": "function", "doc": "

\n", "signature": "(self, proc, args=[], kwargs={}):", "funcdef": "def"}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.extend_left": {"fullname": "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.extend_left", "modulename": "ramanchada2.misc.types.spectrum.applied_processings", "qualname": "SpeProcessingListModel.extend_left", "kind": "function", "doc": "

\n", "signature": "(\tself,\tproc_list: List[ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel]):", "funcdef": "def"}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.pop": {"fullname": "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.pop", "modulename": "ramanchada2.misc.types.spectrum.applied_processings", "qualname": "SpeProcessingListModel.pop", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.clear": {"fullname": "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.clear", "modulename": "ramanchada2.misc.types.spectrum.applied_processings", "qualname": "SpeProcessingListModel.clear", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.assign": {"fullname": "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.assign", "modulename": "ramanchada2.misc.types.spectrum.applied_processings", "qualname": "SpeProcessingListModel.assign", "kind": "function", "doc": "

\n", "signature": "(self, *args, **kwargs):", "funcdef": "def"}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.repr": {"fullname": "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.repr", "modulename": "ramanchada2.misc.types.spectrum.applied_processings", "qualname": "SpeProcessingListModel.repr", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.cache_path": {"fullname": "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.cache_path", "modulename": "ramanchada2.misc.types.spectrum.applied_processings", "qualname": "SpeProcessingListModel.cache_path", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.to_list": {"fullname": "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.to_list", "modulename": "ramanchada2.misc.types.spectrum.applied_processings", "qualname": "SpeProcessingListModel.to_list", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "ramanchada2.misc.types.spectrum.metadata": {"fullname": "ramanchada2.misc.types.spectrum.metadata", "modulename": "ramanchada2.misc.types.spectrum.metadata", "kind": "module", "doc": "

\n"}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldTyping": {"fullname": "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldTyping", "modulename": "ramanchada2.misc.types.spectrum.metadata", "qualname": "SpeMetadataFieldTyping", "kind": "variable", "doc": "

\n", "default_value": "typing.Union[numpy.ndarray[typing.Any, numpy.dtype[+_ScalarType_co]], typing.Annotated[bool, Strict(strict=True)], typing.Annotated[int, Strict(strict=True)], float, datetime.datetime, typing.List[typing.Any], typing.Dict[str, typing.Any], typing.Annotated[str, Strict(strict=True)]]"}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"fullname": "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel", "modulename": "ramanchada2.misc.types.spectrum.metadata", "qualname": "SpeMetadataFieldModel", "kind": "class", "doc": "

Usage docs: https://docs.pydantic.dev/2.9/concepts/models/#rootmodel-and-custom-root-types

\n\n

A Pydantic BaseModel for the root object of the model.

\n\n
Attributes:
\n\n
    \n
  • root: The root object of the model.
  • \n
  • __pydantic_root_model__: Whether the model is a RootModel.
  • \n
  • __pydantic_private__: Private fields in the model.
  • \n
  • __pydantic_extra__: Extra fields in the model.
  • \n
\n", "bases": "pydantic.main.BaseModel, typing.Generic[~RootModelRootType]"}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.root": {"fullname": "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.root", "modulename": "ramanchada2.misc.types.spectrum.metadata", "qualname": "SpeMetadataFieldModel.root", "kind": "variable", "doc": "

\n", "annotation": ": Union[numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]], Annotated[bool, Strict(strict=True)], Annotated[int, Strict(strict=True)], float, datetime.datetime, List[Any], Dict[str, Any], Annotated[str, Strict(strict=True)]]"}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.pre_validate": {"fullname": "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.pre_validate", "modulename": "ramanchada2.misc.types.spectrum.metadata", "qualname": "SpeMetadataFieldModel.pre_validate", "kind": "function", "doc": "

\n", "signature": "(cls, val):", "funcdef": "def"}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.serialize": {"fullname": "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.serialize", "modulename": "ramanchada2.misc.types.spectrum.metadata", "qualname": "SpeMetadataFieldModel.serialize", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"fullname": "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel", "modulename": "ramanchada2.misc.types.spectrum.metadata", "qualname": "SpeMetadataModel", "kind": "class", "doc": "

Usage docs: https://docs.pydantic.dev/2.9/concepts/models/#rootmodel-and-custom-root-types

\n\n

A Pydantic BaseModel for the root object of the model.

\n\n
Attributes:
\n\n
    \n
  • root: The root object of the model.
  • \n
  • __pydantic_root_model__: Whether the model is a RootModel.
  • \n
  • __pydantic_private__: Private fields in the model.
  • \n
  • __pydantic_extra__: Extra fields in the model.
  • \n
\n", "bases": "pydantic.main.BaseModel, typing.Generic[~RootModelRootType]"}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.root": {"fullname": "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.root", "modulename": "ramanchada2.misc.types.spectrum.metadata", "qualname": "SpeMetadataModel.root", "kind": "variable", "doc": "

\n", "annotation": ": Dict[str, ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel]"}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.serialize": {"fullname": "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.serialize", "modulename": "ramanchada2.misc.types.spectrum.metadata", "qualname": "SpeMetadataModel.serialize", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.get_all_keys": {"fullname": "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.get_all_keys", "modulename": "ramanchada2.misc.types.spectrum.metadata", "qualname": "SpeMetadataModel.get_all_keys", "kind": "function", "doc": "

Returns a list of all keys in the metadata model.

\n", "signature": "(self) -> list[str]:", "funcdef": "def"}, "ramanchada2.misc.utils": {"fullname": "ramanchada2.misc.utils", "modulename": "ramanchada2.misc.utils", "kind": "module", "doc": "

\n"}, "ramanchada2.misc.utils.argmin2d": {"fullname": "ramanchada2.misc.utils.argmin2d", "modulename": "ramanchada2.misc.utils.argmin2d", "kind": "module", "doc": "

\n"}, "ramanchada2.misc.utils.argmin2d.argmin2d": {"fullname": "ramanchada2.misc.utils.argmin2d.argmin2d", "modulename": "ramanchada2.misc.utils.argmin2d", "qualname": "argmin2d", "kind": "function", "doc": "

\n", "signature": "(A):", "funcdef": "def"}, "ramanchada2.misc.utils.argmin2d.find_closest_pairs_idx": {"fullname": "ramanchada2.misc.utils.argmin2d.find_closest_pairs_idx", "modulename": "ramanchada2.misc.utils.argmin2d", "qualname": "find_closest_pairs_idx", "kind": "function", "doc": "

\n", "signature": "(x, y):", "funcdef": "def"}, "ramanchada2.misc.utils.argmin2d.find_closest_pairs": {"fullname": "ramanchada2.misc.utils.argmin2d.find_closest_pairs", "modulename": "ramanchada2.misc.utils.argmin2d", "qualname": "find_closest_pairs", "kind": "function", "doc": "

\n", "signature": "(x, y):", "funcdef": "def"}, "ramanchada2.misc.utils.argmin2d.align": {"fullname": "ramanchada2.misc.utils.argmin2d.align", "modulename": "ramanchada2.misc.utils.argmin2d", "qualname": "align", "kind": "function", "doc": "

Iteratively finds best match between x and y and evaluates the x scaling parameters.\nmin((lambda(x, p)-y)*2 | *p)\nFinds best parameters *p that minimise L2 distance between scaled x and original y

\n", "signature": "(\tx,\ty,\tp0: Union[List[float], numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]]] = [0, 1, 0, 0],\tfunc=<function <lambda>>,\tmax_iter: typing.Annotated[int, Gt(gt=0)] = 1000):", "funcdef": "def"}, "ramanchada2.misc.utils.argmin2d.align_shift": {"fullname": "ramanchada2.misc.utils.argmin2d.align_shift", "modulename": "ramanchada2.misc.utils.argmin2d", "qualname": "align_shift", "kind": "function", "doc": "

\n", "signature": "(\tx,\ty,\tp0: float = 0,\tmax_iter: typing.Annotated[int, Gt(gt=0)] = 1000):", "funcdef": "def"}, "ramanchada2.misc.utils.argmin2d.match_peaks": {"fullname": "ramanchada2.misc.utils.argmin2d.match_peaks", "modulename": "ramanchada2.misc.utils.argmin2d", "qualname": "match_peaks", "kind": "function", "doc": "

\n", "signature": "(spe_pos_dict, ref):", "funcdef": "def"}, "ramanchada2.misc.utils.ramanshift_to_wavelength": {"fullname": "ramanchada2.misc.utils.ramanshift_to_wavelength", "modulename": "ramanchada2.misc.utils.ramanshift_to_wavelength", "kind": "module", "doc": "

\n"}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm_dict": {"fullname": "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm_dict", "modulename": "ramanchada2.misc.utils.ramanshift_to_wavelength", "qualname": "shift_cm_1_to_abs_nm_dict", "kind": "function", "doc": "

\n", "signature": "(deltas, laser_wave_length_nm):", "funcdef": "def"}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1_dict": {"fullname": "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1_dict", "modulename": "ramanchada2.misc.utils.ramanshift_to_wavelength", "qualname": "abs_nm_to_shift_cm_1_dict", "kind": "function", "doc": "

\n", "signature": "(deltas, laser_wave_length_nm):", "funcdef": "def"}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1": {"fullname": "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1", "modulename": "ramanchada2.misc.utils.ramanshift_to_wavelength", "qualname": "abs_nm_to_shift_cm_1", "kind": "function", "doc": "

\n", "signature": "(wl, laser_wave_length_nm):", "funcdef": "def"}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm": {"fullname": "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm", "modulename": "ramanchada2.misc.utils.ramanshift_to_wavelength", "qualname": "shift_cm_1_to_abs_nm", "kind": "function", "doc": "

\n", "signature": "(wn, laser_wave_length_nm):", "funcdef": "def"}, "ramanchada2.misc.utils.ramanshift_to_wavelength.laser_wl_nm": {"fullname": "ramanchada2.misc.utils.ramanshift_to_wavelength.laser_wl_nm", "modulename": "ramanchada2.misc.utils.ramanshift_to_wavelength", "qualname": "laser_wl_nm", "kind": "function", "doc": "

\n", "signature": "(raman_shift_cm_1, wave_length_nm):", "funcdef": "def"}, "ramanchada2.misc.utils.svd": {"fullname": "ramanchada2.misc.utils.svd", "modulename": "ramanchada2.misc.utils.svd", "kind": "module", "doc": "

\n"}, "ramanchada2.misc.utils.svd.svd_solve": {"fullname": "ramanchada2.misc.utils.svd.svd_solve", "modulename": "ramanchada2.misc.utils.svd", "qualname": "svd_solve", "kind": "function", "doc": "

Solves Ax=b

\n", "signature": "(A, b):", "funcdef": "def"}, "ramanchada2.misc.utils.svd.svd_inverse": {"fullname": "ramanchada2.misc.utils.svd.svd_inverse", "modulename": "ramanchada2.misc.utils.svd", "qualname": "svd_inverse", "kind": "function", "doc": "

\n", "signature": "(mat):", "funcdef": "def"}, "ramanchada2.protocols": {"fullname": "ramanchada2.protocols", "modulename": "ramanchada2.protocols", "kind": "module", "doc": "

\n"}, "ramanchada2.protocols.calibration": {"fullname": "ramanchada2.protocols.calibration", "modulename": "ramanchada2.protocols.calibration", "kind": "module", "doc": "

\n"}, "ramanchada2.protocols.calibration.logger": {"fullname": "ramanchada2.protocols.calibration.logger", "modulename": "ramanchada2.protocols.calibration", "qualname": "logger", "kind": "variable", "doc": "

\n", "default_value": "<Logger ramanchada2.protocols.calibration (WARNING)>"}, "ramanchada2.protocols.calibration.ProcessingModel": {"fullname": "ramanchada2.protocols.calibration.ProcessingModel", "modulename": "ramanchada2.protocols.calibration", "qualname": "ProcessingModel", "kind": "class", "doc": "

\n"}, "ramanchada2.protocols.calibration.CalibrationComponent": {"fullname": "ramanchada2.protocols.calibration.CalibrationComponent", "modulename": "ramanchada2.protocols.calibration", "qualname": "CalibrationComponent", "kind": "class", "doc": "

Helper class that provides a standard way to create an ABC using\ninheritance.

\n", "bases": "ramanchada2.misc.plottable.Plottable"}, "ramanchada2.protocols.calibration.CalibrationComponent.__init__": {"fullname": "ramanchada2.protocols.calibration.CalibrationComponent.__init__", "modulename": "ramanchada2.protocols.calibration", "qualname": "CalibrationComponent.__init__", "kind": "function", "doc": "

\n", "signature": "(laser_wl, spe, spe_units, ref, ref_units, sample=None)"}, "ramanchada2.protocols.calibration.CalibrationComponent.laser_wl": {"fullname": "ramanchada2.protocols.calibration.CalibrationComponent.laser_wl", "modulename": "ramanchada2.protocols.calibration", "qualname": "CalibrationComponent.laser_wl", "kind": "variable", "doc": "

\n"}, "ramanchada2.protocols.calibration.CalibrationComponent.spe": {"fullname": "ramanchada2.protocols.calibration.CalibrationComponent.spe", "modulename": "ramanchada2.protocols.calibration", "qualname": "CalibrationComponent.spe", "kind": "variable", "doc": "

\n"}, "ramanchada2.protocols.calibration.CalibrationComponent.spe_units": {"fullname": "ramanchada2.protocols.calibration.CalibrationComponent.spe_units", "modulename": "ramanchada2.protocols.calibration", "qualname": "CalibrationComponent.spe_units", "kind": "variable", "doc": "

\n"}, "ramanchada2.protocols.calibration.CalibrationComponent.ref": {"fullname": "ramanchada2.protocols.calibration.CalibrationComponent.ref", "modulename": "ramanchada2.protocols.calibration", "qualname": "CalibrationComponent.ref", "kind": "variable", "doc": "

\n"}, "ramanchada2.protocols.calibration.CalibrationComponent.ref_units": {"fullname": "ramanchada2.protocols.calibration.CalibrationComponent.ref_units", "modulename": "ramanchada2.protocols.calibration", "qualname": "CalibrationComponent.ref_units", "kind": "variable", "doc": "

\n"}, "ramanchada2.protocols.calibration.CalibrationComponent.name": {"fullname": "ramanchada2.protocols.calibration.CalibrationComponent.name", "modulename": "ramanchada2.protocols.calibration", "qualname": "CalibrationComponent.name", "kind": "variable", "doc": "

\n"}, "ramanchada2.protocols.calibration.CalibrationComponent.model": {"fullname": "ramanchada2.protocols.calibration.CalibrationComponent.model", "modulename": "ramanchada2.protocols.calibration", "qualname": "CalibrationComponent.model", "kind": "variable", "doc": "

\n"}, "ramanchada2.protocols.calibration.CalibrationComponent.model_units": {"fullname": "ramanchada2.protocols.calibration.CalibrationComponent.model_units", "modulename": "ramanchada2.protocols.calibration", "qualname": "CalibrationComponent.model_units", "kind": "variable", "doc": "

\n"}, "ramanchada2.protocols.calibration.CalibrationComponent.peaks": {"fullname": "ramanchada2.protocols.calibration.CalibrationComponent.peaks", "modulename": "ramanchada2.protocols.calibration", "qualname": "CalibrationComponent.peaks", "kind": "variable", "doc": "

\n"}, "ramanchada2.protocols.calibration.CalibrationComponent.sample": {"fullname": "ramanchada2.protocols.calibration.CalibrationComponent.sample", "modulename": "ramanchada2.protocols.calibration", "qualname": "CalibrationComponent.sample", "kind": "variable", "doc": "

\n"}, "ramanchada2.protocols.calibration.CalibrationComponent.enabled": {"fullname": "ramanchada2.protocols.calibration.CalibrationComponent.enabled", "modulename": "ramanchada2.protocols.calibration", "qualname": "CalibrationComponent.enabled", "kind": "variable", "doc": "

\n"}, "ramanchada2.protocols.calibration.CalibrationComponent.fit_res": {"fullname": "ramanchada2.protocols.calibration.CalibrationComponent.fit_res", "modulename": "ramanchada2.protocols.calibration", "qualname": "CalibrationComponent.fit_res", "kind": "variable", "doc": "

\n"}, "ramanchada2.protocols.calibration.CalibrationComponent.set_model": {"fullname": "ramanchada2.protocols.calibration.CalibrationComponent.set_model", "modulename": "ramanchada2.protocols.calibration", "qualname": "CalibrationComponent.set_model", "kind": "function", "doc": "

\n", "signature": "(self, model, model_units, peaks, name=None):", "funcdef": "def"}, "ramanchada2.protocols.calibration.CalibrationComponent.convert_units": {"fullname": "ramanchada2.protocols.calibration.CalibrationComponent.convert_units", "modulename": "ramanchada2.protocols.calibration", "qualname": "CalibrationComponent.convert_units", "kind": "function", "doc": "

\n", "signature": "(self, old_spe, spe_unit='cm-1', newspe_unit='nm', laser_wl=None):", "funcdef": "def"}, "ramanchada2.protocols.calibration.CalibrationComponent.process": {"fullname": "ramanchada2.protocols.calibration.CalibrationComponent.process", "modulename": "ramanchada2.protocols.calibration", "qualname": "CalibrationComponent.process", "kind": "function", "doc": "

\n", "signature": "(\tself,\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tspe_units='cm-1',\tconvert_back=False):", "funcdef": "def"}, "ramanchada2.protocols.calibration.CalibrationComponent.derive_model": {"fullname": "ramanchada2.protocols.calibration.CalibrationComponent.derive_model", "modulename": "ramanchada2.protocols.calibration", "qualname": "CalibrationComponent.derive_model", "kind": "function", "doc": "

\n", "signature": "(self, find_kw={}, fit_peaks_kw={}, should_fit=False, name=None):", "funcdef": "def"}, "ramanchada2.protocols.calibration.CalibrationComponent.plot": {"fullname": "ramanchada2.protocols.calibration.CalibrationComponent.plot", "modulename": "ramanchada2.protocols.calibration", "qualname": "CalibrationComponent.plot", "kind": "function", "doc": "

\n", "signature": "(self, ax=None, label=' ', **kwargs) -> matplotlib.axes._axes.Axes:", "funcdef": "def"}, "ramanchada2.protocols.calibration.CalibrationComponent.fitres2df": {"fullname": "ramanchada2.protocols.calibration.CalibrationComponent.fitres2df", "modulename": "ramanchada2.protocols.calibration", "qualname": "CalibrationComponent.fitres2df", "kind": "function", "doc": "

\n", "signature": "(self, spe):", "funcdef": "def"}, "ramanchada2.protocols.calibration.XCalibrationComponent": {"fullname": "ramanchada2.protocols.calibration.XCalibrationComponent", "modulename": "ramanchada2.protocols.calibration", "qualname": "XCalibrationComponent", "kind": "class", "doc": "

Helper class that provides a standard way to create an ABC using\ninheritance.

\n", "bases": "CalibrationComponent"}, "ramanchada2.protocols.calibration.XCalibrationComponent.__init__": {"fullname": "ramanchada2.protocols.calibration.XCalibrationComponent.__init__", "modulename": "ramanchada2.protocols.calibration", "qualname": "XCalibrationComponent.__init__", "kind": "function", "doc": "

\n", "signature": "(laser_wl, spe, spe_units, ref, ref_units, sample='Neon')"}, "ramanchada2.protocols.calibration.XCalibrationComponent.spe_pos_dict": {"fullname": "ramanchada2.protocols.calibration.XCalibrationComponent.spe_pos_dict", "modulename": "ramanchada2.protocols.calibration", "qualname": "XCalibrationComponent.spe_pos_dict", "kind": "variable", "doc": "

\n"}, "ramanchada2.protocols.calibration.XCalibrationComponent.process": {"fullname": "ramanchada2.protocols.calibration.XCalibrationComponent.process", "modulename": "ramanchada2.protocols.calibration", "qualname": "XCalibrationComponent.process", "kind": "function", "doc": "

\n", "signature": "(\tself,\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tspe_units='cm-1',\tconvert_back=False):", "funcdef": "def"}, "ramanchada2.protocols.calibration.XCalibrationComponent.derive_model": {"fullname": "ramanchada2.protocols.calibration.XCalibrationComponent.derive_model", "modulename": "ramanchada2.protocols.calibration", "qualname": "XCalibrationComponent.derive_model", "kind": "function", "doc": "

\n", "signature": "(\tself,\tfind_kw={'sharpening': None},\tfit_peaks_kw={},\tshould_fit=False,\tname=None):", "funcdef": "def"}, "ramanchada2.protocols.calibration.LazerZeroingComponent": {"fullname": "ramanchada2.protocols.calibration.LazerZeroingComponent", "modulename": "ramanchada2.protocols.calibration", "qualname": "LazerZeroingComponent", "kind": "class", "doc": "

Helper class that provides a standard way to create an ABC using\ninheritance.

\n", "bases": "CalibrationComponent"}, "ramanchada2.protocols.calibration.LazerZeroingComponent.__init__": {"fullname": "ramanchada2.protocols.calibration.LazerZeroingComponent.__init__", "modulename": "ramanchada2.protocols.calibration", "qualname": "LazerZeroingComponent.__init__", "kind": "function", "doc": "

\n", "signature": "(\tlaser_wl,\tspe,\tspe_units='nm',\tref={520.45: 1},\tref_units='cm-1',\tsample='Silicon')"}, "ramanchada2.protocols.calibration.LazerZeroingComponent.profile": {"fullname": "ramanchada2.protocols.calibration.LazerZeroingComponent.profile", "modulename": "ramanchada2.protocols.calibration", "qualname": "LazerZeroingComponent.profile", "kind": "variable", "doc": "

\n"}, "ramanchada2.protocols.calibration.LazerZeroingComponent.derive_model": {"fullname": "ramanchada2.protocols.calibration.LazerZeroingComponent.derive_model", "modulename": "ramanchada2.protocols.calibration", "qualname": "LazerZeroingComponent.derive_model", "kind": "function", "doc": "

\n", "signature": "(self, find_kw={}, fit_peaks_kw={}, should_fit=True, name=None):", "funcdef": "def"}, "ramanchada2.protocols.calibration.LazerZeroingComponent.zero_nm_to_shift_cm_1": {"fullname": "ramanchada2.protocols.calibration.LazerZeroingComponent.zero_nm_to_shift_cm_1", "modulename": "ramanchada2.protocols.calibration", "qualname": "LazerZeroingComponent.zero_nm_to_shift_cm_1", "kind": "function", "doc": "

\n", "signature": "(self, wl, zero_pos_nm, zero_ref_cm_1=520.45):", "funcdef": "def"}, "ramanchada2.protocols.calibration.LazerZeroingComponent.process": {"fullname": "ramanchada2.protocols.calibration.LazerZeroingComponent.process", "modulename": "ramanchada2.protocols.calibration", "qualname": "LazerZeroingComponent.process", "kind": "function", "doc": "

\n", "signature": "(\tself,\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tspe_units='nm',\tconvert_back=False):", "funcdef": "def"}, "ramanchada2.protocols.calibration.YCalibrationCertificate": {"fullname": "ramanchada2.protocols.calibration.YCalibrationCertificate", "modulename": "ramanchada2.protocols.calibration", "qualname": "YCalibrationCertificate", "kind": "class", "doc": "

Class for intensity calibration certificates

\n\n
Usage:
\n\n
\n
    \n
  1. Use for specific SRM\n \n
    \n
    >>> cert = YCalibrationCertificate(\n...             id="NIST785_SRM2241",\n...             description="optical glass",\n...             url="https://tsapps.nist.gov/srmext/certificates/2241.pdf&quot;,\n...             wavelength=785,\n...             params="A0 = 9.71937e-02, A1 = 2.28325e-04, A2 = -5.86762e-08, A3 = 2.16023e-10, A4 = -9.77171e-14, A5 = 1.15596e-17",\n...             equation="A0 + A1 * x + A2 * x**2 + A3 * x**3 + A4 * x**4 + A5 * x**5",\n...             temperature_c=(20, 25),\n...             raman_shift=(200, 3500)\n...         )\n...\n>>> cert.plot()\n
    \n
    \n
  2. \n
\n
\n", "bases": "pydantic.main.BaseModel, ramanchada2.misc.plottable.Plottable"}, "ramanchada2.protocols.calibration.YCalibrationCertificate.id": {"fullname": "ramanchada2.protocols.calibration.YCalibrationCertificate.id", "modulename": "ramanchada2.protocols.calibration", "qualname": "YCalibrationCertificate.id", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "ramanchada2.protocols.calibration.YCalibrationCertificate.description": {"fullname": "ramanchada2.protocols.calibration.YCalibrationCertificate.description", "modulename": "ramanchada2.protocols.calibration", "qualname": "YCalibrationCertificate.description", "kind": "variable", "doc": "

\n", "annotation": ": Optional[str]"}, "ramanchada2.protocols.calibration.YCalibrationCertificate.url": {"fullname": "ramanchada2.protocols.calibration.YCalibrationCertificate.url", "modulename": "ramanchada2.protocols.calibration", "qualname": "YCalibrationCertificate.url", "kind": "variable", "doc": "

\n", "annotation": ": Optional[str]"}, "ramanchada2.protocols.calibration.YCalibrationCertificate.wavelength": {"fullname": "ramanchada2.protocols.calibration.YCalibrationCertificate.wavelength", "modulename": "ramanchada2.protocols.calibration", "qualname": "YCalibrationCertificate.wavelength", "kind": "variable", "doc": "

\n", "annotation": ": int"}, "ramanchada2.protocols.calibration.YCalibrationCertificate.params": {"fullname": "ramanchada2.protocols.calibration.YCalibrationCertificate.params", "modulename": "ramanchada2.protocols.calibration", "qualname": "YCalibrationCertificate.params", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "ramanchada2.protocols.calibration.YCalibrationCertificate.equation": {"fullname": "ramanchada2.protocols.calibration.YCalibrationCertificate.equation", "modulename": "ramanchada2.protocols.calibration", "qualname": "YCalibrationCertificate.equation", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "ramanchada2.protocols.calibration.YCalibrationCertificate.temperature_c": {"fullname": "ramanchada2.protocols.calibration.YCalibrationCertificate.temperature_c", "modulename": "ramanchada2.protocols.calibration", "qualname": "YCalibrationCertificate.temperature_c", "kind": "variable", "doc": "

\n", "annotation": ": Optional[Tuple[int, int]]"}, "ramanchada2.protocols.calibration.YCalibrationCertificate.raman_shift": {"fullname": "ramanchada2.protocols.calibration.YCalibrationCertificate.raman_shift", "modulename": "ramanchada2.protocols.calibration", "qualname": "YCalibrationCertificate.raman_shift", "kind": "variable", "doc": "

\n", "annotation": ": Optional[Tuple[int, int]]"}, "ramanchada2.protocols.calibration.YCalibrationCertificate.response_function": {"fullname": "ramanchada2.protocols.calibration.YCalibrationCertificate.response_function", "modulename": "ramanchada2.protocols.calibration", "qualname": "YCalibrationCertificate.response_function", "kind": "variable", "doc": "

\n"}, "ramanchada2.protocols.calibration.YCalibrationCertificate.Y": {"fullname": "ramanchada2.protocols.calibration.YCalibrationCertificate.Y", "modulename": "ramanchada2.protocols.calibration", "qualname": "YCalibrationCertificate.Y", "kind": "function", "doc": "

\n", "signature": "(self, x_value):", "funcdef": "def"}, "ramanchada2.protocols.calibration.YCalibrationCertificate.load": {"fullname": "ramanchada2.protocols.calibration.YCalibrationCertificate.load", "modulename": "ramanchada2.protocols.calibration", "qualname": "YCalibrationCertificate.load", "kind": "function", "doc": "

\n", "signature": "(wavelength=785, key='NIST785_SRM2241'):", "funcdef": "def"}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_config": {"fullname": "ramanchada2.protocols.calibration.YCalibrationCertificate.model_config", "modulename": "ramanchada2.protocols.calibration", "qualname": "YCalibrationCertificate.model_config", "kind": "variable", "doc": "

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

\n", "annotation": ": ClassVar[pydantic.config.ConfigDict]", "default_value": "{}"}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"fullname": "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields", "modulename": "ramanchada2.protocols.calibration", "qualname": "YCalibrationCertificate.model_fields", "kind": "variable", "doc": "

Metadata about the fields defined on the model,\nmapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.

\n\n

This replaces Model.__fields__ from Pydantic V1.

\n", "annotation": ": ClassVar[Dict[str, pydantic.fields.FieldInfo]]", "default_value": "{'id': FieldInfo(annotation=str, required=True), 'description': FieldInfo(annotation=Union[str, NoneType], required=True), 'url': FieldInfo(annotation=Union[str, NoneType], required=True), 'wavelength': FieldInfo(annotation=int, required=True), 'params': FieldInfo(annotation=str, required=True), 'equation': FieldInfo(annotation=str, required=True), 'temperature_c': FieldInfo(annotation=Union[Tuple[int, int], NoneType], required=True), 'raman_shift': FieldInfo(annotation=Union[Tuple[int, int], NoneType], required=True)}"}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_computed_fields": {"fullname": "ramanchada2.protocols.calibration.YCalibrationCertificate.model_computed_fields", "modulename": "ramanchada2.protocols.calibration", "qualname": "YCalibrationCertificate.model_computed_fields", "kind": "variable", "doc": "

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

\n", "annotation": ": ClassVar[Dict[str, pydantic.fields.ComputedFieldInfo]]", "default_value": "{}"}, "ramanchada2.protocols.calibration.CertificatesDict": {"fullname": "ramanchada2.protocols.calibration.CertificatesDict", "modulename": "ramanchada2.protocols.calibration", "qualname": "CertificatesDict", "kind": "class", "doc": "

Class for loading y calibration certificates

\n\n
Usage:
\n\n
\n

Load single certificate

\n \n
\n
>>> cert = CertificatesDict.load(wavelength="785", key="NIST785_SRM2241")\n>>> cert.plot()\n
\n
\n \n

Load all certificates for wavelength. Iterate :

\n \n
\n
>>> certificates = CertificatesDict()\n... plt.figure()\n... ax=None\n... certs = certificates.get_certificates(wavelength=532)\n... ax = certs[cert].plot(ax=ax)\n>>> plt.show()\n
\n
\n
\n"}, "ramanchada2.protocols.calibration.CertificatesDict.load_certificates": {"fullname": "ramanchada2.protocols.calibration.CertificatesDict.load_certificates", "modulename": "ramanchada2.protocols.calibration", "qualname": "CertificatesDict.load_certificates", "kind": "function", "doc": "

\n", "signature": "(self, file_path):", "funcdef": "def"}, "ramanchada2.protocols.calibration.CertificatesDict.get_laser_wl": {"fullname": "ramanchada2.protocols.calibration.CertificatesDict.get_laser_wl", "modulename": "ramanchada2.protocols.calibration", "qualname": "CertificatesDict.get_laser_wl", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "ramanchada2.protocols.calibration.CertificatesDict.get_certificates": {"fullname": "ramanchada2.protocols.calibration.CertificatesDict.get_certificates", "modulename": "ramanchada2.protocols.calibration", "qualname": "CertificatesDict.get_certificates", "kind": "function", "doc": "

\n", "signature": "(self, wavelength=785):", "funcdef": "def"}, "ramanchada2.protocols.calibration.CertificatesDict.get": {"fullname": "ramanchada2.protocols.calibration.CertificatesDict.get", "modulename": "ramanchada2.protocols.calibration", "qualname": "CertificatesDict.get", "kind": "function", "doc": "

\n", "signature": "(self, wavelength=532, key='NIST532_SRM2242a'):", "funcdef": "def"}, "ramanchada2.protocols.calibration.CertificatesDict.load": {"fullname": "ramanchada2.protocols.calibration.CertificatesDict.load", "modulename": "ramanchada2.protocols.calibration", "qualname": "CertificatesDict.load", "kind": "function", "doc": "

\n", "signature": "(wavelength=785, key='NIST785_SRM2241'):", "funcdef": "def"}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"fullname": "ramanchada2.protocols.calibration.YCalibrationComponent", "modulename": "ramanchada2.protocols.calibration", "qualname": "YCalibrationComponent", "kind": "class", "doc": "

Class for relative intensity calibration. Uses response functions loaded in\nResponseFunctionEvaluator. Functions are defined in json file.

\n\n
Usage:
\n\n
\n
\n
>>> laser_wl = 785\n>>> ycert = YCalibrationCertificate.load(wavelength=785, key="SRM2241")\n>>> ycal = YCalibrationComponent(laser_wl, reference_spe_xcalibrated=spe_srm,certificate=ycert)\n>>> fig, ax = plt.subplots(1, 1, figsize=(15,4))\n>>> spe_srm.plot(ax=ax)\n>>> spe_to_correct.plot(ax=ax)\n>>> spe_ycalibrated = ycal.process(spe_to_correct)\n>>> spe_ycalibrated.plot(label="y-calibrated",color="green",ax=ax.twinx())\n
\n
\n
\n", "bases": "CalibrationComponent"}, "ramanchada2.protocols.calibration.YCalibrationComponent.__init__": {"fullname": "ramanchada2.protocols.calibration.YCalibrationComponent.__init__", "modulename": "ramanchada2.protocols.calibration", "qualname": "YCalibrationComponent.__init__", "kind": "function", "doc": "

\n", "signature": "(\tlaser_wl,\treference_spe_xcalibrated,\tcertificate: ramanchada2.protocols.calibration.YCalibrationCertificate)"}, "ramanchada2.protocols.calibration.YCalibrationComponent.laser_wl": {"fullname": "ramanchada2.protocols.calibration.YCalibrationComponent.laser_wl", "modulename": "ramanchada2.protocols.calibration", "qualname": "YCalibrationComponent.laser_wl", "kind": "variable", "doc": "

\n"}, "ramanchada2.protocols.calibration.YCalibrationComponent.spe": {"fullname": "ramanchada2.protocols.calibration.YCalibrationComponent.spe", "modulename": "ramanchada2.protocols.calibration", "qualname": "YCalibrationComponent.spe", "kind": "variable", "doc": "

\n"}, "ramanchada2.protocols.calibration.YCalibrationComponent.ref": {"fullname": "ramanchada2.protocols.calibration.YCalibrationComponent.ref", "modulename": "ramanchada2.protocols.calibration", "qualname": "YCalibrationComponent.ref", "kind": "variable", "doc": "

\n"}, "ramanchada2.protocols.calibration.YCalibrationComponent.name": {"fullname": "ramanchada2.protocols.calibration.YCalibrationComponent.name", "modulename": "ramanchada2.protocols.calibration", "qualname": "YCalibrationComponent.name", "kind": "variable", "doc": "

\n"}, "ramanchada2.protocols.calibration.YCalibrationComponent.model": {"fullname": "ramanchada2.protocols.calibration.YCalibrationComponent.model", "modulename": "ramanchada2.protocols.calibration", "qualname": "YCalibrationComponent.model", "kind": "variable", "doc": "

\n"}, "ramanchada2.protocols.calibration.YCalibrationComponent.model_units": {"fullname": "ramanchada2.protocols.calibration.YCalibrationComponent.model_units", "modulename": "ramanchada2.protocols.calibration", "qualname": "YCalibrationComponent.model_units", "kind": "variable", "doc": "

\n"}, "ramanchada2.protocols.calibration.YCalibrationComponent.derive_model": {"fullname": "ramanchada2.protocols.calibration.YCalibrationComponent.derive_model", "modulename": "ramanchada2.protocols.calibration", "qualname": "YCalibrationComponent.derive_model", "kind": "function", "doc": "

\n", "signature": "(self, find_kw={}, fit_peaks_kw={}, should_fit=True, name=None):", "funcdef": "def"}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_divide": {"fullname": "ramanchada2.protocols.calibration.YCalibrationComponent.safe_divide", "modulename": "ramanchada2.protocols.calibration", "qualname": "YCalibrationComponent.safe_divide", "kind": "function", "doc": "

\n", "signature": "(self, spe_to_correct, spe_reference_resampled):", "funcdef": "def"}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_mask": {"fullname": "ramanchada2.protocols.calibration.YCalibrationComponent.safe_mask", "modulename": "ramanchada2.protocols.calibration", "qualname": "YCalibrationComponent.safe_mask", "kind": "function", "doc": "

\n", "signature": "(self, spe_to_correct, spe_reference_resampled):", "funcdef": "def"}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_factor": {"fullname": "ramanchada2.protocols.calibration.YCalibrationComponent.safe_factor", "modulename": "ramanchada2.protocols.calibration", "qualname": "YCalibrationComponent.safe_factor", "kind": "function", "doc": "

\n", "signature": "(self, spe_to_correct, spe_reference_resampled):", "funcdef": "def"}, "ramanchada2.protocols.calibration.YCalibrationComponent.process": {"fullname": "ramanchada2.protocols.calibration.YCalibrationComponent.process", "modulename": "ramanchada2.protocols.calibration", "qualname": "YCalibrationComponent.process", "kind": "function", "doc": "

\n", "signature": "(\tself,\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tspe_units='nm',\tconvert_back=False):", "funcdef": "def"}, "ramanchada2.protocols.calibration.CalibrationModel": {"fullname": "ramanchada2.protocols.calibration.CalibrationModel", "modulename": "ramanchada2.protocols.calibration", "qualname": "CalibrationModel", "kind": "class", "doc": "

A class representing a calibration model for Raman spectrum.

\n", "bases": "ProcessingModel, ramanchada2.misc.plottable.Plottable"}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"fullname": "ramanchada2.protocols.calibration.CalibrationModel.__init__", "modulename": "ramanchada2.protocols.calibration", "qualname": "CalibrationModel.__init__", "kind": "function", "doc": "

Initializes a CalibrationModel instance.

\n\n
Arguments:
\n\n
    \n
  • laser_wl: The wavelength of the laser used for calibration.
  • \n
\n\n

Example:

\n\n
\n
# Create an instance of CalibrationModel\ncalmodel = CalibrationModel(laser_wl=785)\ncalmodel.derive_model_x(\n    spe_neon,\n    spe_neon_units="cm-1",\n    ref_neon=None,\n    ref_neon_units="nm",\n    spe_sil=None,\n    spe_sil_units="cm-1",\n    ref_sil=None,\n    ref_sil_units="cm-1"\n    )\n# Store\ncalmodel.save(modelfile)\n# Load\ncalmodel = CalibrationModel.from_file(modelfile)\n# Apply to new spectrum\ncalmodel.apply_calibration_x(\n    spe_to_calibrate,\n    spe_units="cm-1"\n    )\n
\n
\n", "signature": "(laser_wl: int)"}, "ramanchada2.protocols.calibration.CalibrationModel.prominence_coeff": {"fullname": "ramanchada2.protocols.calibration.CalibrationModel.prominence_coeff", "modulename": "ramanchada2.protocols.calibration", "qualname": "CalibrationModel.prominence_coeff", "kind": "variable", "doc": "

\n"}, "ramanchada2.protocols.calibration.CalibrationModel.set_laser_wavelength": {"fullname": "ramanchada2.protocols.calibration.CalibrationModel.set_laser_wavelength", "modulename": "ramanchada2.protocols.calibration", "qualname": "CalibrationModel.set_laser_wavelength", "kind": "function", "doc": "

Sets the wavelength of the laser used for calibration.

\n", "signature": "(self, laser_wl):", "funcdef": "def"}, "ramanchada2.protocols.calibration.CalibrationModel.clear": {"fullname": "ramanchada2.protocols.calibration.CalibrationModel.clear", "modulename": "ramanchada2.protocols.calibration", "qualname": "CalibrationModel.clear", "kind": "function", "doc": "

Clears the calibration model.

\n", "signature": "(self):", "funcdef": "def"}, "ramanchada2.protocols.calibration.CalibrationModel.save": {"fullname": "ramanchada2.protocols.calibration.CalibrationModel.save", "modulename": "ramanchada2.protocols.calibration", "qualname": "CalibrationModel.save", "kind": "function", "doc": "

Saves the calibration model to a file.

\n", "signature": "(self, filename):", "funcdef": "def"}, "ramanchada2.protocols.calibration.CalibrationModel.from_file": {"fullname": "ramanchada2.protocols.calibration.CalibrationModel.from_file", "modulename": "ramanchada2.protocols.calibration", "qualname": "CalibrationModel.from_file", "kind": "function", "doc": "

Loads a calibration model from a file.

\n", "signature": "(filename):", "funcdef": "def"}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"fullname": "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x", "modulename": "ramanchada2.protocols.calibration", "qualname": "CalibrationModel.derive_model_x", "kind": "function", "doc": "

Derives x-calibration models using Neon and Silicon spectra.

\n", "signature": "(\tself,\tspe_neon: ramanchada2.spectrum.spectrum.Spectrum,\tspe_neon_units: str,\tref_neon: Dict,\tref_neon_units: str,\tspe_sil: ramanchada2.spectrum.spectrum.Spectrum,\tspe_sil_units='cm-1',\tref_sil={520.45: 1},\tref_sil_units='cm-1',\tfind_kw={'wlen': 200, 'width': 1},\tfit_kw={},\tshould_fit=False):", "funcdef": "def"}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"fullname": "ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve", "modulename": "ramanchada2.protocols.calibration", "qualname": "CalibrationModel.derive_model_curve", "kind": "function", "doc": "

\n", "signature": "(\tself,\tspe: ramanchada2.spectrum.spectrum.Spectrum,\tref=None,\tspe_units='cm-1',\tref_units='nm',\tfind_kw={},\tfit_peaks_kw={},\tshould_fit=False,\tname='X calibration'):", "funcdef": "def"}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"fullname": "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero", "modulename": "ramanchada2.protocols.calibration", "qualname": "CalibrationModel.derive_model_zero", "kind": "function", "doc": "

\n", "signature": "(\tself,\tspe: ramanchada2.spectrum.spectrum.Spectrum,\tref={520.45: 1},\tspe_units='nm',\tref_units='cm-1',\tfind_kw={},\tfit_peaks_kw={},\tshould_fit=False,\tname='X Shift',\tprofile='Gaussian'):", "funcdef": "def"}, "ramanchada2.protocols.calibration.CalibrationModel.apply_calibration_x": {"fullname": "ramanchada2.protocols.calibration.CalibrationModel.apply_calibration_x", "modulename": "ramanchada2.protocols.calibration", "qualname": "CalibrationModel.apply_calibration_x", "kind": "function", "doc": "

\n", "signature": "(\tself,\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tspe_units='cm-1'):", "funcdef": "def"}, "ramanchada2.protocols.calibration.CalibrationModel.plot": {"fullname": "ramanchada2.protocols.calibration.CalibrationModel.plot", "modulename": "ramanchada2.protocols.calibration", "qualname": "CalibrationModel.plot", "kind": "function", "doc": "

\n", "signature": "(self, ax=None, label=' ', **kwargs) -> matplotlib.axes._axes.Axes:", "funcdef": "def"}, "ramanchada2.protocols.calibration.CalibrationModel.calibration_model_factory": {"fullname": "ramanchada2.protocols.calibration.CalibrationModel.calibration_model_factory", "modulename": "ramanchada2.protocols.calibration", "qualname": "CalibrationModel.calibration_model_factory", "kind": "function", "doc": "

\n", "signature": "(\tlaser_wl,\tspe_neon: ramanchada2.spectrum.spectrum.Spectrum,\tspe_sil: ramanchada2.spectrum.spectrum.Spectrum,\tneon_wl=None,\tfind_kw=None,\tfit_peaks_kw=None,\tshould_fit=False,\tprominence_coeff=3):", "funcdef": "def"}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"fullname": "ramanchada2.protocols.calibration.CustomRBFInterpolator", "modulename": "ramanchada2.protocols.calibration", "qualname": "CustomRBFInterpolator", "kind": "class", "doc": "

Radial basis function (RBF) interpolation in N dimensions.

\n\n

Parameters

\n\n

y : (npoints, ndims) array_like\n 2-D array of data point coordinates.\nd : (npoints, ...) array_like\n N-D array of data values at y. The length of d along the first\n axis must be equal to the length of y. Unlike some interpolators, the\n interpolation axis cannot be changed.\nneighbors : int, optional\n If specified, the value of the interpolant at each evaluation point\n will be computed using only this many nearest data points. All the data\n points are used by default.\nsmoothing : float or (npoints, ) array_like, optional\n Smoothing parameter. The interpolant perfectly fits the data when this\n is set to 0. For large values, the interpolant approaches a least\n squares fit of a polynomial with the specified degree. Default is 0.\nkernel : str, optional\n Type of RBF. This should be one of

\n\n
    - 'linear'               : ``-r``\n    - 'thin_plate_spline'    : ``r**2 * log(r)``\n    - 'cubic'                : ``r**3``\n    - 'quintic'              : ``-r**5``\n    - 'multiquadric'         : ``-sqrt(1 + r**2)``\n    - 'inverse_multiquadric' : ``1/sqrt(1 + r**2)``\n    - 'inverse_quadratic'    : ``1/(1 + r**2)``\n    - 'gaussian'             : ``exp(-r**2)``\n\nDefault is 'thin_plate_spline'.\n
\n\n

epsilon : float, optional\n Shape parameter that scales the input to the RBF. If kernel is\n 'linear', 'thin_plate_spline', 'cubic', or 'quintic', this defaults to\n 1 and can be ignored because it has the same effect as scaling the\n smoothing parameter. Otherwise, this must be specified.\ndegree : int, optional\n Degree of the added polynomial. For some RBFs the interpolant may not\n be well-posed if the polynomial degree is too small. Those RBFs and\n their corresponding minimum degrees are

\n\n
    - 'multiquadric'      : 0\n    - 'linear'            : 0\n    - 'thin_plate_spline' : 1\n    - 'cubic'             : 1\n    - 'quintic'           : 2\n\nThe default value is the minimum degree for `kernel` or 0 if there is\nno minimum degree. Set this to -1 for no added polynomial.\n
\n\n

Notes

\n\n

An RBF is a scalar valued function in N-dimensional space whose value at\n\\( x \\) can be expressed in terms of \\( r=||x - c|| \\), where \\( c \\)\nis the center of the RBF.

\n\n

An RBF interpolant for the vector of data values \\( d \\), which are from\nlocations \\( y \\), is a linear combination of RBFs centered at \\( y \\)\nplus a polynomial with a specified degree. The RBF interpolant is written\nas

\n\n

$$f(x) = K(x, y) a + P(x) b,$$

\n\n

where \\( K(x, y) \\) is a matrix of RBFs with centers at \\( y \\)\nevaluated at the points \\( x \\), and \\( P(x) \\) is a matrix of\nmonomials, which span polynomials with the specified degree, evaluated at\n\\( x \\). The coefficients \\( a \\) and \\( b \\) are the solution to the\nlinear equations

\n\n

$$(K(y, y) + \\lambda I) a + P(y) b = d$$

\n\n

and

\n\n

$$P(y)^T a = 0,$$

\n\n

where \\( \\lambda \\) is a non-negative smoothing parameter that controls\nhow well we want to fit the data. The data are fit exactly when the\nsmoothing parameter is 0.

\n\n

The above system is uniquely solvable if the following requirements are\nmet:

\n\n
- \\\\( P(y) \\\\) must have full column rank. \\\\( P(y) \\\\) always has full\n  column rank when `degree` is -1 or 0. When `degree` is 1,\n  \\\\( P(y) \\\\) has full column rank if the data point locations are not\n  all collinear (N=2), coplanar (N=3), etc.\n- If `kernel` is 'multiquadric', 'linear', 'thin_plate_spline',\n  'cubic', or 'quintic', then `degree` must not be lower than the\n  minimum value listed above.\n- If `smoothing` is 0, then each data point location must be distinct.\n
\n\n

When using an RBF that is not scale invariant ('multiquadric',\n'inverse_multiquadric', 'inverse_quadratic', or 'gaussian'), an appropriate\nshape parameter must be chosen (e.g., through cross validation). Smaller\nvalues for the shape parameter correspond to wider RBFs. The problem can\nbecome ill-conditioned or singular when the shape parameter is too small.

\n\n

The memory required to solve for the RBF interpolation coefficients\nincreases quadratically with the number of data points, which can become\nimpractical when interpolating more than about a thousand data points.\nTo overcome memory limitations for large interpolation problems, the\nneighbors argument can be specified to compute an RBF interpolant for\neach evaluation point using only the nearest data points.

\n\n

New in version 1.7.0.

\n\n

See Also

\n\n

NearestNDInterpolator\nLinearNDInterpolator\nCloughTocher2DInterpolator

\n\n

References

\n\n

Examples

\n\n

Demonstrate interpolating scattered data to a grid in 2-D.

\n\n
\n
>>> import numpy as np\n>>> import matplotlib.pyplot as plt\n>>> from scipy.interpolate import RBFInterpolator\n>>> from scipy.stats.qmc import Halton\n
\n
\n\n
\n
>>> rng = np.random.default_rng()\n>>> xobs = 2*Halton(2, seed=rng).random(100) - 1\n>>> yobs = np.sum(xobs, axis=1)*np.exp(-6*np.sum(xobs**2, axis=1))\n
\n
\n\n
\n
>>> xgrid = np.mgrid[-1:1:50j, -1:1:50j]\n>>> xflat = xgrid.reshape(2, -1).T\n>>> yflat = RBFInterpolator(xobs, yobs)(xflat)\n>>> ygrid = yflat.reshape(50, 50)\n
\n
\n\n
\n
>>> fig, ax = plt.subplots()\n>>> ax.pcolormesh(*xgrid, ygrid, vmin=-0.25, vmax=0.25, shading='gouraud')\n>>> p = ax.scatter(*xobs.T, c=yobs, s=50, ec='k', vmin=-0.25, vmax=0.25)\n>>> fig.colorbar(p)\n>>> plt.show()\n
\n
\n\n
\n
\n
    \n
\n
\n", "bases": "scipy.interpolate._rbfinterp.RBFInterpolator"}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.__init__": {"fullname": "ramanchada2.protocols.calibration.CustomRBFInterpolator.__init__", "modulename": "ramanchada2.protocols.calibration", "qualname": "CustomRBFInterpolator.__init__", "kind": "function", "doc": "

\n", "signature": "(*args, **kwargs)"}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.from_dict": {"fullname": "ramanchada2.protocols.calibration.CustomRBFInterpolator.from_dict", "modulename": "ramanchada2.protocols.calibration", "qualname": "CustomRBFInterpolator.from_dict", "kind": "function", "doc": "

\n", "signature": "(rbf_dict={}):", "funcdef": "def"}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.to_dict": {"fullname": "ramanchada2.protocols.calibration.CustomRBFInterpolator.to_dict", "modulename": "ramanchada2.protocols.calibration", "qualname": "CustomRBFInterpolator.to_dict", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "ramanchada2.spectral_components": {"fullname": "ramanchada2.spectral_components", "modulename": "ramanchada2.spectral_components", "kind": "module", "doc": "

\n"}, "ramanchada2.spectral_components.baseline": {"fullname": "ramanchada2.spectral_components.baseline", "modulename": "ramanchada2.spectral_components.baseline", "kind": "module", "doc": "

\n"}, "ramanchada2.spectral_components.baseline.analytical": {"fullname": "ramanchada2.spectral_components.baseline.analytical", "modulename": "ramanchada2.spectral_components.baseline.analytical", "kind": "module", "doc": "

\n"}, "ramanchada2.spectral_components.baseline.baseline_base": {"fullname": "ramanchada2.spectral_components.baseline.baseline_base", "modulename": "ramanchada2.spectral_components.baseline.baseline_base", "kind": "module", "doc": "

\n"}, "ramanchada2.spectral_components.baseline.baseline_base.BaseLineBase": {"fullname": "ramanchada2.spectral_components.baseline.baseline_base.BaseLineBase", "modulename": "ramanchada2.spectral_components.baseline.baseline_base", "qualname": "BaseLineBase", "kind": "class", "doc": "

Helper class that provides a standard way to create an ABC using\ninheritance.

\n", "bases": "ramanchada2.spectral_components.spectral_component.SpectralComponent"}, "ramanchada2.spectral_components.baseline.numerical": {"fullname": "ramanchada2.spectral_components.baseline.numerical", "modulename": "ramanchada2.spectral_components.baseline.numerical", "kind": "module", "doc": "

\n"}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical": {"fullname": "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical", "modulename": "ramanchada2.spectral_components.baseline.numerical", "qualname": "BaselineNumerical", "kind": "class", "doc": "

Helper class that provides a standard way to create an ABC using\ninheritance.

\n", "bases": "ramanchada2.spectral_components.baseline.baseline_base.BaseLineBase"}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical.__init__": {"fullname": "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical.__init__", "modulename": "ramanchada2.spectral_components.baseline.numerical", "qualname": "BaselineNumerical.__init__", "kind": "function", "doc": "

Numerical baseline

\n\n
Arguments:
\n\n
    \n
  • x: array-like
  • \n
  • y: array-like
  • \n
\n", "signature": "(x, y)"}, "ramanchada2.spectral_components.peak_profile": {"fullname": "ramanchada2.spectral_components.peak_profile", "modulename": "ramanchada2.spectral_components.peak_profile", "kind": "module", "doc": "

\n"}, "ramanchada2.spectral_components.peak_profile.delta": {"fullname": "ramanchada2.spectral_components.peak_profile.delta", "modulename": "ramanchada2.spectral_components.peak_profile.delta", "kind": "module", "doc": "

\n"}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak": {"fullname": "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak", "modulename": "ramanchada2.spectral_components.peak_profile.delta", "qualname": "DeltasPeak", "kind": "class", "doc": "

Helper class that provides a standard way to create an ABC using\ninheritance.

\n", "bases": "ramanchada2.spectral_components.spectral_peak.SpectralPeak"}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.__init__": {"fullname": "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.__init__", "modulename": "ramanchada2.spectral_components.peak_profile.delta", "qualname": "DeltasPeak.__init__", "kind": "function", "doc": "

\n", "signature": "(**kwargs)"}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.a": {"fullname": "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.a", "modulename": "ramanchada2.spectral_components.peak_profile.delta", "qualname": "DeltasPeak.a", "kind": "variable", "doc": "

\n"}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.x0": {"fullname": "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.x0", "modulename": "ramanchada2.spectral_components.peak_profile.delta", "qualname": "DeltasPeak.x0", "kind": "variable", "doc": "

\n"}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.delta": {"fullname": "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.delta", "modulename": "ramanchada2.spectral_components.peak_profile.delta", "qualname": "DeltasPeak.delta", "kind": "variable", "doc": "

\n"}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.pos_amp_fwhm": {"fullname": "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.pos_amp_fwhm", "modulename": "ramanchada2.spectral_components.peak_profile.delta", "qualname": "DeltasPeak.pos_amp_fwhm", "kind": "variable", "doc": "

\n"}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.limit_3sigma": {"fullname": "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.limit_3sigma", "modulename": "ramanchada2.spectral_components.peak_profile.delta", "qualname": "DeltasPeak.limit_3sigma", "kind": "variable", "doc": "

\n"}, "ramanchada2.spectral_components.peak_profile.gauss": {"fullname": "ramanchada2.spectral_components.peak_profile.gauss", "modulename": "ramanchada2.spectral_components.peak_profile.gauss", "kind": "module", "doc": "

\n"}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak": {"fullname": "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak", "modulename": "ramanchada2.spectral_components.peak_profile.gauss", "qualname": "GaussPeak", "kind": "class", "doc": "

Helper class that provides a standard way to create an ABC using\ninheritance.

\n", "bases": "ramanchada2.spectral_components.spectral_peak.SpectralPeak"}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.__init__": {"fullname": "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.__init__", "modulename": "ramanchada2.spectral_components.peak_profile.gauss", "qualname": "GaussPeak.__init__", "kind": "function", "doc": "

\n", "signature": "(**kwargs)"}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.a": {"fullname": "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.a", "modulename": "ramanchada2.spectral_components.peak_profile.gauss", "qualname": "GaussPeak.a", "kind": "variable", "doc": "

\n"}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.x0": {"fullname": "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.x0", "modulename": "ramanchada2.spectral_components.peak_profile.gauss", "qualname": "GaussPeak.x0", "kind": "variable", "doc": "

\n"}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.w": {"fullname": "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.w", "modulename": "ramanchada2.spectral_components.peak_profile.gauss", "qualname": "GaussPeak.w", "kind": "variable", "doc": "

\n"}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.delta": {"fullname": "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.delta", "modulename": "ramanchada2.spectral_components.peak_profile.gauss", "qualname": "GaussPeak.delta", "kind": "variable", "doc": "

\n"}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.pos_amp_fwhm": {"fullname": "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.pos_amp_fwhm", "modulename": "ramanchada2.spectral_components.peak_profile.gauss", "qualname": "GaussPeak.pos_amp_fwhm", "kind": "variable", "doc": "

\n"}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.limit_3sigma": {"fullname": "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.limit_3sigma", "modulename": "ramanchada2.spectral_components.peak_profile.gauss", "qualname": "GaussPeak.limit_3sigma", "kind": "variable", "doc": "

\n"}, "ramanchada2.spectral_components.peak_profile.voigt": {"fullname": "ramanchada2.spectral_components.peak_profile.voigt", "modulename": "ramanchada2.spectral_components.peak_profile.voigt", "kind": "module", "doc": "

\n"}, "ramanchada2.spectral_components.peak_profile.voigt.VoigtPeak": {"fullname": "ramanchada2.spectral_components.peak_profile.voigt.VoigtPeak", "modulename": "ramanchada2.spectral_components.peak_profile.voigt", "qualname": "VoigtPeak", "kind": "class", "doc": "

Helper class that provides a standard way to create an ABC using\ninheritance.

\n", "bases": "ramanchada2.spectral_components.spectral_peak.SpectralPeak"}, "ramanchada2.spectral_components.spectral_component": {"fullname": "ramanchada2.spectral_components.spectral_component", "modulename": "ramanchada2.spectral_components.spectral_component", "kind": "module", "doc": "

\n"}, "ramanchada2.spectral_components.spectral_component.SpectralComponent": {"fullname": "ramanchada2.spectral_components.spectral_component.SpectralComponent", "modulename": "ramanchada2.spectral_components.spectral_component", "qualname": "SpectralComponent", "kind": "class", "doc": "

Helper class that provides a standard way to create an ABC using\ninheritance.

\n", "bases": "ramanchada2.misc.plottable.Plottable, ramanchada2.misc.base_class.BaseClass"}, "ramanchada2.spectral_components.spectral_component_collection": {"fullname": "ramanchada2.spectral_components.spectral_component_collection", "modulename": "ramanchada2.spectral_components.spectral_component_collection", "kind": "module", "doc": "

\n"}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection": {"fullname": "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection", "modulename": "ramanchada2.spectral_components.spectral_component_collection", "qualname": "SpectralComponentCollection", "kind": "class", "doc": "

Helper class that provides a standard way to create an ABC using\ninheritance.

\n", "bases": "ramanchada2.misc.plottable.Plottable, ramanchada2.misc.base_class.BaseClass"}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.__init__": {"fullname": "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.__init__", "modulename": "ramanchada2.spectral_components.spectral_component_collection", "qualname": "SpectralComponentCollection.__init__", "kind": "function", "doc": "

\n", "signature": "(peaks, **kwargs)"}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.kwargs": {"fullname": "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.kwargs", "modulename": "ramanchada2.spectral_components.spectral_component_collection", "qualname": "SpectralComponentCollection.kwargs", "kind": "variable", "doc": "

\n"}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.reset_origin": {"fullname": "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.reset_origin", "modulename": "ramanchada2.spectral_components.spectral_component_collection", "qualname": "SpectralComponentCollection.reset_origin", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.get_deltas": {"fullname": "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.get_deltas", "modulename": "ramanchada2.spectral_components.spectral_component_collection", "qualname": "SpectralComponentCollection.get_deltas", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.get_curve": {"fullname": "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.get_curve", "modulename": "ramanchada2.spectral_components.spectral_component_collection", "qualname": "SpectralComponentCollection.get_curve", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.limit_3sigma": {"fullname": "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.limit_3sigma", "modulename": "ramanchada2.spectral_components.spectral_component_collection", "qualname": "SpectralComponentCollection.limit_3sigma", "kind": "variable", "doc": "

\n"}, "ramanchada2.spectral_components.spectral_peak": {"fullname": "ramanchada2.spectral_components.spectral_peak", "modulename": "ramanchada2.spectral_components.spectral_peak", "kind": "module", "doc": "

\n"}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak": {"fullname": "ramanchada2.spectral_components.spectral_peak.SpectralPeak", "modulename": "ramanchada2.spectral_components.spectral_peak", "qualname": "SpectralPeak", "kind": "class", "doc": "

Helper class that provides a standard way to create an ABC using\ninheritance.

\n", "bases": "ramanchada2.spectral_components.spectral_component.SpectralComponent, abc.ABC"}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.delta": {"fullname": "ramanchada2.spectral_components.spectral_peak.SpectralPeak.delta", "modulename": "ramanchada2.spectral_components.spectral_peak", "qualname": "SpectralPeak.delta", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.limit_3sigma": {"fullname": "ramanchada2.spectral_components.spectral_peak.SpectralPeak.limit_3sigma", "modulename": "ramanchada2.spectral_components.spectral_peak", "qualname": "SpectralPeak.limit_3sigma", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.pos_amp_fwhm": {"fullname": "ramanchada2.spectral_components.spectral_peak.SpectralPeak.pos_amp_fwhm", "modulename": "ramanchada2.spectral_components.spectral_peak", "qualname": "SpectralPeak.pos_amp_fwhm", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "ramanchada2.spectrum": {"fullname": "ramanchada2.spectrum", "modulename": "ramanchada2.spectrum", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.arithmetics": {"fullname": "ramanchada2.spectrum.arithmetics", "modulename": "ramanchada2.spectrum.arithmetics", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.arithmetics.add": {"fullname": "ramanchada2.spectrum.arithmetics.add", "modulename": "ramanchada2.spectrum.arithmetics.add", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.arithmetics.mul": {"fullname": "ramanchada2.spectrum.arithmetics.mul", "modulename": "ramanchada2.spectrum.arithmetics.mul", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.arithmetics.sub": {"fullname": "ramanchada2.spectrum.arithmetics.sub", "modulename": "ramanchada2.spectrum.arithmetics.sub", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.arithmetics.truediv": {"fullname": "ramanchada2.spectrum.arithmetics.truediv", "modulename": "ramanchada2.spectrum.arithmetics.truediv", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.baseline": {"fullname": "ramanchada2.spectrum.baseline", "modulename": "ramanchada2.spectrum.baseline", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.baseline.add_baseline": {"fullname": "ramanchada2.spectrum.baseline.add_baseline", "modulename": "ramanchada2.spectrum.baseline.add_baseline", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.baseline.add_baseline.generate_baseline": {"fullname": "ramanchada2.spectrum.baseline.add_baseline.generate_baseline", "modulename": "ramanchada2.spectrum.baseline.add_baseline", "qualname": "generate_baseline", "kind": "function", "doc": "

\n", "signature": "(\tn_freq: int = FieldInfo(annotation=int, required=True, metadata=[Gt(gt=2)]),\tsize: int = FieldInfo(annotation=int, required=True, metadata=[Gt(gt=2)]),\trng_seed=None):", "funcdef": "def"}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"fullname": "ramanchada2.spectrum.baseline.add_baseline.add_baseline", "modulename": "ramanchada2.spectrum.baseline.add_baseline", "qualname": "add_baseline", "kind": "function", "doc": "

Add artificial baseline to the spectrum.\nA random baseline is generated in frequency domain using uniform random numbers.\nThe baseline in frequency domain is tapered with bohman window to reduce the bandwidth\nof the baseline to first n_freq frequencies and is transformed to \"time\" domain.\nAdditionaly by using func parameter the user can define arbitrary function\nto be added as baseline.

\n\n
Arguments:
\n\n
    \n
  • n_freq: Must be > 2. Number of lowest frequency bins distinct from zero.
  • \n
  • amplitude: Upper boundary for the uniform random generator.
  • \n
  • pedestal: Additive constant pedestal to the spectrum.
  • \n
  • func: Callable. User-defined function to be added as baseline. Example: func = lambda x: x*.01 + x**2*.0001.
  • \n
  • rng_seed: int, optional. Seed for the random generator.
  • \n
\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tn_freq: int,\tamplitude: float,\tpedestal: float = 0,\tfunc: Optional[Callable] = None,\trng_seed=None):", "funcdef": "def"}, "ramanchada2.spectrum.baseline.baseline_rc1": {"fullname": "ramanchada2.spectrum.baseline.baseline_rc1", "modulename": "ramanchada2.spectrum.baseline.baseline_rc1", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.baseline.baseline_rc1.baseline_als": {"fullname": "ramanchada2.spectrum.baseline.baseline_rc1.baseline_als", "modulename": "ramanchada2.spectrum.baseline.baseline_rc1", "qualname": "baseline_als", "kind": "function", "doc": "

\n", "signature": "(\ty,\tlam: float = 100000.0,\tp: float = 0.001,\tniter: typing.Annotated[int, Gt(gt=0)] = 100,\tsmooth: Union[Annotated[int, Gt(gt=0)], Literal[0]] = 7):", "funcdef": "def"}, "ramanchada2.spectrum.baseline.baseline_rc1.baseline_snip": {"fullname": "ramanchada2.spectrum.baseline.baseline_rc1.baseline_snip", "modulename": "ramanchada2.spectrum.baseline.baseline_rc1", "qualname": "baseline_snip", "kind": "function", "doc": "

\n", "signature": "(y0, niter: typing.Annotated[int, Gt(gt=0)] = 30):", "funcdef": "def"}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_als": {"fullname": "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_als", "modulename": "ramanchada2.spectrum.baseline.baseline_rc1", "qualname": "subtract_baseline_rc1_als", "kind": "function", "doc": "

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\tlam=100000.0,\tp=0.001,\tniter=100,\tsmooth=7):", "funcdef": "def"}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_snip": {"fullname": "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_snip", "modulename": "ramanchada2.spectrum.baseline.baseline_rc1", "qualname": "subtract_baseline_rc1_snip", "kind": "function", "doc": "

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\tniter=30):", "funcdef": "def"}, "ramanchada2.spectrum.baseline.moving_minimum": {"fullname": "ramanchada2.spectrum.baseline.moving_minimum", "modulename": "ramanchada2.spectrum.baseline.moving_minimum", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.baseline.moving_minimum.moving_minimum": {"fullname": "ramanchada2.spectrum.baseline.moving_minimum.moving_minimum", "modulename": "ramanchada2.spectrum.baseline.moving_minimum", "qualname": "moving_minimum", "kind": "function", "doc": "

Moving minimum baseline estimator.\nSuccessive values are calculated as minima of rolling rectangular window.

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\twindow_size: int):", "funcdef": "def"}, "ramanchada2.spectrum.baseline.moving_minimum.subtract_moving_minimum": {"fullname": "ramanchada2.spectrum.baseline.moving_minimum.subtract_moving_minimum", "modulename": "ramanchada2.spectrum.baseline.moving_minimum", "qualname": "subtract_moving_minimum", "kind": "function", "doc": "

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\twindow_size: int):", "funcdef": "def"}, "ramanchada2.spectrum.calc": {"fullname": "ramanchada2.spectrum.calc", "modulename": "ramanchada2.spectrum.calc", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.calc.central_moments": {"fullname": "ramanchada2.spectrum.calc.central_moments", "modulename": "ramanchada2.spectrum.calc.central_moments", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.calc.central_moments.central_moments": {"fullname": "ramanchada2.spectrum.calc.central_moments.central_moments", "modulename": "ramanchada2.spectrum.calc.central_moments", "qualname": "central_moments", "kind": "function", "doc": "

\n", "signature": "(\tspe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tboundaries=(-inf, inf),\tmoments=[1, 2, 3, 4],\tnormalize=False):", "funcdef": "def"}, "ramanchada2.spectrum.calibration": {"fullname": "ramanchada2.spectrum.calibration", "modulename": "ramanchada2.spectrum.calibration", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.calibration.by_deltas": {"fullname": "ramanchada2.spectrum.calibration.by_deltas", "modulename": "ramanchada2.spectrum.calibration.by_deltas", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel": {"fullname": "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel", "modulename": "ramanchada2.spectrum.calibration.by_deltas", "qualname": "DeltaSpeModel", "kind": "class", "doc": "

\n"}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.__init__": {"fullname": "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.__init__", "modulename": "ramanchada2.spectrum.calibration.by_deltas", "qualname": "DeltaSpeModel.__init__", "kind": "function", "doc": "

\n", "signature": "(deltas: Dict[float, float], shift=0, scale=1)"}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.params": {"fullname": "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.params", "modulename": "ramanchada2.spectrum.calibration.by_deltas", "qualname": "DeltaSpeModel.params", "kind": "variable", "doc": "

\n"}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.minx": {"fullname": "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.minx", "modulename": "ramanchada2.spectrum.calibration.by_deltas", "qualname": "DeltaSpeModel.minx", "kind": "variable", "doc": "

\n"}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.maxx": {"fullname": "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.maxx", "modulename": "ramanchada2.spectrum.calibration.by_deltas", "qualname": "DeltaSpeModel.maxx", "kind": "variable", "doc": "

\n"}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.model": {"fullname": "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.model", "modulename": "ramanchada2.spectrum.calibration.by_deltas", "qualname": "DeltaSpeModel.model", "kind": "variable", "doc": "

\n"}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.fit": {"fullname": "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.fit", "modulename": "ramanchada2.spectrum.calibration.by_deltas", "qualname": "DeltaSpeModel.fit", "kind": "function", "doc": "

\n", "signature": "(self, spe, sigma, ax=None, no_fit=False):", "funcdef": "def"}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"fullname": "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model", "modulename": "ramanchada2.spectrum.calibration.by_deltas", "qualname": "calibrate_by_deltas_model", "kind": "function", "doc": "
    \n
  • Builds a composite model based on a set of user specified delta lines.
  • \n
  • Initial guess is calculated based on 10-th and 90-th percentiles of\nthe distributions.
  • \n
\n\n

The phasespace of the model is flat with big amount of narrow minima.\nIn order to find the best fit, the experimental data are successively\nconvolved with gaussians with different widths startign from wide to\nnarrow. The model for the calibration is 3-th order polynomial, which\npotentialy can be changed for higher order polynomial. In order to avoid\nsolving the inverse of the calibration function, the result is tabulated\nand interpolated linarly for each bin of the spectrum.\nThis alogrithm is useful for corse calibration.

\n", "signature": "(\tspe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tdeltas: Dict[float, float],\tconvolution_steps: Optional[List[float]] = [15, 1],\tscale2=True,\tscale3=False,\tinit_guess: Literal[None, 'cumulative'] = None,\tax=None,\t**kwargs):", "funcdef": "def"}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_filter": {"fullname": "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_filter", "modulename": "ramanchada2.spectrum.calibration.by_deltas", "qualname": "calibrate_by_deltas_filter", "kind": "function", "doc": "

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tdeltas: Dict[float, float],\tconvolution_steps,\tinit_guess=None,\t**kwargs):", "funcdef": "def"}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"fullname": "ramanchada2.spectrum.calibration.by_deltas.xcal_fine", "modulename": "ramanchada2.spectrum.calibration.by_deltas", "qualname": "xcal_fine", "kind": "function", "doc": "

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\t*,\tref: Union[Dict[float, float], List[float]],\tshould_fit=False,\tpoly_order: typing.Annotated[int, Ge(ge=0)],\tfind_peaks_kw={}):", "funcdef": "def"}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"fullname": "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF", "modulename": "ramanchada2.spectrum.calibration.by_deltas", "qualname": "xcal_fine_RBF", "kind": "function", "doc": "

Wavelength calibration using Radial basis fuction interpolation

\n\n

Please be cautious! Interpolation might not be the most appropriate\napproach for this type of calibration.

\n\n

**kwargs are passed to RBFInterpolator

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\t*,\tref: Union[Dict[float, float], List[float], numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]]],\tshould_fit=False,\tkernel: Literal['thin_plate_spline', 'cubic', 'quintic', 'multiquadric', 'inverse_multiquadric', 'inverse_quadratic', 'gaussian'] = 'thin_plate_spline',\tfind_peaks_kw={},\t**kwargs):", "funcdef": "def"}, "ramanchada2.spectrum.calibration.change_x_units": {"fullname": "ramanchada2.spectrum.calibration.change_x_units", "modulename": "ramanchada2.spectrum.calibration.change_x_units", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"fullname": "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1", "modulename": "ramanchada2.spectrum.calibration.change_x_units", "qualname": "abs_nm_to_shift_cm_1", "kind": "function", "doc": "

Convert wavelength to Ramanshift in wavenumber

\n\n
Arguments:
\n\n
    \n
  • spe: internal use only
  • \n
  • laser_wave_length_nm: Laser wave length
  • \n
\n\n

Returns: Corrected x-values

\n", "signature": "(\tspe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tlaser_wave_length_nm: float):", "funcdef": "def"}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"fullname": "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm", "modulename": "ramanchada2.spectrum.calibration.change_x_units", "qualname": "shift_cm_1_to_abs_nm", "kind": "function", "doc": "

Convert Ramanshift in wavenumber to wavelength

\n\n
Arguments:
\n\n
    \n
  • spe: internal use only
  • \n
  • laser_wave_length_nm: Laser wave length
  • \n
\n\n

Returns: Corrected x-values

\n", "signature": "(\tspe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tlaser_wave_length_nm: float):", "funcdef": "def"}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"fullname": "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter", "modulename": "ramanchada2.spectrum.calibration.change_x_units", "qualname": "abs_nm_to_shift_cm_1_filter", "kind": "function", "doc": "

Convert wavelength to Ramanshift in wavenumber

\n\n
Arguments:
\n\n
    \n
  • spe: internal use only
  • \n
  • laser_wave_length_nm: Laser wave length
  • \n
\n\n

Returns: Spectrum with corrected x-values

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tlaser_wave_length_nm: float):", "funcdef": "def"}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"fullname": "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter", "modulename": "ramanchada2.spectrum.calibration.change_x_units", "qualname": "shift_cm_1_to_abs_nm_filter", "kind": "function", "doc": "

Convert Ramanshift in wavenumber to wavelength

\n\n
Arguments:
\n\n
    \n
  • spe: internal use only
  • \n
  • laser_wave_length_nm: Laser wave length
  • \n
\n\n

Returns: Spectrum with corrected x-values

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tlaser_wave_length_nm: float):", "funcdef": "def"}, "ramanchada2.spectrum.calibration.normalize": {"fullname": "ramanchada2.spectrum.calibration.normalize", "modulename": "ramanchada2.spectrum.calibration.normalize", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.calibration.normalize.normalize": {"fullname": "ramanchada2.spectrum.calibration.normalize.normalize", "modulename": "ramanchada2.spectrum.calibration.normalize", "qualname": "normalize", "kind": "function", "doc": "

Normalize the spectrum.

\n\n
Arguments:
\n\n
    \n
  • strategy: If unity: normalize to sum(y). If min_unity: subtract the minimum and normalize to 'unity'. If\nunity_density: normalize to \u03a3(y_i*\u0394x_i). If unity_area: same as unity_density. If minmax: scale\namplitudes in range [0, 1]. If 'L1' or 'L2': L1 or L2 norm without subtracting the pedestal.
  • \n
\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tstrategy: Literal['unity', 'min_unity', 'unity_density', 'unity_area', 'minmax', 'L1', 'L2'] = 'minmax'):", "funcdef": "def"}, "ramanchada2.spectrum.calibration.scale_xaxis": {"fullname": "ramanchada2.spectrum.calibration.scale_xaxis", "modulename": "ramanchada2.spectrum.calibration.scale_xaxis", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"fullname": "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear", "modulename": "ramanchada2.spectrum.calibration.scale_xaxis", "qualname": "scale_xaxis_linear", "kind": "function", "doc": "

Scale x-axis using a factor.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • factor: Defaults to 1.\nMultiply x-axis values with factor
  • \n
  • preserve_integral: optional. Defaults to False.\nIf True, preserves the integral in sence\n$\\sum y_{orig;\\,i}*{\\Delta x_{orig}}_i = \\sum y_{new;\\,i}*{\\Delta x_{new}}_i = $
  • \n
\n\n

Returns: Corrected spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tfactor: float = 1,\tpreserve_integral: bool = False):", "funcdef": "def"}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"fullname": "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun", "modulename": "ramanchada2.spectrum.calibration.scale_xaxis", "qualname": "scale_xaxis_fun", "kind": "function", "doc": "

Apply arbitrary calibration function to the x-axis values.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • fun: function to be applied
  • \n
  • args: Additional arguments to the provided functions
  • \n
\n\n

Returns: Corrected spectrum

\n\n
Raises:
\n\n
    \n
  • ValueError: If the new x-values are not strictly monotonically increasing.
  • \n
\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tfun: Callable[[Union[int, numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]]]], float],\targs=[]):", "funcdef": "def"}, "ramanchada2.spectrum.calibration.scale_yaxis": {"fullname": "ramanchada2.spectrum.calibration.scale_yaxis", "modulename": "ramanchada2.spectrum.calibration.scale_yaxis", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"fullname": "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear", "modulename": "ramanchada2.spectrum.calibration.scale_yaxis", "qualname": "scale_yaxis_linear", "kind": "function", "doc": "

Scale y-axis values

\n\n

This function provides the same result as spe*const

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • factor optional. Defaults to 1.\nY-values scaling factor
  • \n
\n\n

Returns: corrected spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\tfactor: float = 1):", "funcdef": "def"}, "ramanchada2.spectrum.calibration.set_new_xaxis": {"fullname": "ramanchada2.spectrum.calibration.set_new_xaxis", "modulename": "ramanchada2.spectrum.calibration.set_new_xaxis", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"fullname": "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis", "modulename": "ramanchada2.spectrum.calibration.set_new_xaxis", "qualname": "set_new_xaxis", "kind": "function", "doc": "

Substitute x-axis values with new ones

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • xaxis: new x-axis values
  • \n
\n\n

Returns: corrected spectrum

\n\n
Raises:
\n\n
    \n
  • ValueError: If the provided array does not match the shape of the spectrum.
  • \n
\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\txaxis: numpy.ndarray[typing.Any, numpy.dtype[+_ScalarType_co]]):", "funcdef": "def"}, "ramanchada2.spectrum.creators": {"fullname": "ramanchada2.spectrum.creators", "modulename": "ramanchada2.spectrum.creators", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.creators.from_cache_or_calc": {"fullname": "ramanchada2.spectrum.creators.from_cache_or_calc", "modulename": "ramanchada2.spectrum.creators.from_cache_or_calc", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.creators.from_cache_or_calc.logger": {"fullname": "ramanchada2.spectrum.creators.from_cache_or_calc.logger", "modulename": "ramanchada2.spectrum.creators.from_cache_or_calc", "qualname": "logger", "kind": "variable", "doc": "

\n", "default_value": "<Logger ramanchada2.spectrum.creators.from_cache_or_calc (WARNING)>"}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"fullname": "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc", "modulename": "ramanchada2.spectrum.creators.from_cache_or_calc", "qualname": "from_cache_or_calc", "kind": "function", "doc": "

Load spectrum from cache or calculate if needed.

\n\n

The cache is a nested structure of spectra. All processings applied to\na spectrum result to spectra of the initial one. If part of the requred\nprocessings are available, only the needed steps are calculated and added\nto the cache.

\n\n
Arguments:
\n\n
    \n
  • required_steps: List of required steps in the form\n[{'proc': str, 'args': List[Any], 'kwargs': Dict[str, Any]}, ...]
  • \n
  • cachefile: optional. Defaults to None.\nFilename of the cache. If None no cache is used
  • \n
\n", "signature": "(\trequired_steps: ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel,\tcachefile: Optional[str] = None):", "funcdef": "def"}, "ramanchada2.spectrum.creators.from_chada": {"fullname": "ramanchada2.spectrum.creators.from_chada", "modulename": "ramanchada2.spectrum.creators.from_chada", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.creators.from_chada.from_chada": {"fullname": "ramanchada2.spectrum.creators.from_chada.from_chada", "modulename": "ramanchada2.spectrum.creators.from_chada", "qualname": "from_chada", "kind": "function", "doc": "

\n", "signature": "(filename: str, dataset: str = '/raw', h5module=None):", "funcdef": "def"}, "ramanchada2.spectrum.creators.from_delta_lines": {"fullname": "ramanchada2.spectrum.creators.from_delta_lines", "modulename": "ramanchada2.spectrum.creators.from_delta_lines", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"fullname": "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines", "modulename": "ramanchada2.spectrum.creators.from_delta_lines", "qualname": "from_delta_lines", "kind": "function", "doc": "

Generate Spectrum with delta lines.

\n\n
Arguments:
\n\n
    \n
  • deltas: Keys of the dictionary are the x positions of the deltas; values are the amplitudes of the corresponding\ndeltas.
  • \n
  • xcal: Callable, optional. x axis calibration function.
  • \n
  • nbins: int, optional. Number of bins in the spectrum.
  • \n
\n\n

Example:

\n\n

This will produce spectrum with 1000 bins in the range [-1000, 2000):

\n\n
\n
xcal = lambda x: x*3 -1000, nbins=1000\n
\n
\n", "signature": "(\tdeltas: Dict[float, float],\txcal: Optional[Callable[[float], float]] = None,\tnbins: typing.Annotated[int, Gt(gt=0)] = 2000,\t**kwargs):", "funcdef": "def"}, "ramanchada2.spectrum.creators.from_local_file": {"fullname": "ramanchada2.spectrum.creators.from_local_file", "modulename": "ramanchada2.spectrum.creators.from_local_file", "kind": "module", "doc": "

Create spectrum from local files.

\n"}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"fullname": "ramanchada2.spectrum.creators.from_local_file.from_local_file", "modulename": "ramanchada2.spectrum.creators.from_local_file", "qualname": "from_local_file", "kind": "function", "doc": "

Read experimental spectrum from a local file.

\n\n
Arguments:
\n\n
    \n
  • in_file_name: Path to a local file containing a spectrum.
  • \n
  • filetype: Specify the filetype. Filetype can be any of: spc, sp, spa, 0, 1, 2, wdf, ngs, jdx, dx,\ntxt, txtr, csv, prn, rruf or None. None used to determine by extension of the file.
  • \n
  • backend: native, rc1_parser or None. None means both.
  • \n
\n\n
Raises:
\n\n
    \n
  • ValueError: When called with unsupported file formats.
  • \n
\n", "signature": "(\tin_file_name: str,\tfiletype: Optional[Literal['spc', 'sp', 'spa', '0', '1', '2', 'wdf', 'ngs', 'jdx', 'dx', 'txt', 'txtr', 'csv', 'prn', 'rruf']] = None,\tbackend: Optional[Literal['native', 'rc1_parser']] = None):", "funcdef": "def"}, "ramanchada2.spectrum.creators.from_simulation": {"fullname": "ramanchada2.spectrum.creators.from_simulation", "modulename": "ramanchada2.spectrum.creators.from_simulation", "kind": "module", "doc": "

Create spectrum from simulation output files.

\n"}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"fullname": "ramanchada2.spectrum.creators.from_simulation.from_simulation", "modulename": "ramanchada2.spectrum.creators.from_simulation", "qualname": "from_simulation", "kind": "function", "doc": "

Generate spectrum from simulation file.

\n\n

The returned spectrum has only few x/y pairs -- one for each simulated line. Values along\nthe x-axis will not be uniform. To make it uniform, one needs to resample the spectrum.

\n\n
Arguments:
\n\n
    \n
  • in_file: Path to a local file, or file-like object.
  • \n
  • sim_type: If vasp: .dat file from VASP simulation. If crystal_out: .out file from CRYSTAL simulation, not\npreferred. If crystal_dat: .dat file from CRYSTAL simulation.
  • \n
  • use: One of the directions I_tot, I_perp, I_par, I_xx, I_xy,\nI_xz, I_yy, I_yz, I_zz, I_tot, I_perp, I_par are\navailable for both CRYSTAL and VASP. I_xx, I_xy, I_xz,\nI_yy, I_yz, I_zz are available only for CRYSTAL. If a Dict is\npassed, the key should be directions and values should be weighting factor.\nFor example, use={'I_perp': .1, 'I_par': .9}
  • \n
\n", "signature": "(\tin_file: Union[str, io.TextIOBase],\tsim_type: Literal['vasp', 'crystal_out', 'crystal_dat', 'raw_dat'],\tuse: Union[Literal['I_tot', 'I_perp', 'I_par', 'I_xx', 'I_xy', 'I_xz', 'I_yy', 'I_yz', 'I_zz'], Dict[Literal['I_tot', 'I_perp', 'I_par', 'I_xx', 'I_xy', 'I_xz', 'I_yy', 'I_yz', 'I_zz'], Annotated[float, Gt(gt=0)]]] = 'I_tot',\tnbins: typing.Annotated[int, Gt(gt=0)] = 2000):", "funcdef": "def"}, "ramanchada2.spectrum.creators.from_spectral_component_collection": {"fullname": "ramanchada2.spectrum.creators.from_spectral_component_collection", "modulename": "ramanchada2.spectrum.creators.from_spectral_component_collection", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"fullname": "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection", "modulename": "ramanchada2.spectrum.creators.from_spectral_component_collection", "qualname": "from_spectral_component_collection", "kind": "function", "doc": "

from_spectral_component_collection

\n\n
Arguments:
\n\n
    \n
  • spe_components: SpectralComponentCollection
  • \n
  • x: int or array-like, optional, default 2000. x axis of the spectrum.
  • \n
\n", "signature": "(\tspe_components: ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection,\tx=2000):", "funcdef": "def"}, "ramanchada2.spectrum.creators.from_test_spe": {"fullname": "ramanchada2.spectrum.creators.from_test_spe", "modulename": "ramanchada2.spectrum.creators.from_test_spe", "kind": "module", "doc": "

Create spectrum from local files.

\n"}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"fullname": "ramanchada2.spectrum.creators.from_test_spe.from_test_spe", "modulename": "ramanchada2.spectrum.creators.from_test_spe", "qualname": "from_test_spe", "kind": "function", "doc": "

Create new spectrum from test data.

\n\n
Arguments:
\n\n
    \n
  • index: int or None, optional, default is None. If int: will be used as an index of filtered list. If\nNone: a random spectrum will be taken.
  • \n
  • **kwargs: The rest of the parameters will be used as filter.
  • \n
\n", "signature": "(index=None, **kwargs):", "funcdef": "def"}, "ramanchada2.spectrum.creators.from_theoretical_lines": {"fullname": "ramanchada2.spectrum.creators.from_theoretical_lines", "modulename": "ramanchada2.spectrum.creators.from_theoretical_lines", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"fullname": "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines", "modulename": "ramanchada2.spectrum.creators.from_theoretical_lines", "qualname": "from_theoretical_lines", "kind": "function", "doc": "

Generate spectrum from lmfit shapes.

\n\n
Arguments:
\n\n
    \n
  • shapes: The shapes to be used for spectrum generation.
  • \n
  • params: Shape parameters to be applied to be used with shapes.
  • \n
  • x: Array with x values, by default np.array(2000).
  • \n
\n", "signature": "(\tshapes: List[Literal['gaussian', 'gaussian2d', 'lorentzian', 'voigt', 'pvoigt', 'moffat', 'pearson4', 'pearson7', 'breit_wigner', 'damped_oscillator', 'dho', 'logistic', 'lognormal', 'students_t', 'expgaussian', 'doniach', 'skewed_gaussian', 'skewed_voigt', 'thermal_distribution', 'step', 'rectangle', 'exponential', 'powerlaw', 'linear', 'parabolic', 'sine', 'expsine', 'split_lorentzian']],\tparams: List[Dict],\tx: Union[int, numpy.ndarray[Any, numpy.dtype[numpy.float64]]] = 2000):", "funcdef": "def"}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure": {"fullname": "ramanchada2.spectrum.creators.hdr_from_multi_exposure", "modulename": "ramanchada2.spectrum.creators.hdr_from_multi_exposure", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"fullname": "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure", "modulename": "ramanchada2.spectrum.creators.hdr_from_multi_exposure", "qualname": "hdr_from_multi_exposure", "kind": "function", "doc": "

Create an HDR spectrum from several spectra with different exposures.

\n\n

The resulting spectrum will have the details in low-intensity peaks\nfrom long-exposure-time spectrum. As long-exposure-time\nspectrum might be sturated, the information for high-intensity\npeaks will be taken from short-exposure-time spectrum.\nThis function will work on a very limited number of spectra,\nbecause we still do not have standardized metadata.

\n", "signature": "(spes_in: List[ramanchada2.spectrum.spectrum.Spectrum]):", "funcdef": "def"}, "ramanchada2.spectrum.filters": {"fullname": "ramanchada2.spectrum.filters", "modulename": "ramanchada2.spectrum.filters", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.filters.add_gaussian_noise": {"fullname": "ramanchada2.spectrum.filters.add_gaussian_noise", "modulename": "ramanchada2.spectrum.filters.add_gaussian_noise", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"fullname": "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise", "modulename": "ramanchada2.spectrum.filters.add_gaussian_noise", "qualname": "add_gaussian_noise", "kind": "function", "doc": "

Add gaussian noise to the spectrum.

\n\n

Random number i.i.d. $N(0, \\sigma)$ is added to every sample

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • sigma: Sigma of the gaussian noise.
  • \n
  • rng_seed: int or rng state, optional, seed for the random generator.\nIf a state is provided, it is updated in-place.
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tsigma: typing.Annotated[float, Gt(gt=0)],\trng_seed=None):", "funcdef": "def"}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift": {"fullname": "ramanchada2.spectrum.filters.add_gaussian_noise_drift", "modulename": "ramanchada2.spectrum.filters.add_gaussian_noise_drift", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.generate_add_gaussian_noise_drift": {"fullname": "ramanchada2.spectrum.filters.add_gaussian_noise_drift.generate_add_gaussian_noise_drift", "modulename": "ramanchada2.spectrum.filters.add_gaussian_noise_drift", "qualname": "generate_add_gaussian_noise_drift", "kind": "function", "doc": "

\n", "signature": "(\ty,\t/,\tsigma: typing.Annotated[float, Gt(gt=0)],\tcoef: typing.Annotated[float, None, Interval(gt=None, ge=0, lt=None, le=1), None, None],\trng_seed=None):", "funcdef": "def"}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"fullname": "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift", "modulename": "ramanchada2.spectrum.filters.add_gaussian_noise_drift", "qualname": "add_gaussian_noise_drift", "kind": "function", "doc": "

Add cumulative gaussian noise to the spectrum.

\n\n

Exponential-moving-average-like gaussian noise is added\nto each sample. The goal is to mimic the low-frequency noise\n(or random substructures in spectra).\nThe additive noise is\n$$a_i = coef*\\sum_{j=0}^{i-1}g_j + g_i,$$

\n\n

where\n$$g_i = \\mathcal{N}(0, 1+\\frac{coef}{\\sqrt 2}).$$

\n\n

This way drifting is possible while keeping the\n$$\\sigma(\\Delta(a)) \\approx 1.$$

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • sigma: Sigma of the gaussian noise.
  • \n
  • coef: float in [0, 1], drifting coefficient. If coef == 0,\nthe result is identical to add_gaussian_noise().
  • \n
  • rng_seed: int or rng state, optional. Seed for the random generator.\nIf a state is provided, it is updated in-place.
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tsigma: typing.Annotated[float, Gt(gt=0)],\tcoef: typing.Annotated[float, None, Interval(gt=None, ge=0, lt=None, le=1), None, None],\trng_seed=None):", "funcdef": "def"}, "ramanchada2.spectrum.filters.add_poisson_noise": {"fullname": "ramanchada2.spectrum.filters.add_poisson_noise", "modulename": "ramanchada2.spectrum.filters.add_poisson_noise", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"fullname": "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise", "modulename": "ramanchada2.spectrum.filters.add_poisson_noise", "qualname": "add_poisson_noise", "kind": "function", "doc": "

Add poisson noise to the spectrum.

\n\n

For each particular sample the noise is proportional to $\\sqrt{scale*a_i}$.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • scale: float, optional, default is 1. Scale the amplitude of the noise.
  • \n
  • rng_seed: int or rng state, optional. Seed for the random generator.\nIf a state is provided, it is updated in-place.
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tscale: float = 1,\trng_seed=None):", "funcdef": "def"}, "ramanchada2.spectrum.filters.convolve": {"fullname": "ramanchada2.spectrum.filters.convolve", "modulename": "ramanchada2.spectrum.filters.convolve", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.filters.convolve.convolve": {"fullname": "ramanchada2.spectrum.filters.convolve.convolve", "modulename": "ramanchada2.spectrum.filters.convolve", "qualname": "convolve", "kind": "function", "doc": "

Convole spectrum with arbitrary lineshape.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • lineshape: callable, str or np.ndarray.\n If callable: should have a single positional argument x, e.g.\nlambda x: np.exp((x/5)**2).\nIf predefined peak profile: can be gaussian, lorentzian, voigt,\npvoigt, moffat or pearson4.\nIf np.ndarray: lineshape in samples.
  • \n
  • **kwargs: Additional kwargs will be passed to lineshape function.
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tlineshape: Union[Callable[[Union[float, numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]]]], float], numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]], Literal['gaussian', 'lorentzian', 'voigt', 'pvoigt', 'moffat', 'pearson4', 'pearson7']],\t**kwargs):", "funcdef": "def"}, "ramanchada2.spectrum.filters.drop_spikes": {"fullname": "ramanchada2.spectrum.filters.drop_spikes", "modulename": "ramanchada2.spectrum.filters.drop_spikes", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"fullname": "ramanchada2.spectrum.filters.drop_spikes.spike_indices", "modulename": "ramanchada2.spectrum.filters.drop_spikes", "qualname": "spike_indices", "kind": "function", "doc": "

Find spikes in spectrum

\n\n

Single-bin spikes are located using left and right successive\ndifferences. The threshold is based on the standart deviation\nof the metric which makes this algorithm less optimal.

\n\n
Arguments:
\n\n
    \n
  • spe: internal use only
  • \n
  • n_sigma: Threshold value should be n_sigma times the standart\ndeviation of the metric.
  • \n
\n\n

Returns: List of spike indices

\n", "signature": "(\tspe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tn_sigma: typing.Annotated[float, Gt(gt=0)]) -> numpy.ndarray[typing.Any, numpy.dtype[+_ScalarType_co]]:", "funcdef": "def"}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"fullname": "ramanchada2.spectrum.filters.drop_spikes.drop_spikes", "modulename": "ramanchada2.spectrum.filters.drop_spikes", "qualname": "drop_spikes", "kind": "function", "doc": "

Removes single-bin spikes.

\n\n

Remove x, y pairs recognised as spikes using left and right\nsuccessive differences and standard-deviation-based threshold.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • n_sigma: optional, default is 10.\nThreshold is n_sigma times the standard deviation.
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tn_sigma: typing.Annotated[float, Gt(gt=0)] = 10):", "funcdef": "def"}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"fullname": "ramanchada2.spectrum.filters.drop_spikes.recover_spikes", "modulename": "ramanchada2.spectrum.filters.drop_spikes", "qualname": "recover_spikes", "kind": "function", "doc": "

Recover single-bin spikes.

\n\n

Recover x, y pairs recognised as spikes using left and right\nsuccessive differences and standard-deviation-based threshold\nand linear interpolation.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • n_sigma: optional, default is 10.\nThreshold is n_sigma times the standard deviation.
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tn_sigma: typing.Annotated[float, Gt(gt=0)] = 10):", "funcdef": "def"}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"fullname": "ramanchada2.spectrum.filters.drop_spikes.get_spikes", "modulename": "ramanchada2.spectrum.filters.drop_spikes", "qualname": "get_spikes", "kind": "function", "doc": "

Get single-bin spikes only.

\n\n

Get x, y pairs recognised as spikes using left and right\nsuccessive differences and standard-deviation-based threshold\nand linear interpolation.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • n_sigma: optional, default is 10.\nThreshold is n_sigma times the standard deviation.
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tn_sigma: typing.Annotated[float, Gt(gt=0)] = 10):", "funcdef": "def"}, "ramanchada2.spectrum.filters.moving_average": {"fullname": "ramanchada2.spectrum.filters.moving_average", "modulename": "ramanchada2.spectrum.filters.moving_average", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"fullname": "ramanchada2.spectrum.filters.moving_average.moving_average", "modulename": "ramanchada2.spectrum.filters.moving_average", "qualname": "moving_average", "kind": "function", "doc": "

Moving average filter.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • window_size: int, optional, default is 10.
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\twindow_size: typing.Annotated[int, Gt(gt=0)] = 10):", "funcdef": "def"}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"fullname": "ramanchada2.spectrum.filters.moving_average.moving_average_convolve", "modulename": "ramanchada2.spectrum.filters.moving_average", "qualname": "moving_average_convolve", "kind": "function", "doc": "

Moving average filter.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • window_size: int, optional, default is 10.
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\twindow_size: typing.Annotated[int, Gt(gt=0)] = 10):", "funcdef": "def"}, "ramanchada2.spectrum.filters.moving_median": {"fullname": "ramanchada2.spectrum.filters.moving_median", "modulename": "ramanchada2.spectrum.filters.moving_median", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"fullname": "ramanchada2.spectrum.filters.moving_median.moving_median", "modulename": "ramanchada2.spectrum.filters.moving_median", "qualname": "moving_median", "kind": "function", "doc": "

Moving median filter.

\n\n

The resultant spectrum is moving minimum of the input.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • window_size: int, optional, default is 10.
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\twindow_size: typing.Annotated[int, Gt(gt=0)] = 10):", "funcdef": "def"}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"fullname": "ramanchada2.spectrum.filters.moving_median.subtract_moving_median", "modulename": "ramanchada2.spectrum.filters.moving_median", "qualname": "subtract_moving_median", "kind": "function", "doc": "

Subtract moving median filter.

\n\n

The resultant spectrum is moving minimum of the input subtracted from the input.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • window_size: int, optional, default is 10.
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\twindow_size: int):", "funcdef": "def"}, "ramanchada2.spectrum.filters.pad_zeros": {"fullname": "ramanchada2.spectrum.filters.pad_zeros", "modulename": "ramanchada2.spectrum.filters.pad_zeros", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"fullname": "ramanchada2.spectrum.filters.pad_zeros.pad_zeros", "modulename": "ramanchada2.spectrum.filters.pad_zeros", "qualname": "pad_zeros", "kind": "function", "doc": "

Extend x-axis by 100% in both directions.

\n\n

The x-axis of resultant spectrum will be:\n$[x_{lower}-(x_{upper}-x_{lower})..(x_{upper}+(x_{upper}-x_{lower}))]$.\nThe length of the new spectrum is 3 times the original. The added values\nare with an uniform step. In the middle is the original spectrum with\noriginal x and y values. The coresponding y vallues for the newly added\nx-values are always zeros.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/):", "funcdef": "def"}, "ramanchada2.spectrum.filters.resampling": {"fullname": "ramanchada2.spectrum.filters.resampling", "modulename": "ramanchada2.spectrum.filters.resampling", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"fullname": "ramanchada2.spectrum.filters.resampling.resample_NUDFT", "modulename": "ramanchada2.spectrum.filters.resampling", "qualname": "resample_NUDFT", "kind": "function", "doc": "

Resample the spectrum using Non-uniform discrete fourier transform.

\n\n

The x-axis of the result will be uniform. The corresponding y-values\nwill be calculated with NUDFT and inverse FFT.

\n\n
Arguments:
\n\n
    \n
  • spe: internal use only
  • \n
  • x_range: optional. Defaults to (0, 4000).\nThe x_range of the new spectrum.
  • \n
  • xnew_bins: optional. Defaults to 100.\nNumber of bins of the new spectrum
  • \n
  • window: optional, Defaults to None.\nThe window to be used for lowpass filter. If None 'blackmanharris' is used.\nIf no low-pass filter is required, one can use window=lambda x: [1]*len(x).
  • \n
  • cumulative: optional. Defaults to False.\nIf True, the resultant spectrum will be cumulative and normalized\n(in analogy with CDF).
  • \n
\n\n
Returns:
\n\n
\n

(x_values, y_values)

\n
\n", "signature": "(\tspe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tx_range: Tuple[float, float] = (0, 4000),\txnew_bins: typing.Annotated[int, Gt(gt=0)] = 100,\twindow: Union[Callable, Tuple[Any, ...], Literal['barthann', 'bartlett', 'blackman', 'blackmanharris', 'bohman', 'boxcar', 'chebwin', 'cosine', 'dpss', 'exponential', 'flattop', 'gaussian', 'general_cosine', 'general_gaussian', 'general_hamming', 'hamming', 'hann', 'kaiser', 'nuttall', 'parzen', 'taylor', 'triang', 'tukey'], NoneType] = None,\tcumulative: bool = False):", "funcdef": "def"}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"fullname": "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter", "modulename": "ramanchada2.spectrum.filters.resampling", "qualname": "resample_NUDFT_filter", "kind": "function", "doc": "

Resample the spectrum using Non-uniform discrete fourier transform.

\n\n

The x-axis of the result will be uniform. The corresponding y-values\nwill be calculated with NUDFT and inverse FFT.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • x_range: optional. Defaults to (0, 4000).\nThe x_range of the new spectrum.
  • \n
  • xnew_bins: optional. Defaults to 100.\nNumber of bins of the new spectrum
  • \n
  • window: optional, Defaults to None.\nThe window to be used for lowpass filter. If None 'blackmanharris' is used.\nIf no low-pass filter is required, one can use window=lambda x: [1]*len(x).
  • \n
  • cumulative: optional. Defaults to False.\nIf True, the resultant spectrum will be cumulative and normalized\n(in analogy with CDF).
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tx_range: Tuple[float, float] = (0, 4000),\txnew_bins: typing.Annotated[int, Gt(gt=0)] = 100,\twindow=None,\tcumulative: bool = False):", "funcdef": "def"}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"fullname": "ramanchada2.spectrum.filters.resampling.resample_spline", "modulename": "ramanchada2.spectrum.filters.resampling", "qualname": "resample_spline", "kind": "function", "doc": "

Resample the spectrum using spline interpolation.

\n\n

The x-axis of the result will be uniform. The corresponding y-values\nwill be calculated with spline interpolation.

\n\n
Arguments:
\n\n
    \n
  • spe: internal use only
  • \n
  • x_range: optional. Defaults to (0, 4000).\nThe x_range of the new spectrum.
  • \n
  • xnew_bins: optional. Defaults to 100.\nNumber of bins of the new spectrum
  • \n
  • spline: optional, Defaults to 'pchip'.\nName of the spline funcion to be used.
  • \n
  • cumulative: optional. Defaults to False.\nIf True, the resultant spectrum will be cumulative and normalized\n(in analogy with CDF).
  • \n
\n\n
Returns:
\n\n
\n

(x_values, y_values)

\n
\n", "signature": "(\tspe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tx_range: Tuple[float, float] = (0, 4000),\txnew_bins: typing.Annotated[int, Gt(gt=0)] = 100,\tspline: Literal['pchip', 'akima', 'makima', 'cubic_spline'] = 'pchip',\tinterp_kw_args: Optional[Dict] = None,\tcumulative: bool = False):", "funcdef": "def"}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"fullname": "ramanchada2.spectrum.filters.resampling.resample_spline_filter", "modulename": "ramanchada2.spectrum.filters.resampling", "qualname": "resample_spline_filter", "kind": "function", "doc": "

Resample the spectrum using spline interpolation.

\n\n

The x-axis of the result will be uniform. The corresponding y-values\nwill be calculated with spline interpolation.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • x_range: optional. Defaults to (0, 4000).\nThe x_range of the new spectrum.
  • \n
  • xnew_bins: optional. Defaults to 100.\nNumber of bins of the new spectrum
  • \n
  • spline: optional, Defaults to 'pchip'.\nName of the spline funcion to be used.
  • \n
  • cumulative: optional. Defaults to False.\nIf True, the resultant spectrum will be cumulative and normalized\n(in analogy with CDF).
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tx_range: Tuple[float, float] = (0, 4000),\txnew_bins: typing.Annotated[int, Gt(gt=0)] = 100,\tspline: Literal['pchip', 'akima', 'makima', 'cubic_spline'] = 'pchip',\tinterp_kw_args: Optional[Dict] = None,\tcumulative: bool = False):", "funcdef": "def"}, "ramanchada2.spectrum.filters.sharpen_lines": {"fullname": "ramanchada2.spectrum.filters.sharpen_lines", "modulename": "ramanchada2.spectrum.filters.sharpen_lines", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"fullname": "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening", "modulename": "ramanchada2.spectrum.filters.sharpen_lines", "qualname": "derivative_sharpening", "kind": "function", "doc": "

Derivative-based sharpening.

\n\n

Sharpen the spectrum subtracting second derivative and add fourth derivative.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • filter_fraction float in (0; 1]: Default is 0.6\nDepth of filtration
  • \n
  • signal_width: The width of features to be enhanced in sample count
  • \n
  • der2_factor: Second derivative scaling factor
  • \n
  • der4_factor: Fourth derivative scaling factor
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tfilter_fraction: typing.Annotated[float, None, Interval(gt=0, ge=None, lt=None, le=1), None, None] = 0.6,\tsig_width: typing.Annotated[float, None, Interval(gt=None, ge=0, lt=None, le=None), None, None] = 0.25,\tder2_factor: float = 1,\tder4_factor: float = 0.1):", "funcdef": "def"}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"fullname": "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening", "modulename": "ramanchada2.spectrum.filters.sharpen_lines", "qualname": "hht_sharpening", "kind": "function", "doc": "

Hilbert-Huang based sharpening.

\n\n

In order to reduce the overshooting, moving minimum is subtracted from the result

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • movmin: optional. Default is 100\nWindow size for moving minimum
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tmovmin=100):", "funcdef": "def"}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"fullname": "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain", "modulename": "ramanchada2.spectrum.filters.sharpen_lines", "qualname": "hht_sharpening_chain", "kind": "function", "doc": "

Hilbert-Huang based chain sharpening.

\n\n

Sequence of Hilbert-Huang sharpening procedures are performed.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • movmin: List[int], optional. Default is [150, 50]\nThe numer of values in the list defines how many iterations\nof HHT_sharpening will be performed and the values define\nthe moving minimum window sizes for the corresponding operations.
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tmovmin: List[Annotated[int, Gt(gt=0)]] = [150, 50]):", "funcdef": "def"}, "ramanchada2.spectrum.filters.smoothing": {"fullname": "ramanchada2.spectrum.filters.smoothing", "modulename": "ramanchada2.spectrum.filters.smoothing", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"fullname": "ramanchada2.spectrum.filters.smoothing.smoothing_RC1", "modulename": "ramanchada2.spectrum.filters.smoothing", "qualname": "smoothing_RC1", "kind": "function", "doc": "

Smooth the spectrum.

\n\n

The spectrum will be smoothed using the specified filter.\nThis method is inherited from ramanchada1 for compatibility reasons.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • method: method to be used
  • \n
  • **kwargs: keyword arguments to be passed to the selected method
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\t*args,\tmethod: Literal['savgol', 'sg', 'wiener', 'median', 'gauss', 'gaussian', 'lowess', 'boxcar'],\t**kwargs):", "funcdef": "def"}, "ramanchada2.spectrum.filters.trim_axes": {"fullname": "ramanchada2.spectrum.filters.trim_axes", "modulename": "ramanchada2.spectrum.filters.trim_axes", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"fullname": "ramanchada2.spectrum.filters.trim_axes.trim_axes", "modulename": "ramanchada2.spectrum.filters.trim_axes", "qualname": "trim_axes", "kind": "function", "doc": "

Trim axes of the spectrum.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • method: 'x-axis' or 'bins'\nIf 'x-axis' boundaries will be interpreted as x-axis values.\nIf 'bins' boundaries will be interpreted as indices.
  • \n
  • boundaries: lower and upper boundary for the trimming.
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tmethod: Literal['x-axis', 'bins'],\tboundaries: Tuple[float, float]):", "funcdef": "def"}, "ramanchada2.spectrum.peaks": {"fullname": "ramanchada2.spectrum.peaks", "modulename": "ramanchada2.spectrum.peaks", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.peaks.find_peaks": {"fullname": "ramanchada2.spectrum.peaks.find_peaks", "modulename": "ramanchada2.spectrum.peaks.find_peaks", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.peaks.find_peaks.peak_boundaries": {"fullname": "ramanchada2.spectrum.peaks.find_peaks.peak_boundaries", "modulename": "ramanchada2.spectrum.peaks.find_peaks", "qualname": "peak_boundaries", "kind": "function", "doc": "

\n", "signature": "(spe, wlen, width, prominence):", "funcdef": "def"}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"fullname": "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak", "modulename": "ramanchada2.spectrum.peaks.find_peaks", "qualname": "find_peak_multipeak", "kind": "function", "doc": "

Find groups of peaks in spectrum.

\n\n
Arguments:
\n\n
    \n
  • spe: internal use only
  • \n
  • prominence: Optional. Defaults to None\nIf None the prominence value will be spe.y_nose. Reasonable value for\npromience is const * spe.y_noise_MAD.
  • \n
  • wlen: optional. Defaults to None.\nwlen value used in scipy.signal.find_peaks. If wlen is None, 200 will be used.
  • \n
  • width: optional. Defaults to None.\nwidth value used in scipy.signal.find_peaks. If width is None, 2 will be used.
  • \n
  • hht_chain: optional. Defaults to None.\nList of hht_chain window sizes. If None, no hht sharpening is performed.
  • \n
  • bgm_kwargs: kwargs for bayesian_gaussian_mixture
  • \n
  • sharpening 'hht' or None. Defaults to None.\nIf 'hht' hht sharpening will be performed before finding peaks.
  • \n
  • strategy: optional. Defauts to 'topo'.\nPeakfinding method
  • \n
\n\n
Returns:
\n\n
\n

ListPeakCandidateMultiModel: Located peak groups

\n
\n", "signature": "(\tspe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tprominence: Optional[Annotated[float, Ge(ge=0)]] = None,\twlen: Optional[Annotated[int, Ge(ge=0)]] = None,\twidth: Union[int, Tuple[int, int], NoneType] = None,\thht_chain: Optional[List[Annotated[int, Gt(gt=0)]]] = None,\tbgm_kwargs={},\tsharpening: Optional[Literal['hht']] = None,\tstrategy: Literal['topo', 'bayesian_gaussian_mixture', 'bgm', 'cwt'] = 'topo') -> ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel:", "funcdef": "def"}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"fullname": "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter", "modulename": "ramanchada2.spectrum.peaks.find_peaks", "qualname": "find_peak_multipeak_filter", "kind": "function", "doc": "

Same as find_peak_multipeak but the result is stored as metadata in the returned spectrum.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • args, *kwargs: same as find_peak_multipeak
  • \n
\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\t*args,\t**kwargs):", "funcdef": "def"}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture": {"fullname": "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture", "modulename": "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"fullname": "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture", "modulename": "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture", "qualname": "bayesian_gaussian_mixture", "kind": "function", "doc": "

Decompose the spectrum to Bayesian Gaussian Mixture

\n\n
Arguments:
\n\n
    \n
  • spe: internal use only
  • \n
  • n_samples: optional. Defaults to 5000.\nResampled dataset size
  • \n
  • n_components: optional. Defaults to 50.\nNumber of expected gaussian components
  • \n
  • max_iter: optional. Defaults to 100.\nMaximal number of iterations.
  • \n
  • moving_minimum_window: optional. Defaults to None.\nIf None no moving minimum is subtracted, otherwise as specified.
  • \n
  • random_state: optional. Defaults to None.\nRandom generator seed to be used.
  • \n
  • trim_range: optional. Defaults to None:\nIf None ignore trimming, otherwise trim range is in x-axis values.
  • \n
\n\n
Returns:
\n\n
\n

BayesianGaussianMixture: Fitted Bayesian Gaussian Mixture

\n
\n", "signature": "(\tspe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tn_samples: typing.Annotated[int, Gt(gt=0)] = 5000,\tn_components: typing.Annotated[int, Gt(gt=0)] = 50,\tmax_iter: typing.Annotated[int, Gt(gt=0)] = 100,\tmoving_minimum_window: Optional[Annotated[int, Gt(gt=0)]] = None,\trandom_state=None,\ttrim_range: Optional[Tuple[float, float]] = None) -> sklearn.mixture._bayesian_mixture.BayesianGaussianMixture:", "funcdef": "def"}, "ramanchada2.spectrum.peaks.fit_peaks": {"fullname": "ramanchada2.spectrum.peaks.fit_peaks", "modulename": "ramanchada2.spectrum.peaks.fit_peaks", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.peaks.fit_peaks.logger": {"fullname": "ramanchada2.spectrum.peaks.fit_peaks.logger", "modulename": "ramanchada2.spectrum.peaks.fit_peaks", "qualname": "logger", "kind": "variable", "doc": "

\n", "default_value": "<Logger ramanchada2.spectrum.peaks.fit_peaks (WARNING)>"}, "ramanchada2.spectrum.peaks.fit_peaks.available_models": {"fullname": "ramanchada2.spectrum.peaks.fit_peaks.available_models", "modulename": "ramanchada2.spectrum.peaks.fit_peaks", "qualname": "available_models", "kind": "variable", "doc": "

\n", "default_value": "['Gaussian', 'Lorentzian', 'Moffat', 'Voigt', 'PseudoVoigt', 'Pearson4', 'Pearson7']"}, "ramanchada2.spectrum.peaks.fit_peaks.available_models_type": {"fullname": "ramanchada2.spectrum.peaks.fit_peaks.available_models_type", "modulename": "ramanchada2.spectrum.peaks.fit_peaks", "qualname": "available_models_type", "kind": "variable", "doc": "

\n", "default_value": "typing.Literal['Gaussian', 'Lorentzian', 'Moffat', 'Voigt', 'PseudoVoigt', 'Pearson4', 'Pearson7']"}, "ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"fullname": "ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params", "modulename": "ramanchada2.spectrum.peaks.fit_peaks", "qualname": "build_multipeak_model_params", "kind": "function", "doc": "

\n", "signature": "(\tprofile: Union[Literal['Gaussian', 'Lorentzian', 'Moffat', 'Voigt', 'PseudoVoigt', 'Pearson4', 'Pearson7'], List[Literal['Gaussian', 'Lorentzian', 'Moffat', 'Voigt', 'PseudoVoigt', 'Pearson4', 'Pearson7']]],\tcandidates: ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel,\tbaseline_model: Literal['linear', None] = 'linear'):", "funcdef": "def"}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"fullname": "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel", "modulename": "ramanchada2.spectrum.peaks.fit_peaks", "qualname": "fit_peak_multimodel", "kind": "function", "doc": "

\n", "signature": "(\tspe,\t/,\t*,\tprofile: Union[Literal['Gaussian', 'Lorentzian', 'Moffat', 'Voigt', 'PseudoVoigt', 'Pearson4', 'Pearson7'], List[Literal['Gaussian', 'Lorentzian', 'Moffat', 'Voigt', 'PseudoVoigt', 'Pearson4', 'Pearson7']]],\tcandidates: ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel,\tno_fit=False,\tshould_break=[False],\tkwargs_fit={},\tvary_baseline: bool = False) -> ramanchada2.misc.types.fit_peaks_result.FitPeaksResult:", "funcdef": "def"}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"fullname": "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter", "modulename": "ramanchada2.spectrum.peaks.fit_peaks", "qualname": "fit_peaks_filter", "kind": "function", "doc": "

Same as fit_peak_multipeak but the result is stored as metadata in the returned spectrum.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • should_break: same as in fit_peaks_multipeak
  • \n
  • args, *kwargs: same as fit_peaks_multipeak
  • \n
\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\t*args,\tshould_break=[False],\tkwargs_fit={},\t**kwargs):", "funcdef": "def"}, "ramanchada2.spectrum.peaks.get_fitted_peaks": {"fullname": "ramanchada2.spectrum.peaks.get_fitted_peaks", "modulename": "ramanchada2.spectrum.peaks.get_fitted_peaks", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.peaks.get_fitted_peaks.logger": {"fullname": "ramanchada2.spectrum.peaks.get_fitted_peaks.logger", "modulename": "ramanchada2.spectrum.peaks.get_fitted_peaks", "qualname": "logger", "kind": "variable", "doc": "

\n", "default_value": "<Logger ramanchada2.spectrum.peaks.get_fitted_peaks (WARNING)>"}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"fullname": "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions", "modulename": "ramanchada2.spectrum.peaks.get_fitted_peaks", "qualname": "fit_peak_positions", "kind": "function", "doc": "

Calculate peak positions and amplitudes.

\n\n

Sequence of multiple processings:

\n\n
    \n
  • subtract_moving_minimum
  • \n
  • find_peak_multipeak
  • \n
  • filter peaks with x-location better than threshold
  • \n
\n\n
Arguments:
\n\n
    \n
  • spe: internal use only
  • \n
  • mov_min: optional. Defaults to 40\nsubtract moving_minimum with the specified window.
  • \n
  • center_err_threshold: optional. Defaults to 0.5.\nthreshold for centroid standard deviation. Only peaks\nwith better uncertainty will be returned.
  • \n
  • find_peaks_kw: optional\nkeyword arguments to be used with find_peak_multipeak
  • \n
  • fit_peaks_kw: optional\nkeyword arguments to be used with fit_peaks_multipeak
  • \n
\n\n
Returns:
\n\n
\n

Dict[float, float]: {positions: amplitudes}

\n
\n", "signature": "(\tspe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\t*,\tmov_min=40,\tcenter_err_threshold=0.5,\tfind_peaks_kw={},\tfit_peaks_kw={}) -> Dict[float, float]:", "funcdef": "def"}, "ramanchada2.spectrum.spectrum": {"fullname": "ramanchada2.spectrum.spectrum", "modulename": "ramanchada2.spectrum.spectrum", "kind": "module", "doc": "

\n"}, "ramanchada2.spectrum.spectrum.logger": {"fullname": "ramanchada2.spectrum.spectrum.logger", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "logger", "kind": "variable", "doc": "

\n", "default_value": "<Logger ramanchada2.spectrum.spectrum (WARNING)>"}, "ramanchada2.spectrum.spectrum.Spectrum": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum", "kind": "class", "doc": "

Helper class that provides a standard way to create an ABC using\ninheritance.

\n", "bases": "ramanchada2.misc.plottable.Plottable"}, "ramanchada2.spectrum.spectrum.Spectrum.__init__": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.__init__", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.__init__", "kind": "function", "doc": "

\n", "signature": "(\tx: Union[numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]], int, NoneType] = None,\ty: Optional[numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]]] = None,\tcachefile: Optional[str] = None,\tmetadata: Optional[ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel] = None,\tapplied_processings: Optional[ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel] = None)"}, "ramanchada2.spectrum.spectrum.Spectrum.applied_processings_dict": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.applied_processings_dict", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.applied_processings_dict", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.write_csv": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.write_csv", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.write_csv", "kind": "function", "doc": "

\n", "signature": "(self, filename, delimiter=',', newline='\\n'):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.write_cha": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.write_cha", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.write_cha", "kind": "function", "doc": "

\n", "signature": "(self, chafile, dataset):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.write_nexus": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.write_nexus", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.write_nexus", "kind": "function", "doc": "

\n", "signature": "(self, chafile, dataset):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.write_cache": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.write_cache", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.write_cache", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.process": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.process", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.process", "kind": "function", "doc": "

\n", "signature": "(self, algorithm: str, **kwargs):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.apply_creator": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.apply_creator", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.apply_creator", "kind": "function", "doc": "

\n", "signature": "(\tcls,\tstep: ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel,\tcachefile_=None):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.apply_processing": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.apply_processing", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.apply_processing", "kind": "function", "doc": "

\n", "signature": "(\tself,\tstep: ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.x": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.x", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.x", "kind": "variable", "doc": "

\n"}, "ramanchada2.spectrum.spectrum.Spectrum.x_bin_boundaries": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.x_bin_boundaries", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.x_bin_boundaries", "kind": "variable", "doc": "

\n"}, "ramanchada2.spectrum.spectrum.Spectrum.y": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.y", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.y", "kind": "variable", "doc": "

\n", "annotation": ": numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]"}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.y_noise", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.y_noise", "kind": "variable", "doc": "

\n"}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_MAD": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.y_noise_MAD", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.y_noise_MAD", "kind": "function", "doc": "

\n", "signature": "(self):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol_DL": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol_DL", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.y_noise_savgol_DL", "kind": "function", "doc": "

\n", "signature": "(self, order: typing.Annotated[int, Gt(gt=0)] = 1):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.y_noise_savgol", "kind": "function", "doc": "

\n", "signature": "(self, order: typing.Annotated[int, Gt(gt=0)] = 1):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.x_err": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.x_err", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.x_err", "kind": "variable", "doc": "

\n"}, "ramanchada2.spectrum.spectrum.Spectrum.y_err": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.y_err", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.y_err", "kind": "variable", "doc": "

\n"}, "ramanchada2.spectrum.spectrum.Spectrum.meta": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.meta", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.meta", "kind": "variable", "doc": "

\n", "annotation": ": ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel"}, "ramanchada2.spectrum.spectrum.Spectrum.result": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.result", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.result", "kind": "variable", "doc": "

\n"}, "ramanchada2.spectrum.spectrum.Spectrum.spe_distribution": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.spe_distribution", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.spe_distribution", "kind": "function", "doc": "

\n", "signature": "(self, trim_range: Optional[Tuple[float, float]] = None):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.gen_samples": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.gen_samples", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.gen_samples", "kind": "function", "doc": "

\n", "signature": "(self, size: typing.Annotated[int, Gt(gt=0)], trim_range=None):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.add_baseline", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.add_baseline", "kind": "function", "doc": "

Add artificial baseline to the spectrum.\nA random baseline is generated in frequency domain using uniform random numbers.\nThe baseline in frequency domain is tapered with bohman window to reduce the bandwidth\nof the baseline to first n_freq frequencies and is transformed to \"time\" domain.\nAdditionaly by using func parameter the user can define arbitrary function\nto be added as baseline.

\n\n
Arguments:
\n\n
    \n
  • n_freq: Must be > 2. Number of lowest frequency bins distinct from zero.
  • \n
  • amplitude: Upper boundary for the uniform random generator.
  • \n
  • pedestal: Additive constant pedestal to the spectrum.
  • \n
  • func: Callable. User-defined function to be added as baseline. Example: func = lambda x: x*.01 + x**2*.0001.
  • \n
  • rng_seed: int, optional. Seed for the random generator.
  • \n
\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tn_freq: int,\tamplitude: float,\tpedestal: float = 0,\tfunc: Optional[Callable] = None,\trng_seed=None):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_als": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_als", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.subtract_baseline_rc1_als", "kind": "function", "doc": "

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\tlam=100000.0,\tp=0.001,\tniter=100,\tsmooth=7):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_snip": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_snip", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.subtract_baseline_rc1_snip", "kind": "function", "doc": "

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\tniter=30):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.moving_minimum": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.moving_minimum", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.moving_minimum", "kind": "function", "doc": "

Moving minimum baseline estimator.\nSuccessive values are calculated as minima of rolling rectangular window.

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\twindow_size: int):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_minimum": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_minimum", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.subtract_moving_minimum", "kind": "function", "doc": "

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\twindow_size: int):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.central_moments": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.central_moments", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.central_moments", "kind": "function", "doc": "

\n", "signature": "(\tspe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tboundaries=(-inf, inf),\tmoments=[1, 2, 3, 4],\tnormalize=False):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.abs_nm_to_shift_cm_1", "kind": "function", "doc": "

Convert wavelength to Ramanshift in wavenumber

\n\n
Arguments:
\n\n
    \n
  • spe: internal use only
  • \n
  • laser_wave_length_nm: Laser wave length
  • \n
\n\n

Returns: Corrected x-values

\n", "signature": "(\tspe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tlaser_wave_length_nm: float):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.shift_cm_1_to_abs_nm", "kind": "function", "doc": "

Convert Ramanshift in wavenumber to wavelength

\n\n
Arguments:
\n\n
    \n
  • spe: internal use only
  • \n
  • laser_wave_length_nm: Laser wave length
  • \n
\n\n

Returns: Corrected x-values

\n", "signature": "(\tspe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tlaser_wave_length_nm: float):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.abs_nm_to_shift_cm_1_filter", "kind": "function", "doc": "

Convert wavelength to Ramanshift in wavenumber

\n\n
Arguments:
\n\n
    \n
  • spe: internal use only
  • \n
  • laser_wave_length_nm: Laser wave length
  • \n
\n\n

Returns: Spectrum with corrected x-values

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tlaser_wave_length_nm: float):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.shift_cm_1_to_abs_nm_filter", "kind": "function", "doc": "

Convert Ramanshift in wavenumber to wavelength

\n\n
Arguments:
\n\n
    \n
  • spe: internal use only
  • \n
  • laser_wave_length_nm: Laser wave length
  • \n
\n\n

Returns: Spectrum with corrected x-values

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tlaser_wave_length_nm: float):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.calibrate_by_deltas_model", "kind": "function", "doc": "
    \n
  • Builds a composite model based on a set of user specified delta lines.
  • \n
  • Initial guess is calculated based on 10-th and 90-th percentiles of\nthe distributions.
  • \n
\n\n

The phasespace of the model is flat with big amount of narrow minima.\nIn order to find the best fit, the experimental data are successively\nconvolved with gaussians with different widths startign from wide to\nnarrow. The model for the calibration is 3-th order polynomial, which\npotentialy can be changed for higher order polynomial. In order to avoid\nsolving the inverse of the calibration function, the result is tabulated\nand interpolated linarly for each bin of the spectrum.\nThis alogrithm is useful for corse calibration.

\n", "signature": "(\tspe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tdeltas: Dict[float, float],\tconvolution_steps: Optional[List[float]] = [15, 1],\tscale2=True,\tscale3=False,\tinit_guess: Literal[None, 'cumulative'] = None,\tax=None,\t**kwargs):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_filter": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_filter", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.calibrate_by_deltas_filter", "kind": "function", "doc": "

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tdeltas: Dict[float, float],\tconvolution_steps,\tinit_guess=None,\t**kwargs):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.xcal_fine", "kind": "function", "doc": "

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\t*,\tref: Union[Dict[float, float], List[float]],\tshould_fit=False,\tpoly_order: typing.Annotated[int, Ge(ge=0)],\tfind_peaks_kw={}):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.xcal_fine_RBF", "kind": "function", "doc": "

Wavelength calibration using Radial basis fuction interpolation

\n\n

Please be cautious! Interpolation might not be the most appropriate\napproach for this type of calibration.

\n\n

**kwargs are passed to RBFInterpolator

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\t*,\tref: Union[Dict[float, float], List[float], numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]]],\tshould_fit=False,\tkernel: Literal['thin_plate_spline', 'cubic', 'quintic', 'multiquadric', 'inverse_multiquadric', 'inverse_quadratic', 'gaussian'] = 'thin_plate_spline',\tfind_peaks_kw={},\t**kwargs):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.scale_yaxis_linear", "kind": "function", "doc": "

Scale y-axis values

\n\n

This function provides the same result as spe*const

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • factor optional. Defaults to 1.\nY-values scaling factor
  • \n
\n\n

Returns: corrected spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\tfactor: float = 1):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.set_new_xaxis", "kind": "function", "doc": "

Substitute x-axis values with new ones

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • xaxis: new x-axis values
  • \n
\n\n

Returns: corrected spectrum

\n\n
Raises:
\n\n
    \n
  • ValueError: If the provided array does not match the shape of the spectrum.
  • \n
\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\txaxis: numpy.ndarray[typing.Any, numpy.dtype[+_ScalarType_co]]):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.scale_xaxis_linear", "kind": "function", "doc": "

Scale x-axis using a factor.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • factor: Defaults to 1.\nMultiply x-axis values with factor
  • \n
  • preserve_integral: optional. Defaults to False.\nIf True, preserves the integral in sence\n$\\sum y_{orig;\\,i}*{\\Delta x_{orig}}_i = \\sum y_{new;\\,i}*{\\Delta x_{new}}_i = $
  • \n
\n\n

Returns: Corrected spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tfactor: float = 1,\tpreserve_integral: bool = False):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.scale_xaxis_fun", "kind": "function", "doc": "

Apply arbitrary calibration function to the x-axis values.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • fun: function to be applied
  • \n
  • args: Additional arguments to the provided functions
  • \n
\n\n

Returns: Corrected spectrum

\n\n
Raises:
\n\n
    \n
  • ValueError: If the new x-values are not strictly monotonically increasing.
  • \n
\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tfun: Callable[[Union[int, numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]]]], float],\targs=[]):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.normalize", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.normalize", "kind": "function", "doc": "

Normalize the spectrum.

\n\n
Arguments:
\n\n
    \n
  • strategy: If unity: normalize to sum(y). If min_unity: subtract the minimum and normalize to 'unity'. If\nunity_density: normalize to \u03a3(y_i*\u0394x_i). If unity_area: same as unity_density. If minmax: scale\namplitudes in range [0, 1]. If 'L1' or 'L2': L1 or L2 norm without subtracting the pedestal.
  • \n
\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tstrategy: Literal['unity', 'min_unity', 'unity_density', 'unity_area', 'minmax', 'L1', 'L2'] = 'minmax'):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.moving_median", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.moving_median", "kind": "function", "doc": "

Moving median filter.

\n\n

The resultant spectrum is moving minimum of the input.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • window_size: int, optional, default is 10.
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\twindow_size: typing.Annotated[int, Gt(gt=0)] = 10):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.subtract_moving_median", "kind": "function", "doc": "

Subtract moving median filter.

\n\n

The resultant spectrum is moving minimum of the input subtracted from the input.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • window_size: int, optional, default is 10.
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\twindow_size: int):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.add_poisson_noise", "kind": "function", "doc": "

Add poisson noise to the spectrum.

\n\n

For each particular sample the noise is proportional to $\\sqrt{scale*a_i}$.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • scale: float, optional, default is 1. Scale the amplitude of the noise.
  • \n
  • rng_seed: int or rng state, optional. Seed for the random generator.\nIf a state is provided, it is updated in-place.
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tscale: float = 1,\trng_seed=None):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.trim_axes", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.trim_axes", "kind": "function", "doc": "

Trim axes of the spectrum.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • method: 'x-axis' or 'bins'\nIf 'x-axis' boundaries will be interpreted as x-axis values.\nIf 'bins' boundaries will be interpreted as indices.
  • \n
  • boundaries: lower and upper boundary for the trimming.
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tmethod: Literal['x-axis', 'bins'],\tboundaries: Tuple[float, float]):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.pad_zeros", "kind": "function", "doc": "

Extend x-axis by 100% in both directions.

\n\n

The x-axis of resultant spectrum will be:\n$[x_{lower}-(x_{upper}-x_{lower})..(x_{upper}+(x_{upper}-x_{lower}))]$.\nThe length of the new spectrum is 3 times the original. The added values\nare with an uniform step. In the middle is the original spectrum with\noriginal x and y values. The coresponding y vallues for the newly added\nx-values are always zeros.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.add_gaussian_noise", "kind": "function", "doc": "

Add gaussian noise to the spectrum.

\n\n

Random number i.i.d. $N(0, \\sigma)$ is added to every sample

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • sigma: Sigma of the gaussian noise.
  • \n
  • rng_seed: int or rng state, optional, seed for the random generator.\nIf a state is provided, it is updated in-place.
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tsigma: typing.Annotated[float, Gt(gt=0)],\trng_seed=None):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.smoothing_RC1", "kind": "function", "doc": "

Smooth the spectrum.

\n\n

The spectrum will be smoothed using the specified filter.\nThis method is inherited from ramanchada1 for compatibility reasons.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • method: method to be used
  • \n
  • **kwargs: keyword arguments to be passed to the selected method
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\t*args,\tmethod: Literal['savgol', 'sg', 'wiener', 'median', 'gauss', 'gaussian', 'lowess', 'boxcar'],\t**kwargs):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.derivative_sharpening", "kind": "function", "doc": "

Derivative-based sharpening.

\n\n

Sharpen the spectrum subtracting second derivative and add fourth derivative.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • filter_fraction float in (0; 1]: Default is 0.6\nDepth of filtration
  • \n
  • signal_width: The width of features to be enhanced in sample count
  • \n
  • der2_factor: Second derivative scaling factor
  • \n
  • der4_factor: Fourth derivative scaling factor
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tfilter_fraction: typing.Annotated[float, None, Interval(gt=0, ge=None, lt=None, le=1), None, None] = 0.6,\tsig_width: typing.Annotated[float, None, Interval(gt=None, ge=0, lt=None, le=None), None, None] = 0.25,\tder2_factor: float = 1,\tder4_factor: float = 0.1):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.hht_sharpening", "kind": "function", "doc": "

Hilbert-Huang based sharpening.

\n\n

In order to reduce the overshooting, moving minimum is subtracted from the result

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • movmin: optional. Default is 100\nWindow size for moving minimum
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tmovmin=100):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.hht_sharpening_chain", "kind": "function", "doc": "

Hilbert-Huang based chain sharpening.

\n\n

Sequence of Hilbert-Huang sharpening procedures are performed.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • movmin: List[int], optional. Default is [150, 50]\nThe numer of values in the list defines how many iterations\nof HHT_sharpening will be performed and the values define\nthe moving minimum window sizes for the corresponding operations.
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tmovmin: List[Annotated[int, Gt(gt=0)]] = [150, 50]):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.convolve", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.convolve", "kind": "function", "doc": "

Convole spectrum with arbitrary lineshape.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • lineshape: callable, str or np.ndarray.\n If callable: should have a single positional argument x, e.g.\nlambda x: np.exp((x/5)**2).\nIf predefined peak profile: can be gaussian, lorentzian, voigt,\npvoigt, moffat or pearson4.\nIf np.ndarray: lineshape in samples.
  • \n
  • **kwargs: Additional kwargs will be passed to lineshape function.
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tlineshape: Union[Callable[[Union[float, numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]]]], float], numpy.ndarray[Any, numpy.dtype[+_ScalarType_co]], Literal['gaussian', 'lorentzian', 'voigt', 'pvoigt', 'moffat', 'pearson4', 'pearson7']],\t**kwargs):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.moving_average", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.moving_average", "kind": "function", "doc": "

Moving average filter.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • window_size: int, optional, default is 10.
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\twindow_size: typing.Annotated[int, Gt(gt=0)] = 10):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.moving_average_convolve", "kind": "function", "doc": "

Moving average filter.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • window_size: int, optional, default is 10.
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\twindow_size: typing.Annotated[int, Gt(gt=0)] = 10):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.resample_NUDFT", "kind": "function", "doc": "

Resample the spectrum using Non-uniform discrete fourier transform.

\n\n

The x-axis of the result will be uniform. The corresponding y-values\nwill be calculated with NUDFT and inverse FFT.

\n\n
Arguments:
\n\n
    \n
  • spe: internal use only
  • \n
  • x_range: optional. Defaults to (0, 4000).\nThe x_range of the new spectrum.
  • \n
  • xnew_bins: optional. Defaults to 100.\nNumber of bins of the new spectrum
  • \n
  • window: optional, Defaults to None.\nThe window to be used for lowpass filter. If None 'blackmanharris' is used.\nIf no low-pass filter is required, one can use window=lambda x: [1]*len(x).
  • \n
  • cumulative: optional. Defaults to False.\nIf True, the resultant spectrum will be cumulative and normalized\n(in analogy with CDF).
  • \n
\n\n
Returns:
\n\n
\n

(x_values, y_values)

\n
\n", "signature": "(\tspe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tx_range: Tuple[float, float] = (0, 4000),\txnew_bins: typing.Annotated[int, Gt(gt=0)] = 100,\twindow: Union[Callable, Tuple[Any, ...], Literal['barthann', 'bartlett', 'blackman', 'blackmanharris', 'bohman', 'boxcar', 'chebwin', 'cosine', 'dpss', 'exponential', 'flattop', 'gaussian', 'general_cosine', 'general_gaussian', 'general_hamming', 'hamming', 'hann', 'kaiser', 'nuttall', 'parzen', 'taylor', 'triang', 'tukey'], NoneType] = None,\tcumulative: bool = False):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.resample_NUDFT_filter", "kind": "function", "doc": "

Resample the spectrum using Non-uniform discrete fourier transform.

\n\n

The x-axis of the result will be uniform. The corresponding y-values\nwill be calculated with NUDFT and inverse FFT.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • x_range: optional. Defaults to (0, 4000).\nThe x_range of the new spectrum.
  • \n
  • xnew_bins: optional. Defaults to 100.\nNumber of bins of the new spectrum
  • \n
  • window: optional, Defaults to None.\nThe window to be used for lowpass filter. If None 'blackmanharris' is used.\nIf no low-pass filter is required, one can use window=lambda x: [1]*len(x).
  • \n
  • cumulative: optional. Defaults to False.\nIf True, the resultant spectrum will be cumulative and normalized\n(in analogy with CDF).
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tx_range: Tuple[float, float] = (0, 4000),\txnew_bins: typing.Annotated[int, Gt(gt=0)] = 100,\twindow=None,\tcumulative: bool = False):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.resample_spline", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.resample_spline", "kind": "function", "doc": "

Resample the spectrum using spline interpolation.

\n\n

The x-axis of the result will be uniform. The corresponding y-values\nwill be calculated with spline interpolation.

\n\n
Arguments:
\n\n
    \n
  • spe: internal use only
  • \n
  • x_range: optional. Defaults to (0, 4000).\nThe x_range of the new spectrum.
  • \n
  • xnew_bins: optional. Defaults to 100.\nNumber of bins of the new spectrum
  • \n
  • spline: optional, Defaults to 'pchip'.\nName of the spline funcion to be used.
  • \n
  • cumulative: optional. Defaults to False.\nIf True, the resultant spectrum will be cumulative and normalized\n(in analogy with CDF).
  • \n
\n\n
Returns:
\n\n
\n

(x_values, y_values)

\n
\n", "signature": "(\tspe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tx_range: Tuple[float, float] = (0, 4000),\txnew_bins: typing.Annotated[int, Gt(gt=0)] = 100,\tspline: Literal['pchip', 'akima', 'makima', 'cubic_spline'] = 'pchip',\tinterp_kw_args: Optional[Dict] = None,\tcumulative: bool = False):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.resample_spline_filter", "kind": "function", "doc": "

Resample the spectrum using spline interpolation.

\n\n

The x-axis of the result will be uniform. The corresponding y-values\nwill be calculated with spline interpolation.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • x_range: optional. Defaults to (0, 4000).\nThe x_range of the new spectrum.
  • \n
  • xnew_bins: optional. Defaults to 100.\nNumber of bins of the new spectrum
  • \n
  • spline: optional, Defaults to 'pchip'.\nName of the spline funcion to be used.
  • \n
  • cumulative: optional. Defaults to False.\nIf True, the resultant spectrum will be cumulative and normalized\n(in analogy with CDF).
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tx_range: Tuple[float, float] = (0, 4000),\txnew_bins: typing.Annotated[int, Gt(gt=0)] = 100,\tspline: Literal['pchip', 'akima', 'makima', 'cubic_spline'] = 'pchip',\tinterp_kw_args: Optional[Dict] = None,\tcumulative: bool = False):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.add_gaussian_noise_drift", "kind": "function", "doc": "

Add cumulative gaussian noise to the spectrum.

\n\n

Exponential-moving-average-like gaussian noise is added\nto each sample. The goal is to mimic the low-frequency noise\n(or random substructures in spectra).\nThe additive noise is\n$$a_i = coef*\\sum_{j=0}^{i-1}g_j + g_i,$$

\n\n

where\n$$g_i = \\mathcal{N}(0, 1+\\frac{coef}{\\sqrt 2}).$$

\n\n

This way drifting is possible while keeping the\n$$\\sigma(\\Delta(a)) \\approx 1.$$

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • sigma: Sigma of the gaussian noise.
  • \n
  • coef: float in [0, 1], drifting coefficient. If coef == 0,\nthe result is identical to add_gaussian_noise().
  • \n
  • rng_seed: int or rng state, optional. Seed for the random generator.\nIf a state is provided, it is updated in-place.
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tsigma: typing.Annotated[float, Gt(gt=0)],\tcoef: typing.Annotated[float, None, Interval(gt=None, ge=0, lt=None, le=1), None, None],\trng_seed=None):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.spike_indices", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.spike_indices", "kind": "function", "doc": "

Find spikes in spectrum

\n\n

Single-bin spikes are located using left and right successive\ndifferences. The threshold is based on the standart deviation\nof the metric which makes this algorithm less optimal.

\n\n
Arguments:
\n\n
    \n
  • spe: internal use only
  • \n
  • n_sigma: Threshold value should be n_sigma times the standart\ndeviation of the metric.
  • \n
\n\n

Returns: List of spike indices

\n", "signature": "(\tspe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tn_sigma: typing.Annotated[float, Gt(gt=0)]) -> numpy.ndarray[typing.Any, numpy.dtype[+_ScalarType_co]]:", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.drop_spikes", "kind": "function", "doc": "

Removes single-bin spikes.

\n\n

Remove x, y pairs recognised as spikes using left and right\nsuccessive differences and standard-deviation-based threshold.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • n_sigma: optional, default is 10.\nThreshold is n_sigma times the standard deviation.
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tn_sigma: typing.Annotated[float, Gt(gt=0)] = 10):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.recover_spikes", "kind": "function", "doc": "

Recover single-bin spikes.

\n\n

Recover x, y pairs recognised as spikes using left and right\nsuccessive differences and standard-deviation-based threshold\nand linear interpolation.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • n_sigma: optional, default is 10.\nThreshold is n_sigma times the standard deviation.
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tn_sigma: typing.Annotated[float, Gt(gt=0)] = 10):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.get_spikes", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.get_spikes", "kind": "function", "doc": "

Get single-bin spikes only.

\n\n

Get x, y pairs recognised as spikes using left and right\nsuccessive differences and standard-deviation-based threshold\nand linear interpolation.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • n_sigma: optional, default is 10.\nThreshold is n_sigma times the standard deviation.
  • \n
\n\n

Returns: modified Spectrum

\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tn_sigma: typing.Annotated[float, Gt(gt=0)] = 10):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.fit_peak_positions", "kind": "function", "doc": "

Calculate peak positions and amplitudes.

\n\n

Sequence of multiple processings:

\n\n
    \n
  • subtract_moving_minimum
  • \n
  • find_peak_multipeak
  • \n
  • filter peaks with x-location better than threshold
  • \n
\n\n
Arguments:
\n\n
    \n
  • spe: internal use only
  • \n
  • mov_min: optional. Defaults to 40\nsubtract moving_minimum with the specified window.
  • \n
  • center_err_threshold: optional. Defaults to 0.5.\nthreshold for centroid standard deviation. Only peaks\nwith better uncertainty will be returned.
  • \n
  • find_peaks_kw: optional\nkeyword arguments to be used with find_peak_multipeak
  • \n
  • fit_peaks_kw: optional\nkeyword arguments to be used with fit_peaks_multipeak
  • \n
\n\n
Returns:
\n\n
\n

Dict[float, float]: {positions: amplitudes}

\n
\n", "signature": "(\tspe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\t*,\tmov_min=40,\tcenter_err_threshold=0.5,\tfind_peaks_kw={},\tfit_peaks_kw={}) -> Dict[float, float]:", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.bayesian_gaussian_mixture", "kind": "function", "doc": "

Decompose the spectrum to Bayesian Gaussian Mixture

\n\n
Arguments:
\n\n
    \n
  • spe: internal use only
  • \n
  • n_samples: optional. Defaults to 5000.\nResampled dataset size
  • \n
  • n_components: optional. Defaults to 50.\nNumber of expected gaussian components
  • \n
  • max_iter: optional. Defaults to 100.\nMaximal number of iterations.
  • \n
  • moving_minimum_window: optional. Defaults to None.\nIf None no moving minimum is subtracted, otherwise as specified.
  • \n
  • random_state: optional. Defaults to None.\nRandom generator seed to be used.
  • \n
  • trim_range: optional. Defaults to None:\nIf None ignore trimming, otherwise trim range is in x-axis values.
  • \n
\n\n
Returns:
\n\n
\n

BayesianGaussianMixture: Fitted Bayesian Gaussian Mixture

\n
\n", "signature": "(\tspe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tn_samples: typing.Annotated[int, Gt(gt=0)] = 5000,\tn_components: typing.Annotated[int, Gt(gt=0)] = 50,\tmax_iter: typing.Annotated[int, Gt(gt=0)] = 100,\tmoving_minimum_window: Optional[Annotated[int, Gt(gt=0)]] = None,\trandom_state=None,\ttrim_range: Optional[Tuple[float, float]] = None) -> sklearn.mixture._bayesian_mixture.BayesianGaussianMixture:", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.find_peak_multipeak", "kind": "function", "doc": "

Find groups of peaks in spectrum.

\n\n
Arguments:
\n\n
    \n
  • spe: internal use only
  • \n
  • prominence: Optional. Defaults to None\nIf None the prominence value will be spe.y_nose. Reasonable value for\npromience is const * spe.y_noise_MAD.
  • \n
  • wlen: optional. Defaults to None.\nwlen value used in scipy.signal.find_peaks. If wlen is None, 200 will be used.
  • \n
  • width: optional. Defaults to None.\nwidth value used in scipy.signal.find_peaks. If width is None, 2 will be used.
  • \n
  • hht_chain: optional. Defaults to None.\nList of hht_chain window sizes. If None, no hht sharpening is performed.
  • \n
  • bgm_kwargs: kwargs for bayesian_gaussian_mixture
  • \n
  • sharpening 'hht' or None. Defaults to None.\nIf 'hht' hht sharpening will be performed before finding peaks.
  • \n
  • strategy: optional. Defauts to 'topo'.\nPeakfinding method
  • \n
\n\n
Returns:
\n\n
\n

ListPeakCandidateMultiModel: Located peak groups

\n
\n", "signature": "(\tspe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\tprominence: Optional[Annotated[float, Ge(ge=0)]] = None,\twlen: Optional[Annotated[int, Ge(ge=0)]] = None,\twidth: Union[int, Tuple[int, int], NoneType] = None,\thht_chain: Optional[List[Annotated[int, Gt(gt=0)]]] = None,\tbgm_kwargs={},\tsharpening: Optional[Literal['hht']] = None,\tstrategy: Literal['topo', 'bayesian_gaussian_mixture', 'bgm', 'cwt'] = 'topo') -> ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel:", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.find_peak_multipeak_filter", "kind": "function", "doc": "

Same as find_peak_multipeak but the result is stored as metadata in the returned spectrum.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • args, *kwargs: same as find_peak_multipeak
  • \n
\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\t*args,\t**kwargs):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.fit_peak_multimodel", "kind": "function", "doc": "

\n", "signature": "(\tspe,\t/,\t*,\tprofile: Union[Literal['Gaussian', 'Lorentzian', 'Moffat', 'Voigt', 'PseudoVoigt', 'Pearson4', 'Pearson7'], List[Literal['Gaussian', 'Lorentzian', 'Moffat', 'Voigt', 'PseudoVoigt', 'Pearson4', 'Pearson7']]],\tcandidates: ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel,\tno_fit=False,\tshould_break=[False],\tkwargs_fit={},\tvary_baseline: bool = False) -> ramanchada2.misc.types.fit_peaks_result.FitPeaksResult:", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.fit_peaks_filter", "kind": "function", "doc": "

Same as fit_peak_multipeak but the result is stored as metadata in the returned spectrum.

\n\n
Arguments:
\n\n
    \n
  • old_spe: internal use only
  • \n
  • new_spe: internal use only
  • \n
  • should_break: same as in fit_peaks_multipeak
  • \n
  • args, *kwargs: same as fit_peaks_multipeak
  • \n
\n", "signature": "(\told_spe: ramanchada2.spectrum.spectrum.Spectrum,\tnew_spe: ramanchada2.spectrum.spectrum.Spectrum,\t/,\t*args,\tshould_break=[False],\tkwargs_fit={},\t**kwargs):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.from_cache_or_calc", "kind": "function", "doc": "

Load spectrum from cache or calculate if needed.

\n\n

The cache is a nested structure of spectra. All processings applied to\na spectrum result to spectra of the initial one. If part of the requred\nprocessings are available, only the needed steps are calculated and added\nto the cache.

\n\n
Arguments:
\n\n
    \n
  • required_steps: List of required steps in the form\n[{'proc': str, 'args': List[Any], 'kwargs': Dict[str, Any]}, ...]
  • \n
  • cachefile: optional. Defaults to None.\nFilename of the cache. If None no cache is used
  • \n
\n", "signature": "(\trequired_steps: ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel,\tcachefile: Optional[str] = None):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.from_chada": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.from_chada", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.from_chada", "kind": "function", "doc": "

\n", "signature": "(filename: str, dataset: str = '/raw', h5module=None):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.from_local_file", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.from_local_file", "kind": "function", "doc": "

Read experimental spectrum from a local file.

\n\n
Arguments:
\n\n
    \n
  • in_file_name: Path to a local file containing a spectrum.
  • \n
  • filetype: Specify the filetype. Filetype can be any of: spc, sp, spa, 0, 1, 2, wdf, ngs, jdx, dx,\ntxt, txtr, csv, prn, rruf or None. None used to determine by extension of the file.
  • \n
  • backend: native, rc1_parser or None. None means both.
  • \n
\n\n
Raises:
\n\n
    \n
  • ValueError: When called with unsupported file formats.
  • \n
\n", "signature": "(\tin_file_name: str,\tfiletype: Optional[Literal['spc', 'sp', 'spa', '0', '1', '2', 'wdf', 'ngs', 'jdx', 'dx', 'txt', 'txtr', 'csv', 'prn', 'rruf']] = None,\tbackend: Optional[Literal['native', 'rc1_parser']] = None):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.from_delta_lines", "kind": "function", "doc": "

Generate Spectrum with delta lines.

\n\n
Arguments:
\n\n
    \n
  • deltas: Keys of the dictionary are the x positions of the deltas; values are the amplitudes of the corresponding\ndeltas.
  • \n
  • xcal: Callable, optional. x axis calibration function.
  • \n
  • nbins: int, optional. Number of bins in the spectrum.
  • \n
\n\n

Example:

\n\n

This will produce spectrum with 1000 bins in the range [-1000, 2000):

\n\n
\n
xcal = lambda x: x*3 -1000, nbins=1000\n
\n
\n", "signature": "(\tdeltas: Dict[float, float],\txcal: Optional[Callable[[float], float]] = None,\tnbins: typing.Annotated[int, Gt(gt=0)] = 2000,\t**kwargs):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.from_simulation", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.from_simulation", "kind": "function", "doc": "

Generate spectrum from simulation file.

\n\n

The returned spectrum has only few x/y pairs -- one for each simulated line. Values along\nthe x-axis will not be uniform. To make it uniform, one needs to resample the spectrum.

\n\n
Arguments:
\n\n
    \n
  • in_file: Path to a local file, or file-like object.
  • \n
  • sim_type: If vasp: .dat file from VASP simulation. If crystal_out: .out file from CRYSTAL simulation, not\npreferred. If crystal_dat: .dat file from CRYSTAL simulation.
  • \n
  • use: One of the directions I_tot, I_perp, I_par, I_xx, I_xy,\nI_xz, I_yy, I_yz, I_zz, I_tot, I_perp, I_par are\navailable for both CRYSTAL and VASP. I_xx, I_xy, I_xz,\nI_yy, I_yz, I_zz are available only for CRYSTAL. If a Dict is\npassed, the key should be directions and values should be weighting factor.\nFor example, use={'I_perp': .1, 'I_par': .9}
  • \n
\n", "signature": "(\tin_file: Union[str, io.TextIOBase],\tsim_type: Literal['vasp', 'crystal_out', 'crystal_dat', 'raw_dat'],\tuse: Union[Literal['I_tot', 'I_perp', 'I_par', 'I_xx', 'I_xy', 'I_xz', 'I_yy', 'I_yz', 'I_zz'], Dict[Literal['I_tot', 'I_perp', 'I_par', 'I_xx', 'I_xy', 'I_xz', 'I_yy', 'I_yz', 'I_zz'], Annotated[float, Gt(gt=0)]]] = 'I_tot',\tnbins: typing.Annotated[int, Gt(gt=0)] = 2000):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.from_theoretical_lines", "kind": "function", "doc": "

Generate spectrum from lmfit shapes.

\n\n
Arguments:
\n\n
    \n
  • shapes: The shapes to be used for spectrum generation.
  • \n
  • params: Shape parameters to be applied to be used with shapes.
  • \n
  • x: Array with x values, by default np.array(2000).
  • \n
\n", "signature": "(\tshapes: List[Literal['gaussian', 'gaussian2d', 'lorentzian', 'voigt', 'pvoigt', 'moffat', 'pearson4', 'pearson7', 'breit_wigner', 'damped_oscillator', 'dho', 'logistic', 'lognormal', 'students_t', 'expgaussian', 'doniach', 'skewed_gaussian', 'skewed_voigt', 'thermal_distribution', 'step', 'rectangle', 'exponential', 'powerlaw', 'linear', 'parabolic', 'sine', 'expsine', 'split_lorentzian']],\tparams: List[Dict],\tx: Union[int, numpy.ndarray[Any, numpy.dtype[numpy.float64]]] = 2000):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.from_spectral_component_collection", "kind": "function", "doc": "

from_spectral_component_collection

\n\n
Arguments:
\n\n
    \n
  • spe_components: SpectralComponentCollection
  • \n
  • x: int or array-like, optional, default 2000. x axis of the spectrum.
  • \n
\n", "signature": "(\tspe_components: ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection,\tx=2000):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.from_test_spe", "kind": "function", "doc": "

Create new spectrum from test data.

\n\n
Arguments:
\n\n
    \n
  • index: int or None, optional, default is None. If int: will be used as an index of filtered list. If\nNone: a random spectrum will be taken.
  • \n
  • **kwargs: The rest of the parameters will be used as filter.
  • \n
\n", "signature": "(index=None, **kwargs):", "funcdef": "def"}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"fullname": "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure", "modulename": "ramanchada2.spectrum.spectrum", "qualname": "Spectrum.hdr_from_multi_exposure", "kind": "function", "doc": "

Create an HDR spectrum from several spectra with different exposures.

\n\n

The resulting spectrum will have the details in low-intensity peaks\nfrom long-exposure-time spectrum. As long-exposure-time\nspectrum might be sturated, the information for high-intensity\npeaks will be taken from short-exposure-time spectrum.\nThis function will work on a very limited number of spectra,\nbecause we still do not have standardized metadata.

\n", "signature": "(spes_in: List[ramanchada2.spectrum.spectrum.Spectrum]):", "funcdef": "def"}, "ramanchada2.theoretical_lines": {"fullname": "ramanchada2.theoretical_lines", "modulename": "ramanchada2.theoretical_lines", "kind": "module", "doc": "

\n"}, "ramanchada2.theoretical_lines.model_from_lines": {"fullname": "ramanchada2.theoretical_lines.model_from_lines", "modulename": "ramanchada2.theoretical_lines.model_from_lines", "kind": "module", "doc": "

\n"}, "ramanchada2.theoretical_lines.model_from_lines.model_from_lines": {"fullname": "ramanchada2.theoretical_lines.model_from_lines.model_from_lines", "modulename": "ramanchada2.theoretical_lines.model_from_lines", "qualname": "model_from_lines", "kind": "function", "doc": "

\n", "signature": "(\tnames: List[str],\tpositions: List[float],\tintensities: Dict[str, List[float]],\tmodel: Literal['gaussian', 'voigt'] = 'gaussian') -> Tuple[lmfit.model.Model, lmfit.parameter.Parameters]:", "funcdef": "def"}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"fullname": "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel", "modulename": "ramanchada2.theoretical_lines.model_from_lines", "qualname": "PydPeakModel", "kind": "class", "doc": "

Usage docs: https://docs.pydantic.dev/2.9/concepts/models/

\n\n

A base class for creating Pydantic models.

\n\n
Attributes:
\n\n
    \n
  • __class_vars__: The names of the class variables defined on the model.
  • \n
  • __private_attributes__: Metadata about the private attributes of the model.
  • \n
  • __signature__: The synthesized __init__ [Signature][inspect.Signature] of the model.
  • \n
  • __pydantic_complete__: Whether model building is completed, or if there are still undefined fields.
  • \n
  • __pydantic_core_schema__: The core schema of the model.
  • \n
  • __pydantic_custom_init__: Whether the model has a custom __init__ function.
  • \n
  • __pydantic_decorators__: Metadata containing the decorators defined on the model.\nThis replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.
  • \n
  • __pydantic_generic_metadata__: Metadata for generic models; contains data used for a similar purpose to\n__args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
  • \n
  • __pydantic_parent_namespace__: Parent namespace of the model, used for automatic rebuilding of models.
  • \n
  • __pydantic_post_init__: The name of the post-init method for the model, if defined.
  • \n
  • __pydantic_root_model__: Whether the model is a [RootModel][pydantic.root_model.RootModel].
  • \n
  • __pydantic_serializer__: The pydantic-core SchemaSerializer used to dump instances of the model.
  • \n
  • __pydantic_validator__: The pydantic-core SchemaValidator used to validate instances of the model.
  • \n
  • __pydantic_extra__: A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra]\nis set to 'allow'.
  • \n
  • __pydantic_fields_set__: The names of fields explicitly set during instantiation.
  • \n
  • __pydantic_private__: Values of private attributes set on the model instance.
  • \n
\n", "bases": "pydantic.main.BaseModel"}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model": {"fullname": "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model", "modulename": "ramanchada2.theoretical_lines.model_from_lines", "qualname": "PydPeakModel.model", "kind": "variable", "doc": "

\n", "annotation": ": Literal['gaussian', 'voigt']"}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.position": {"fullname": "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.position", "modulename": "ramanchada2.theoretical_lines.model_from_lines", "qualname": "PydPeakModel.position", "kind": "variable", "doc": "

\n", "annotation": ": float"}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.inensity": {"fullname": "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.inensity", "modulename": "ramanchada2.theoretical_lines.model_from_lines", "qualname": "PydPeakModel.inensity", "kind": "variable", "doc": "

\n", "annotation": ": float"}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.sigma": {"fullname": "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.sigma", "modulename": "ramanchada2.theoretical_lines.model_from_lines", "qualname": "PydPeakModel.sigma", "kind": "variable", "doc": "

\n", "annotation": ": float"}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.name": {"fullname": "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.name", "modulename": "ramanchada2.theoretical_lines.model_from_lines", "qualname": "PydPeakModel.name", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_config": {"fullname": "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_config", "modulename": "ramanchada2.theoretical_lines.model_from_lines", "qualname": "PydPeakModel.model_config", "kind": "variable", "doc": "

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

\n", "annotation": ": ClassVar[pydantic.config.ConfigDict]", "default_value": "{}"}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"fullname": "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields", "modulename": "ramanchada2.theoretical_lines.model_from_lines", "qualname": "PydPeakModel.model_fields", "kind": "variable", "doc": "

Metadata about the fields defined on the model,\nmapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.

\n\n

This replaces Model.__fields__ from Pydantic V1.

\n", "annotation": ": ClassVar[Dict[str, pydantic.fields.FieldInfo]]", "default_value": "{'model': FieldInfo(annotation=Literal['gaussian', 'voigt'], required=False, default='voigt'), 'position': FieldInfo(annotation=float, required=True), 'inensity': FieldInfo(annotation=float, required=False, default=1, metadata=[Gt(gt=0)]), 'sigma': FieldInfo(annotation=float, required=False, default=1, metadata=[Gt(gt=0)]), 'name': FieldInfo(annotation=str, required=False, default='')}"}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_computed_fields": {"fullname": "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_computed_fields", "modulename": "ramanchada2.theoretical_lines.model_from_lines", "qualname": "PydPeakModel.model_computed_fields", "kind": "variable", "doc": "

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

\n", "annotation": ": ClassVar[Dict[str, pydantic.fields.ComputedFieldInfo]]", "default_value": "{}"}, "ramanchada2.theoretical_lines.model_from_lines.model_from_list": {"fullname": "ramanchada2.theoretical_lines.model_from_lines.model_from_list", "modulename": "ramanchada2.theoretical_lines.model_from_lines", "qualname": "model_from_list", "kind": "function", "doc": "

\n", "signature": "(\tpeaks_list: List[ramanchada2.theoretical_lines.model_from_lines.PydPeakModel]) -> Tuple[lmfit.model.Model, lmfit.parameter.Parameters]:", "funcdef": "def"}}, "docInfo": {"ramanchada2": {"qualname": 0, "fullname": 1, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 5024}, "ramanchada2.auxiliary": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.auxiliary.spectra": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.auxiliary.spectra.datasets2": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.auxiliary.spectra.datasets2.data": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 4853, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.auxiliary.spectra.datasets2.df": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 59, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.auxiliary.spectra.datasets2.loc": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.auxiliary.spectra.datasets2.filtered_df": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 3}, "ramanchada2.auxiliary.spectra.datasets2.get_filters": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 3}, "ramanchada2.auxiliary.spectra.datasets2.get_filenames": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 13, "bases": 0, "doc": 3}, "ramanchada2.auxiliary.spectra.datasets2.prepend_prefix": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.auxiliary.spectra.simulated": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.auxiliary.spectra.simulated.loc": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.auxiliary.spectra.simulated.FILES": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 50, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.io": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.io.HSDS": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.io.HSDS.logger": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.io.HSDS.write_nexus": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 142, "bases": 0, "doc": 3}, "ramanchada2.io.HSDS.DatasetExistsError": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 11}, "ramanchada2.io.HSDS.write_cha": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 142, "bases": 0, "doc": 3}, "ramanchada2.io.HSDS.read_cha": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 116, "bases": 0, "doc": 3}, "ramanchada2.io.HSDS.filter_dataset": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 102, "bases": 0, "doc": 3}, "ramanchada2.io.HSDS.visit_domain": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 51, "bases": 0, "doc": 3}, "ramanchada2.io.experimental": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.io.experimental.bw_format": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.io.experimental.bw_format.bw_format": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 52, "bases": 0, "doc": 3}, "ramanchada2.io.experimental.neegala_format": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.io.experimental.neegala_format.neegala_format": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 52, "bases": 0, "doc": 3}, "ramanchada2.io.experimental.rc1_parser": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.io.experimental.rc1_parser.binary_readers": {"qualname": 0, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"qualname": 1, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 60}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs": {"qualname": 2, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_4byte_datablock": {"qualname": 3, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 3}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_bytestring": {"qualname": 2, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs_meta": {"qualname": 3, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.io.experimental.rc1_parser.io": {"qualname": 0, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.io.experimental.rc1_parser.io.UnsupportedFileTypeError": {"qualname": 1, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 11}, "ramanchada2.io.experimental.rc1_parser.io.parse": {"qualname": 1, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 3}, "ramanchada2.io.experimental.rc1_parser.io.cleanMeta": {"qualname": 1, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.io.experimental.rc1_parser.third_party_readers": {"qualname": 0, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readWDF": {"qualname": 1, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readSPC": {"qualname": 1, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readOPUS": {"qualname": 1, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 3}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers": {"qualname": 0, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.logger": {"qualname": 1, "fullname": 9, "annotation": 0, "default_value": 14, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.read_JCAMP": {"qualname": 2, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 3}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.readTXT": {"qualname": 1, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 3}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.dataFromTxtLines": {"qualname": 1, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 12, "bases": 0, "doc": 3}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.isDataLine": {"qualname": 1, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.startStop": {"qualname": 1, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.getYDataType": {"qualname": 1, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 12, "bases": 0, "doc": 3}, "ramanchada2.io.experimental.read_csv": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.io.experimental.read_csv.read_csv": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 95, "bases": 0, "doc": 3}, "ramanchada2.io.experimental.read_txt": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.io.experimental.read_txt.read_txt": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 95, "bases": 0, "doc": 3}, "ramanchada2.io.experimental.rruf_format": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.io.experimental.rruf_format.rruf_format": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 100, "bases": 0, "doc": 3}, "ramanchada2.io.output": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.io.output.write_csv": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.io.output.write_csv.write_csv": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 3}, "ramanchada2.io.simulated": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.io.simulated.crystal": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.io.simulated.crystal.discrete_lines_dat": {"qualname": 0, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.io.simulated.crystal.discrete_lines_dat.lines_from_crystal_dat": {"qualname": 4, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 3}, "ramanchada2.io.simulated.crystal.discrete_lines_out": {"qualname": 0, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.io.simulated.crystal.discrete_lines_out.lines_from_crystal_out": {"qualname": 4, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 3}, "ramanchada2.io.simulated.lines_from_raw_dat": {"qualname": 0, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.io.simulated.lines_from_raw_dat.lines_from_raw_dat": {"qualname": 4, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 3}, "ramanchada2.io.simulated.read_simulated_lines": {"qualname": 0, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 251, "bases": 0, "doc": 3}, "ramanchada2.io.simulated.vasp": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat": {"qualname": 0, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"qualname": 4, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 15}, "ramanchada2.misc": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.base_class": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.base_class.BaseClass": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.base_class.BaseClass.origin": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.base_class.BaseClass.origin_list_str": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.constants": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.constants.PST_RS_dict": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 33, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.constants.neon_nist_wl_nm": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 1176, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.constants.polystyrene_rs": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 33, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.constants.neon_rs_dict": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 1509, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.constants.neon_wl_dict": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 1509, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.constants.neon_rs_spe": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 1564, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.constants.neon_wl_spe": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 1567, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 216, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 236, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 148, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 334, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 532, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 487, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.constants.neon_wl_D3_3": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 152, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 222, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.constants.NEON_WL": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 603, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.exceptions": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.exceptions.ApplicationException": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 11}, "ramanchada2.misc.exceptions.InputParserError": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 11}, "ramanchada2.misc.exceptions.ChadaReadNotFoundError": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 11}, "ramanchada2.misc.plottable": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.plottable.Plottable": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 16}, "ramanchada2.misc.plottable.Plottable.plot": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 60, "bases": 0, "doc": 3}, "ramanchada2.misc.spectrum_deco": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.spectrum_deco.dynamically_added": {"qualname": 0, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"qualname": 3, "fullname": 9, "annotation": 2, "default_value": 190, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"qualname": 3, "fullname": 9, "annotation": 2, "default_value": 48, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.spectrum_deco.spectrum_constructor": {"qualname": 0, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.__init__": {"qualname": 5, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.set_proc": {"qualname": 5, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.spectrum_deco.spectrum_filter": {"qualname": 0, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.spectrum_deco.spectrum_filter.logger": {"qualname": 1, "fullname": 7, "annotation": 0, "default_value": 12, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.spectrum_deco.spectrum_filter.add_spectrum_filter": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.misc.spectrum_deco.spectrum_method": {"qualname": 0, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.spectrum_deco.spectrum_method.add_spectrum_method": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.misc.types": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.fit_peaks_result": {"qualname": 0, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult": {"qualname": 1, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 14}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.valuesdict": {"qualname": 2, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.locations": {"qualname": 2, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.centers": {"qualname": 2, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.fwhm": {"qualname": 2, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.boundaries": {"qualname": 2, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 3}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.center_amplitude": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.centers_err": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.fwhms": {"qualname": 2, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.amplitudes": {"qualname": 2, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.dumps": {"qualname": 2, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.loads": {"qualname": 2, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 3}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe_peaks": {"qualname": 4, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_csv": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 3}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.gen_fake_spectrum": {"qualname": 4, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "ramanchada2.misc.types.peak_candidates": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 7, "doc": 390}, "ramanchada2.misc.types.peak_candidates.PeakModel.amplitude": {"qualname": 2, "fullname": 7, "annotation": 7, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.peak_candidates.PeakModel.position": {"qualname": 2, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.peak_candidates.PeakModel.sigma": {"qualname": 2, "fullname": 7, "annotation": 7, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.peak_candidates.PeakModel.skew": {"qualname": 2, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.peak_candidates.PeakModel.fwhm": {"qualname": 2, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.peak_candidates.PeakModel.lwhm": {"qualname": 2, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 8}, "ramanchada2.misc.types.peak_candidates.PeakModel.rwhm": {"qualname": 2, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 8}, "ramanchada2.misc.types.peak_candidates.PeakModel.serialize": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_config": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 18}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"qualname": 3, "fullname": 8, "annotation": 5, "default_value": 50, "signature": 0, "bases": 0, "doc": 35}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_computed_fields": {"qualname": 4, "fullname": 9, "annotation": 5, "default_value": 1, "signature": 0, "bases": 0, "doc": 16}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 11, "doc": 390}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.peaks": {"qualname": 2, "fullname": 7, "annotation": 7, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.base_slope": {"qualname": 3, "fullname": 8, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.base_intercept": {"qualname": 3, "fullname": 8, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.boundaries": {"qualname": 2, "fullname": 7, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_baseline": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_errorbar": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.positions": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.sigmas": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.fwhms": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.lwhms": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.rwhms": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.skews": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.amplitudes": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.bases": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_pos_ampl_dict": {"qualname": 5, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_ampl_pos_fwhm": {"qualname": 5, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.peak_bases": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.serialize": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_config": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 18}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"qualname": 3, "fullname": 8, "annotation": 5, "default_value": 45, "signature": 0, "bases": 0, "doc": 35}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_computed_fields": {"qualname": 4, "fullname": 9, "annotation": 5, "default_value": 1, "signature": 0, "bases": 0, "doc": 16}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 92}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.root": {"qualname": 2, "fullname": 7, "annotation": 7, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_ampl_pos_fwhm": {"qualname": 5, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_pos_ampl_dict": {"qualname": 5, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.serialize": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.misc.types.positive_not_multiple": {"qualname": 0, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.positive_not_multiple.PositiveOddInt": {"qualname": 1, "fullname": 7, "annotation": 0, "default_value": 6, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.pydantic_base_model": {"qualname": 0, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"qualname": 1, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 390}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_config": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 18}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.serialize": {"qualname": 2, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"qualname": 3, "fullname": 9, "annotation": 5, "default_value": 1, "signature": 0, "bases": 0, "doc": 35}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_computed_fields": {"qualname": 4, "fullname": 10, "annotation": 5, "default_value": 1, "signature": 0, "bases": 0, "doc": 16}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"qualname": 1, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 92}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel.serialize": {"qualname": 2, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.misc.types.spectrum": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.spectrum.applied_processings": {"qualname": 0, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"qualname": 1, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 3, "doc": 390}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.proc": {"qualname": 2, "fullname": 8, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.args": {"qualname": 2, "fullname": 8, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.kwargs": {"qualname": 2, "fullname": 8, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.is_constructor": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.check_proc": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 3}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_config": {"qualname": 3, "fullname": 9, "annotation": 4, "default_value": 1, "signature": 0, "bases": 0, "doc": 18}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"qualname": 3, "fullname": 9, "annotation": 5, "default_value": 33, "signature": 0, "bases": 0, "doc": 35}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields": {"qualname": 4, "fullname": 10, "annotation": 5, "default_value": 1, "signature": 0, "bases": 0, "doc": 16}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"qualname": 1, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 92}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.root": {"qualname": 2, "fullname": 8, "annotation": 8, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.append": {"qualname": 2, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 36, "bases": 0, "doc": 3}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.extend_left": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 56, "bases": 0, "doc": 3}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.pop": {"qualname": 2, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.clear": {"qualname": 2, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.assign": {"qualname": 2, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 3}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.repr": {"qualname": 2, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.cache_path": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.to_list": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.misc.types.spectrum.metadata": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldTyping": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 36, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 92}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.root": {"qualname": 2, "fullname": 7, "annotation": 28, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.pre_validate": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.serialize": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 92}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.root": {"qualname": 2, "fullname": 7, "annotation": 8, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.serialize": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.get_all_keys": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 13}, "ramanchada2.misc.utils": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.utils.argmin2d": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.utils.argmin2d.argmin2d": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.misc.utils.argmin2d.find_closest_pairs_idx": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "ramanchada2.misc.utils.argmin2d.find_closest_pairs": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "ramanchada2.misc.utils.argmin2d.align": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 173, "bases": 0, "doc": 40}, "ramanchada2.misc.utils.argmin2d.align_shift": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 83, "bases": 0, "doc": 3}, "ramanchada2.misc.utils.argmin2d.match_peaks": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 3}, "ramanchada2.misc.utils.ramanshift_to_wavelength": {"qualname": 0, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm_dict": {"qualname": 7, "fullname": 13, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 3}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1_dict": {"qualname": 7, "fullname": 13, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 3}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1": {"qualname": 6, "fullname": 12, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 3}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm": {"qualname": 6, "fullname": 12, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 3}, "ramanchada2.misc.utils.ramanshift_to_wavelength.laser_wl_nm": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 3}, "ramanchada2.misc.utils.svd": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.misc.utils.svd.svd_solve": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 5}, "ramanchada2.misc.utils.svd.svd_inverse": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.protocols": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.logger": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 9, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.ProcessingModel": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.CalibrationComponent": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 16}, "ramanchada2.protocols.calibration.CalibrationComponent.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.CalibrationComponent.laser_wl": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.CalibrationComponent.spe": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.CalibrationComponent.spe_units": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.CalibrationComponent.ref": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.CalibrationComponent.ref_units": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.CalibrationComponent.name": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.CalibrationComponent.model": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.CalibrationComponent.model_units": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.CalibrationComponent.peaks": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.CalibrationComponent.sample": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.CalibrationComponent.enabled": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.CalibrationComponent.fit_res": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.CalibrationComponent.set_model": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 37, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.CalibrationComponent.convert_units": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 59, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.CalibrationComponent.process": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.CalibrationComponent.derive_model": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 55, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.CalibrationComponent.plot": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 60, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.CalibrationComponent.fitres2df": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.XCalibrationComponent": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 16}, "ramanchada2.protocols.calibration.XCalibrationComponent.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.XCalibrationComponent.spe_pos_dict": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.XCalibrationComponent.process": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.XCalibrationComponent.derive_model": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 73, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.LazerZeroingComponent": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 16}, "ramanchada2.protocols.calibration.LazerZeroingComponent.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 86, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.LazerZeroingComponent.profile": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.LazerZeroingComponent.derive_model": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 55, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.LazerZeroingComponent.zero_nm_to_shift_cm_1": {"qualname": 7, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 37, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.LazerZeroingComponent.process": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 67, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.YCalibrationCertificate": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 7, "doc": 295}, "ramanchada2.protocols.calibration.YCalibrationCertificate.id": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.YCalibrationCertificate.description": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.YCalibrationCertificate.url": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.YCalibrationCertificate.wavelength": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.YCalibrationCertificate.params": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.YCalibrationCertificate.equation": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.YCalibrationCertificate.temperature_c": {"qualname": 3, "fullname": 6, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.YCalibrationCertificate.raman_shift": {"qualname": 3, "fullname": 6, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.YCalibrationCertificate.response_function": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.YCalibrationCertificate.Y": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 17, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.YCalibrationCertificate.load": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_config": {"qualname": 3, "fullname": 6, "annotation": 4, "default_value": 1, "signature": 0, "bases": 0, "doc": 18}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"qualname": 3, "fullname": 6, "annotation": 5, "default_value": 82, "signature": 0, "bases": 0, "doc": 35}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_computed_fields": {"qualname": 4, "fullname": 7, "annotation": 5, "default_value": 1, "signature": 0, "bases": 0, "doc": 16}, "ramanchada2.protocols.calibration.CertificatesDict": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 252}, "ramanchada2.protocols.calibration.CertificatesDict.load_certificates": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 17, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.CertificatesDict.get_laser_wl": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.CertificatesDict.get_certificates": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.CertificatesDict.get": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 36, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.CertificatesDict.load": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 364}, "ramanchada2.protocols.calibration.YCalibrationComponent.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.YCalibrationComponent.laser_wl": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.YCalibrationComponent.spe": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.YCalibrationComponent.ref": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.YCalibrationComponent.name": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.YCalibrationComponent.model": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.YCalibrationComponent.model_units": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.YCalibrationComponent.derive_model": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 55, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_divide": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_mask": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_factor": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.YCalibrationComponent.process": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 67, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.CalibrationModel": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 12}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 15, "bases": 0, "doc": 297}, "ramanchada2.protocols.calibration.CalibrationModel.prominence_coeff": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.CalibrationModel.set_laser_wavelength": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 17, "bases": 0, "doc": 12}, "ramanchada2.protocols.calibration.CalibrationModel.clear": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 7}, "ramanchada2.protocols.calibration.CalibrationModel.save": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 10}, "ramanchada2.protocols.calibration.CalibrationModel.from_file": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 10}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 226, "bases": 0, "doc": 12}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 135, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 160, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.CalibrationModel.apply_calibration_x": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 56, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.CalibrationModel.plot": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 60, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.CalibrationModel.calibration_model_factory": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 128, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 1560}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.from_dict": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 17, "bases": 0, "doc": 3}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.to_dict": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.spectral_components": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectral_components.baseline": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectral_components.baseline.analytical": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectral_components.baseline.baseline_base": {"qualname": 0, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectral_components.baseline.baseline_base.BaseLineBase": {"qualname": 1, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 16}, "ramanchada2.spectral_components.baseline.numerical": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 7, "doc": 16}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical.__init__": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 25}, "ramanchada2.spectral_components.peak_profile": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectral_components.peak_profile.delta": {"qualname": 0, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak": {"qualname": 1, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 16}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.__init__": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.a": {"qualname": 2, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.x0": {"qualname": 2, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.delta": {"qualname": 2, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.pos_amp_fwhm": {"qualname": 4, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.limit_3sigma": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectral_components.peak_profile.gauss": {"qualname": 0, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak": {"qualname": 1, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 16}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.__init__": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.a": {"qualname": 2, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.x0": {"qualname": 2, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.w": {"qualname": 2, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.delta": {"qualname": 2, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.pos_amp_fwhm": {"qualname": 4, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.limit_3sigma": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectral_components.peak_profile.voigt": {"qualname": 0, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectral_components.peak_profile.voigt.VoigtPeak": {"qualname": 1, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 16}, "ramanchada2.spectral_components.spectral_component": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectral_components.spectral_component.SpectralComponent": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 9, "doc": 16}, "ramanchada2.spectral_components.spectral_component_collection": {"qualname": 0, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection": {"qualname": 1, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 9, "doc": 16}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.__init__": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.kwargs": {"qualname": 2, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.reset_origin": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.get_deltas": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.get_curve": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.limit_3sigma": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectral_components.spectral_peak": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 8, "doc": 16}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.delta": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.limit_3sigma": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.pos_amp_fwhm": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.spectrum": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.arithmetics": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.arithmetics.add": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.arithmetics.mul": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.arithmetics.sub": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.arithmetics.truediv": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.baseline": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.baseline.add_baseline": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.baseline.add_baseline.generate_baseline": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 151, "bases": 0, "doc": 3}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 143, "bases": 0, "doc": 165}, "ramanchada2.spectrum.baseline.baseline_rc1": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.baseline.baseline_rc1.baseline_als": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 151, "bases": 0, "doc": 3}, "ramanchada2.spectrum.baseline.baseline_rc1.baseline_snip": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 56, "bases": 0, "doc": 3}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_als": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 106, "bases": 0, "doc": 3}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_snip": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 71, "bases": 0, "doc": 3}, "ramanchada2.spectrum.baseline.moving_minimum": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.baseline.moving_minimum.moving_minimum": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 72, "bases": 0, "doc": 17}, "ramanchada2.spectrum.baseline.moving_minimum.subtract_moving_minimum": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 72, "bases": 0, "doc": 3}, "ramanchada2.spectrum.calc": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.calc.central_moments": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.calc.central_moments.central_moments": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 108, "bases": 0, "doc": 3}, "ramanchada2.spectrum.calibration": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.calibration.by_deltas": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.__init__": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.params": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.minx": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.maxx": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.model": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.fit": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 3}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 176, "bases": 0, "doc": 127}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_filter": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 116, "bases": 0, "doc": 3}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 174, "bases": 0, "doc": 3}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 274, "bases": 0, "doc": 35}, "ramanchada2.spectrum.calibration.change_x_units": {"qualname": 0, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"qualname": 6, "fullname": 12, "annotation": 0, "default_value": 0, "signature": 52, "bases": 0, "doc": 40}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"qualname": 6, "fullname": 12, "annotation": 0, "default_value": 0, "signature": 52, "bases": 0, "doc": 40}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"qualname": 7, "fullname": 13, "annotation": 0, "default_value": 0, "signature": 80, "bases": 0, "doc": 42}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"qualname": 7, "fullname": 13, "annotation": 0, "default_value": 0, "signature": 80, "bases": 0, "doc": 42}, "ramanchada2.spectrum.calibration.normalize": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.calibration.normalize.normalize": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 161, "bases": 0, "doc": 92}, "ramanchada2.spectrum.calibration.scale_xaxis": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 103, "bases": 0, "doc": 89}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 138, "bases": 0, "doc": 85}, "ramanchada2.spectrum.calibration.scale_yaxis": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 78, "bases": 0, "doc": 59}, "ramanchada2.spectrum.calibration.set_new_xaxis": {"qualname": 0, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 112, "bases": 0, "doc": 73}, "ramanchada2.spectrum.creators": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.creators.from_cache_or_calc": {"qualname": 0, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.creators.from_cache_or_calc.logger": {"qualname": 1, "fullname": 8, "annotation": 0, "default_value": 13, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"qualname": 4, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 105}, "ramanchada2.spectrum.creators.from_chada": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.creators.from_chada.from_chada": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 3}, "ramanchada2.spectrum.creators.from_delta_lines": {"qualname": 0, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 117, "bases": 0, "doc": 145}, "ramanchada2.spectrum.creators.from_local_file": {"qualname": 0, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 8}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 234, "bases": 0, "doc": 148}, "ramanchada2.spectrum.creators.from_simulation": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 396, "bases": 0, "doc": 236}, "ramanchada2.spectrum.creators.from_spectral_component_collection": {"qualname": 0, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"qualname": 4, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 44}, "ramanchada2.spectrum.creators.from_test_spe": {"qualname": 0, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 8}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 74}, "ramanchada2.spectrum.creators.from_theoretical_lines": {"qualname": 0, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 384, "bases": 0, "doc": 67}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure": {"qualname": 0, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"qualname": 4, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 73}, "ramanchada2.spectrum.filters": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.filters.add_gaussian_noise": {"qualname": 0, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 117, "bases": 0, "doc": 95}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift": {"qualname": 0, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.generate_add_gaussian_noise_drift": {"qualname": 5, "fullname": 12, "annotation": 0, "default_value": 0, "signature": 158, "bases": 0, "doc": 3}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"qualname": 4, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 206, "bases": 0, "doc": 180}, "ramanchada2.spectrum.filters.add_poisson_noise": {"qualname": 0, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 96, "bases": 0, "doc": 103}, "ramanchada2.spectrum.filters.convolve": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.filters.convolve.convolve": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 247, "bases": 0, "doc": 122}, "ramanchada2.spectrum.filters.drop_spikes": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 116, "bases": 0, "doc": 81}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 113, "bases": 0, "doc": 81}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 113, "bases": 0, "doc": 84}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 113, "bases": 0, "doc": 85}, "ramanchada2.spectrum.filters.moving_average": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 113, "bases": 0, "doc": 52}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 113, "bases": 0, "doc": 52}, "ramanchada2.spectrum.filters.moving_median": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 113, "bases": 0, "doc": 64}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 72, "bases": 0, "doc": 69}, "ramanchada2.spectrum.filters.pad_zeros": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 66, "bases": 0, "doc": 110}, "ramanchada2.spectrum.filters.resampling": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 430, "bases": 0, "doc": 167}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 185, "bases": 0, "doc": 167}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 235, "bases": 0, "doc": 139}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 263, "bases": 0, "doc": 139}, "ramanchada2.spectrum.filters.sharpen_lines": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 301, "bases": 0, "doc": 104}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 77, "bases": 0, "doc": 66}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 121, "bases": 0, "doc": 91}, "ramanchada2.spectrum.filters.smoothing": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 173, "bases": 0, "doc": 80}, "ramanchada2.spectrum.filters.trim_axes": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 121, "bases": 0, "doc": 80}, "ramanchada2.spectrum.peaks": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.peaks.find_peaks": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.peaks.find_peaks.peak_boundaries": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 3}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 356, "bases": 0, "doc": 194}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 82, "bases": 0, "doc": 61}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture": {"qualname": 0, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 293, "bases": 0, "doc": 143}, "ramanchada2.spectrum.peaks.fit_peaks": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.peaks.fit_peaks.logger": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.peaks.fit_peaks.available_models": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 23, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.peaks.fit_peaks.available_models_type": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 24, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 240, "bases": 0, "doc": 3}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 303, "bases": 0, "doc": 3}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 110, "bases": 0, "doc": 73}, "ramanchada2.spectrum.peaks.get_fitted_peaks": {"qualname": 0, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.peaks.get_fitted_peaks.logger": {"qualname": 1, "fullname": 7, "annotation": 0, "default_value": 12, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 111, "bases": 0, "doc": 148}, "ramanchada2.spectrum.spectrum": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.spectrum.logger": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 9, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.spectrum.Spectrum": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 16}, "ramanchada2.spectrum.spectrum.Spectrum.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 244, "bases": 0, "doc": 3}, "ramanchada2.spectrum.spectrum.Spectrum.applied_processings_dict": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.spectrum.spectrum.Spectrum.write_csv": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 3}, "ramanchada2.spectrum.spectrum.Spectrum.write_cha": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 3}, "ramanchada2.spectrum.spectrum.Spectrum.write_nexus": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 3}, "ramanchada2.spectrum.spectrum.Spectrum.write_cache": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.spectrum.spectrum.Spectrum.process": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 3}, "ramanchada2.spectrum.spectrum.Spectrum.apply_creator": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 61, "bases": 0, "doc": 3}, "ramanchada2.spectrum.spectrum.Spectrum.apply_processing": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 49, "bases": 0, "doc": 3}, "ramanchada2.spectrum.spectrum.Spectrum.x": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.spectrum.Spectrum.x_bin_boundaries": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.spectrum.Spectrum.y": {"qualname": 2, "fullname": 5, "annotation": 7, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_MAD": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol_DL": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 56, "bases": 0, "doc": 3}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 56, "bases": 0, "doc": 3}, "ramanchada2.spectrum.spectrum.Spectrum.x_err": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.spectrum.Spectrum.y_err": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.spectrum.Spectrum.meta": {"qualname": 2, "fullname": 5, "annotation": 7, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.spectrum.Spectrum.result": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.spectrum.spectrum.Spectrum.spe_distribution": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 3}, "ramanchada2.spectrum.spectrum.Spectrum.gen_samples": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 60, "bases": 0, "doc": 3}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 143, "bases": 0, "doc": 165}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_als": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 106, "bases": 0, "doc": 3}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_snip": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 71, "bases": 0, "doc": 3}, "ramanchada2.spectrum.spectrum.Spectrum.moving_minimum": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 72, "bases": 0, "doc": 17}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_minimum": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 72, "bases": 0, "doc": 3}, "ramanchada2.spectrum.spectrum.Spectrum.central_moments": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 108, "bases": 0, "doc": 3}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"qualname": 7, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 52, "bases": 0, "doc": 40}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"qualname": 7, "fullname": 10, "annotation": 0, "default_value": 0, "signature": 52, "bases": 0, "doc": 40}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"qualname": 8, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 80, "bases": 0, "doc": 42}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"qualname": 8, "fullname": 11, "annotation": 0, "default_value": 0, "signature": 80, "bases": 0, "doc": 42}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 176, "bases": 0, "doc": 127}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_filter": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 116, "bases": 0, "doc": 3}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 174, "bases": 0, "doc": 3}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 274, "bases": 0, "doc": 35}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 78, "bases": 0, "doc": 59}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 112, "bases": 0, "doc": 73}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 103, "bases": 0, "doc": 89}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 138, "bases": 0, "doc": 85}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 161, "bases": 0, "doc": 92}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 113, "bases": 0, "doc": 64}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 72, "bases": 0, "doc": 69}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 96, "bases": 0, "doc": 103}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 121, "bases": 0, "doc": 80}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 66, "bases": 0, "doc": 110}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 117, "bases": 0, "doc": 95}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 173, "bases": 0, "doc": 80}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 301, "bases": 0, "doc": 104}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 77, "bases": 0, "doc": 66}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 121, "bases": 0, "doc": 91}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 247, "bases": 0, "doc": 122}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 113, "bases": 0, "doc": 52}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 113, "bases": 0, "doc": 52}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 430, "bases": 0, "doc": 167}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 185, "bases": 0, "doc": 167}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 235, "bases": 0, "doc": 139}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 263, "bases": 0, "doc": 139}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 206, "bases": 0, "doc": 180}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 116, "bases": 0, "doc": 81}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 113, "bases": 0, "doc": 81}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 113, "bases": 0, "doc": 84}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 113, "bases": 0, "doc": 85}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 111, "bases": 0, "doc": 148}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 293, "bases": 0, "doc": 143}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 356, "bases": 0, "doc": 194}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 82, "bases": 0, "doc": 61}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 303, "bases": 0, "doc": 3}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 110, "bases": 0, "doc": 73}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 105}, "ramanchada2.spectrum.spectrum.Spectrum.from_chada": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 3}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 234, "bases": 0, "doc": 148}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 117, "bases": 0, "doc": 145}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 396, "bases": 0, "doc": 236}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 384, "bases": 0, "doc": 67}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 44}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 74}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 73}, "ramanchada2.theoretical_lines": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.theoretical_lines.model_from_lines": {"qualname": 0, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.theoretical_lines.model_from_lines.model_from_lines": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 144, "bases": 0, "doc": 3}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"qualname": 1, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 3, "doc": 390}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model": {"qualname": 2, "fullname": 8, "annotation": 9, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.position": {"qualname": 2, "fullname": 8, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.inensity": {"qualname": 2, "fullname": 8, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.sigma": {"qualname": 2, "fullname": 8, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.name": {"qualname": 2, "fullname": 8, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_config": {"qualname": 3, "fullname": 9, "annotation": 4, "default_value": 1, "signature": 0, "bases": 0, "doc": 18}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"qualname": 3, "fullname": 9, "annotation": 5, "default_value": 75, "signature": 0, "bases": 0, "doc": 35}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_computed_fields": {"qualname": 4, "fullname": 10, "annotation": 5, "default_value": 1, "signature": 0, "bases": 0, "doc": 16}, "ramanchada2.theoretical_lines.model_from_lines.model_from_list": {"qualname": 3, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 77, "bases": 0, "doc": 3}}, "length": 575, "save": true}, "index": {"qualname": {"root": {"1": {"docs": {"ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.zero_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}}, "df": 13}, "3": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.limit_3sigma": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.limit_3sigma": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.limit_3sigma": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.limit_3sigma": {"tf": 1}}, "df": 4}}}}}}, "4": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.io.experimental.rc1_parser.binary_readers.read_4byte_datablock": {"tf": 1}}, "df": 1}}}}}, "5": {"3": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"3": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"8": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.__init__": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical.__init__": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.__init__": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.__init__": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.__init__": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.__init__": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.__init__": {"tf": 1}}, "df": 13, "d": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.io.simulated.crystal.discrete_lines_dat.lines_from_crystal_dat": {"tf": 1}, "ramanchada2.io.simulated.lines_from_raw_dat.lines_from_raw_dat": {"tf": 1}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"tf": 1}}, "df": 3, "a": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.io.HSDS.filter_dataset": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.io.HSDS.DatasetExistsError": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"ramanchada2.io.experimental.rc1_parser.binary_readers.read_4byte_datablock": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.io.experimental.rc1_parser.txt_format_readers.dataFromTxtLines": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe_peaks": {"tf": 1}}, "df": 2}}}}}}}}, "f": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2.filtered_df": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.io.HSDS.visit_domain": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.constants.PST_RS_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1_dict": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.spe_pos_dict": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.from_dict": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.to_dict": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.applied_processings_dict": {"tf": 1}}, "df": 18}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent.safe_divide": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.spectrum.Spectrum.spe_distribution": {"tf": 1}}, "df": 1}}}}}}}}}}}, "y": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"tf": 1}}, "df": 2}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.dumps": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 1}}, "df": 7}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}}, "df": 2}}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.description": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.delta": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.delta": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.delta": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}}, "df": 5, "s": {"docs": {"ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.get_deltas": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_filter": {"tf": 1}}, "df": 5, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {"ramanchada2.spectral_components.peak_profile.delta.DeltasPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.__init__": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.a": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.x0": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.delta": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.pos_amp_fwhm": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.limit_3sigma": {"tf": 1}}, "df": 7}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.__init__": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.params": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.minx": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.maxx": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.model": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.fit": {"tf": 1}}, "df": 7}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectrum.filters.add_gaussian_noise_drift.generate_add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 3}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {"ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}}, "df": 2}}}, "l": {"docs": {"ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol_DL": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.loc": {"tf": 1}, "ramanchada2.auxiliary.spectra.simulated.loc": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.locations": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {"ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 2}}}, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.io.HSDS.logger": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.logger": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_filter.logger": {"tf": 1}, "ramanchada2.protocols.calibration.logger": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.logger": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.logger": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.logger": {"tf": 1}, "ramanchada2.spectrum.spectrum.logger": {"tf": 1}}, "df": 8}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.load": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.load_certificates": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.load": {"tf": 1}}, "df": 3, "s": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.loads": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.io.simulated.crystal.discrete_lines_dat.lines_from_crystal_dat": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_out.lines_from_crystal_out": {"tf": 1}, "ramanchada2.io.simulated.lines_from_raw_dat.lines_from_raw_dat": {"tf": 1}, "ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.model_from_lines": {"tf": 1}}, "df": 10}, "a": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}}, "df": 4}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.base_class.BaseClass.origin_list_str": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.to_list": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.model_from_list": {"tf": 1}}, "df": 3, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.root": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.serialize": {"tf": 1}}, "df": 5}}}}}}}}}}}}}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.limit_3sigma": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.limit_3sigma": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.limit_3sigma": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.limit_3sigma": {"tf": 1}}, "df": 4}}}}, "w": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.lwhm": {"tf": 1}}, "df": 1, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.lwhms": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.extend_left": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.utils.ramanshift_to_wavelength.laser_wl_nm": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.laser_wl": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.get_laser_wl": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.laser_wl": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.set_laser_wavelength": {"tf": 1}}, "df": 5}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.LazerZeroingComponent": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.profile": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.zero_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.process": {"tf": 1}}, "df": 6}}}}}}}}}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.io.HSDS.filter_dataset": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_filter.add_spectrum_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1}}, "df": 16, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.filtered_df": {"tf": 1}}, "df": 1}}, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.get_filters": {"tf": 1}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.from_file": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 3, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.get_filenames": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"ramanchada2.auxiliary.spectra.simulated.FILES": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.fit_res": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.fit": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1}}, "df": 8, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.valuesdict": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.locations": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.centers": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.fwhm": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.boundaries": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.center_amplitude": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.centers_err": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.fwhms": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.amplitudes": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.dumps": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.loads": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe_peaks": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_csv": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.gen_fake_spectrum": {"tf": 1}}, "df": 16}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"2": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "f": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.fitres2df": {"tf": 1}}, "df": 1}}}, "docs": {}, "df": 0}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_computed_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_computed_fields": {"tf": 1}}, "df": 12}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.misc.utils.argmin2d.find_closest_pairs_idx": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.find_closest_pairs": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1}}, "df": 6}, "e": {"docs": {"ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.io.experimental.bw_format.bw_format": {"tf": 1}, "ramanchada2.io.experimental.neegala_format.neegala_format": {"tf": 1}, "ramanchada2.io.experimental.rruf_format.rruf_format": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2.io.simulated.crystal.discrete_lines_dat.lines_from_crystal_dat": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_out.lines_from_crystal_out": {"tf": 1}, "ramanchada2.io.simulated.lines_from_raw_dat.lines_from_raw_dat": {"tf": 1}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.from_file": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.from_dict": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.creators.from_chada.from_chada": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_chada": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.model_from_lines": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.model_from_list": {"tf": 1}}, "df": 26}}}, "w": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.pos_amp_fwhm": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.pos_amp_fwhm": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.pos_amp_fwhm": {"tf": 1}}, "df": 7, "s": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.fwhms": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.fwhms": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.gen_fake_spectrum": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent.safe_factor": {"tf": 1}}, "df": 1, "y": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.calibration_model_factory": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}}, "df": 2, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.response_function": {"tf": 1}}, "df": 1}}}}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.get_filters": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2.get_filenames": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.get_all_keys": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.get_laser_wl": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.get_certificates": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.get": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.get_deltas": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.get_curve": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}}, "df": 14, "y": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.io.experimental.rc1_parser.txt_format_readers.getYDataType": {"tf": 1}}, "df": 1}}}}}}}}}}, "n": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.gen_fake_spectrum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.gen_samples": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.baseline.add_baseline.generate_baseline": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.generate_add_gaussian_noise_drift": {"tf": 1}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {"ramanchada2.spectral_components.peak_profile.gauss.GaussPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.__init__": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.a": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.x0": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.w": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.delta": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.pos_amp_fwhm": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.limit_3sigma": {"tf": 1}}, "df": 8}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.generate_add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 7}}}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.pre_validate": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.prepend_prefix": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.prepend_prefix": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.set_proc": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.proc": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.check_proc": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.process": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.process": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.spectrum.spectrum.Spectrum.apply_processing": {"tf": 1}}, "df": 1, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.protocols.calibration.ProcessingModel": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"ramanchada2.spectrum.spectrum.Spectrum.applied_processings_dict": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.LazerZeroingComponent.profile": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.prominence_coeff": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.io.experimental.rc1_parser.io.parse": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_baseline": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_errorbar": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.params": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.params": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 1}}, "df": 5}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.cache_path": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.utils.argmin2d.find_closest_pairs_idx": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.find_closest_pairs": {"tf": 1}}, "df": 2}}}, "d": {"docs": {"ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.constants.PST_RS_dict": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.constants.polystyrene_rs": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.spe_pos_dict": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.pos_amp_fwhm": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.pos_amp_fwhm": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.pos_amp_fwhm": {"tf": 1}}, "df": 8, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.position": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.position": {"tf": 1}}, "df": 2, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.positions": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}}, "df": 3}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.types.positive_not_multiple.PositiveOddInt": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "p": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.pop": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}}, "df": 2}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.plottable.Plottable.plot": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_baseline": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_errorbar": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.plot": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.plot": {"tf": 1}}, "df": 5, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.plottable.Plottable": {"tf": 1}, "ramanchada2.misc.plottable.Plottable.plot": {"tf": 1}}, "df": 2}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.peak_bases": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.peak_boundaries": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1}}, "df": 10, "s": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe_peaks": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.peaks": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.match_peaks": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.peaks": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1}}, "df": 6}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.amplitude": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.position": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.sigma": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.skew": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.lwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.rwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.serialize": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_computed_fields": {"tf": 1}}, "df": 12}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.peaks": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.base_slope": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.base_intercept": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.boundaries": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_baseline": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_errorbar": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.positions": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.sigmas": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.fwhms": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.lwhms": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.rwhms": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.skews": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.amplitudes": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.bases": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.peak_bases": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.serialize": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_computed_fields": {"tf": 1}}, "df": 22}}}}}}}}}}}}}}}}}}}}}}, "y": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_config": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.serialize": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_computed_fields": {"tf": 1}}, "df": 5}}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel.serialize": {"tf": 1}}, "df": 2}}}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.position": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.inensity": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.sigma": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.name": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_config": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_computed_fields": {"tf": 1}}, "df": 9}}}}}}}}}}}}, "w": {"docs": {"ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.w": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.io.HSDS.write_nexus": {"tf": 1}, "ramanchada2.io.HSDS.write_cha": {"tf": 1}, "ramanchada2.io.output.write_csv.write_csv": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.write_csv": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.write_cha": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.write_nexus": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.write_cache": {"tf": 1}}, "df": 7}}}}, "l": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.laser_wl_nm": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.laser_wl": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.get_laser_wl": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.laser_wl": {"tf": 1}}, "df": 13}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.wavelength": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.set_laser_wavelength": {"tf": 1}}, "df": 2}}}}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.io.HSDS.write_nexus": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.write_nexus": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.io.experimental.neegala_format.neegala_format": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 14}}, "w": {"docs": {"ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs_meta": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 7}}}, "m": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.laser_wl_nm": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.zero_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}}, "df": 15}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.name": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.name": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.name": {"tf": 1}}, "df": 3}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.generate_add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_MAD": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol_DL": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 11}}}}, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}}, "df": 4}}}}}, "c": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.temperature_c": {"tf": 1}}, "df": 1, "h": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.io.HSDS.write_cha": {"tf": 1}, "ramanchada2.io.HSDS.read_cha": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.write_cha": {"tf": 1}}, "df": 3, "d": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.spectrum.creators.from_chada.from_chada": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_chada": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.exceptions.ChadaReadNotFoundError": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.check_proc": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.io.experimental.rc1_parser.io.cleanMeta": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.clear": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.clear": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.utils.argmin2d.find_closest_pairs_idx": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.find_closest_pairs": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"ramanchada2.io.experimental.read_csv.read_csv": {"tf": 1}, "ramanchada2.io.output.write_csv.write_csv": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_csv": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.write_csv": {"tf": 1}}, "df": 4}}, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.io.simulated.crystal.discrete_lines_dat.lines_from_crystal_dat": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_out.lines_from_crystal_out": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.spectrum.spectrum.Spectrum.apply_creator": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor": {"tf": null}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.__init__": {"tf": null}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.set_proc": {"tf": null}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.is_constructor": {"tf": null}}, "df": 4, "s": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_config": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_config": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_config": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_config": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_config": {"tf": 1}}, "df": 6}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.convert_units": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1}}, "df": 4}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_computed_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_computed_fields": {"tf": 1}}, "df": 6}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.prominence_coeff": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}}, "df": 2}}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.center_amplitude": {"tf": 1}}, "df": 1, "s": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.centers": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.centers_err": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectrum.calc.central_moments.central_moments": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.central_moments": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.protocols.calibration.CertificatesDict.load_certificates": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.get_certificates": {"tf": 1}}, "df": 2, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.CertificatesDict": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.load_certificates": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.get_laser_wl": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.get_certificates": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.get": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.load": {"tf": 1}}, "df": 6}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.cache_path": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.write_cache": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}}, "df": 4}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.apply_calibration_x": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.calibration_model_factory": {"tf": 1}}, "df": 2, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.laser_wl": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.spe": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.spe_units": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.ref": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.ref_units": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.name": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.model_units": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.peaks": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.sample": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.enabled": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.fit_res": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.set_model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.convert_units": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.plot": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.fitres2df": {"tf": 1}}, "df": 20}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.prominence_coeff": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.set_laser_wavelength": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.clear": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.save": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.from_file": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.apply_calibration_x": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.plot": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.calibration_model_factory": {"tf": 1}}, "df": 13}}}}}}}}, "e": {"docs": {"ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_filter": {"tf": 1}}, "df": 4}}}}}}, "c": {"docs": {"ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}}, "df": 2}}}, "m": {"docs": {"ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.zero_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}}, "df": 13}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.get_curve": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.from_dict": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.to_dict": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.io.HSDS.read_cha": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_4byte_datablock": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_bytestring": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs_meta": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.read_JCAMP": {"tf": 1}, "ramanchada2.io.experimental.read_csv.read_csv": {"tf": 1}, "ramanchada2.io.experimental.read_txt.read_txt": {"tf": 1}, "ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1}}, "df": 9, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1}}, "df": 1}, "c": {"docs": {"ramanchada2.io.experimental.rc1_parser.third_party_readers.readSPC": {"tf": 1}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "f": {"docs": {"ramanchada2.io.experimental.rc1_parser.third_party_readers.readWDF": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.io.experimental.rc1_parser.third_party_readers.readOPUS": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.io.experimental.rc1_parser.txt_format_readers.readTXT": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.repr": {"tf": 1}}, "df": 1}}, "f": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.ref": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.ref_units": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.ref": {"tf": 1}}, "df": 3}, "s": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.fit_res": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.response_function": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.reset_origin": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}}, "df": 8}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectrum.spectrum.Spectrum.result": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}}, "df": 2}}}}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "f": {"docs": {"ramanchada2.io.experimental.rruf_format.rruf_format": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "w": {"docs": {"ramanchada2.io.simulated.lines_from_raw_dat.lines_from_raw_dat": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.raman_shift": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"ramanchada2.misc.constants.PST_RS_dict": {"tf": 1}, "ramanchada2.misc.constants.polystyrene_rs": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 7}, "w": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.rwhm": {"tf": 1}}, "df": 1, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.rwhms": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.root": {"tf": 1}}, "df": 4}}}, "c": {"1": {"docs": {"ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_als": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_snip": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_als": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_snip": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}}, "df": 6}, "docs": {}, "df": 0}, "b": {"docs": {}, "df": 0, "f": {"docs": {"ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.io.HSDS.visit_domain": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {"ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.valuesdict": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.pre_validate": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {"ramanchada2.spectral_components.peak_profile.voigt.VoigtPeak": {"tf": 1}}, "df": 1}}}}}}}}}, "b": {"docs": {}, "df": 0, "w": {"docs": {"ramanchada2.io.experimental.bw_format.bw_format": {"tf": 1}}, "df": 1}, "y": {"docs": {"ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_filter": {"tf": 1}}, "df": 4, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.io.experimental.rc1_parser.binary_readers.read_bytestring": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.base_slope": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.base_intercept": {"tf": 1}}, "df": 2, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.base_class.BaseClass": {"tf": 1}, "ramanchada2.misc.base_class.BaseClass.origin": {"tf": 1}, "ramanchada2.misc.base_class.BaseClass.origin_list_str": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_baseline": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.generate_baseline": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.baseline_als": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.baseline_snip": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_als": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_snip": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_als": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_snip": {"tf": 1}}, "df": 10, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectral_components.baseline.baseline_base.BaseLineBase": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectral_components.baseline.numerical.BaselineNumerical": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical.__init__": {"tf": 1}}, "df": 2}}}}}}}}}}}}}, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.bases": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.peak_bases": {"tf": 1}}, "df": 2}}}, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 2}}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.boundaries": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.boundaries": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.peak_boundaries": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.x_bin_boundaries": {"tf": 1}}, "df": 4}}}}}}}}}, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.spectrum.Spectrum.x_bin_boundaries": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs_meta": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.meta": {"tf": 1}}, "df": 2}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.misc.spectrum_deco.spectrum_method.add_spectrum_method": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1}}, "df": 4}}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_config": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_config": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.model_units": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.set_model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_config": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_computed_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.model": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.model_units": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.calibration_model_factory": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.model": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.model_from_lines": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_config": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_computed_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.model_from_list": {"tf": 1}}, "df": 38, "s": {"docs": {"ramanchada2.spectrum.peaks.fit_peaks.available_models": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.available_models_type": {"tf": 1}}, "df": 2}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.spectrum.baseline.moving_minimum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.baseline.moving_minimum.subtract_moving_minimum": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1}}, "df": 12}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.spectrum.calc.central_moments.central_moments": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.central_moments": {"tf": 1}}, "df": 2}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"ramanchada2.misc.utils.argmin2d.match_peaks": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent.safe_mask": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "x": {"docs": {"ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.maxx": {"tf": 1}}, "df": 1}}, "d": {"docs": {"ramanchada2.spectrum.spectrum.Spectrum.y_noise_MAD": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2.spectrum.baseline.moving_minimum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.baseline.moving_minimum.subtract_moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_minimum": {"tf": 1}}, "df": 4}}}}, "x": {"docs": {"ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.minx": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 2}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 2, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {"ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1}}, "df": 5}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1}}, "df": 2}}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.io.experimental.rc1_parser.io.UnsupportedFileTypeError": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.spe_units": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.ref_units": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.model_units": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.convert_units": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.model_units": {"tf": 1}}, "df": 5}}}}, "r": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.url": {"tf": 1}}, "df": 1}}}, "j": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"ramanchada2.io.experimental.rc1_parser.txt_format_readers.read_JCAMP": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.is_constructor": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.io.experimental.rc1_parser.txt_format_readers.isDataLine": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.exceptions.InputParserError": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.__init__": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical.__init__": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.__init__": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.__init__": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.__init__": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.__init__": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.__init__": {"tf": 1}}, "df": 13}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.base_intercept": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.utils.svd.svd_inverse": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.inensity": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.id": {"tf": 1}}, "df": 1, "x": {"docs": {"ramanchada2.misc.utils.argmin2d.find_closest_pairs_idx": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"ramanchada2.io.experimental.rc1_parser.txt_format_readers.startStop": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {"ramanchada2.misc.base_class.BaseClass.origin_list_str": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 2}}}}}}}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.sigma": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.sigma": {"tf": 1}}, "df": 2, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.sigmas": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.spe": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.spe_units": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.spe_pos_dict": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.spe": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spe_distribution": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1}}, "df": 9, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.__init__": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.set_proc": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_filter.add_spectrum_filter": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_method.add_spectrum_method": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.gen_fake_spectrum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.__init__": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.applied_processings_dict": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.write_csv": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.write_cha": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.write_nexus": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.write_cache": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.process": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.apply_creator": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.apply_processing": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.x": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.x_bin_boundaries": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_MAD": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol_DL": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.x_err": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_err": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.meta": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.result": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spe_distribution": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.gen_samples": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_als": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_snip": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.central_moments": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_chada": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 85}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}}, "df": 2, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectral_components.spectral_component.SpectralComponent": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.__init__": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.kwargs": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.reset_origin": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.get_deltas": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.get_curve": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.limit_3sigma": {"tf": 1}}, "df": 7}}}}}}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {"ramanchada2.spectral_components.spectral_peak.SpectralPeak": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.delta": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.limit_3sigma": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.pos_amp_fwhm": {"tf": 1}}, "df": 4}}}}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.proc": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.args": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.kwargs": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.is_constructor": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.check_proc": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_config": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields": {"tf": 1}}, "df": 9}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.append": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.extend_left": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.pop": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.clear": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.assign": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.repr": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.cache_path": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.to_list": {"tf": 1}}, "df": 10}}}}}}}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldTyping": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.pre_validate": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.serialize": {"tf": 1}}, "df": 4}}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.serialize": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.get_all_keys": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}}, "df": 2, "s": {"docs": {"ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}}, "df": 6}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}}, "df": 4}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.set_proc": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.set_model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.set_laser_wavelength": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}}, "df": 5}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.serialize": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.serialize": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.serialize": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.serialize": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel.serialize": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.serialize": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.serialize": {"tf": 1}}, "df": 7}}}}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.skew": {"tf": 1}}, "df": 1, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.skews": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.base_slope": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.utils.argmin2d.align_shift": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.zero_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.raman_shift": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}}, "df": 15}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}}, "df": 6}}}}}}}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.misc.utils.svd.svd_solve": {"tf": 1}, "ramanchada2.misc.utils.svd.svd_inverse": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.utils.svd.svd_solve": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.sample": {"tf": 1}}, "df": 1, "s": {"docs": {"ramanchada2.spectrum.spectrum.Spectrum.gen_samples": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent.safe_divide": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_mask": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_factor": {"tf": 1}}, "df": 3}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.save": {"tf": 1}}, "df": 1}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol_DL": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {"ramanchada2.spectrum.baseline.baseline_rc1.baseline_snip": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_snip": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_snip": {"tf": 1}}, "df": 3}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_als": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_snip": {"tf": 1}, "ramanchada2.spectrum.baseline.moving_minimum.subtract_moving_minimum": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_als": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_snip": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1}}, "df": 8}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}}, "df": 6}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}}, "df": 2}}}}}}}}}, "t": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.io.experimental.read_txt.read_txt": {"tf": 1}}, "df": 1}}, "o": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe_peaks": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_csv": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.to_list": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.zero_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.to_dict": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}}, "df": 18}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.temperature_c": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1}}, "df": 2}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 2}}}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1}}, "df": 2}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.peaks.fit_peaks.available_models_type": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.io.simulated.crystal.discrete_lines_out.lines_from_crystal_out": {"tf": 1}}, "df": 1}}, "r": {"docs": {"ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.misc.base_class.BaseClass.origin": {"tf": 1}, "ramanchada2.misc.base_class.BaseClass.origin_list_str": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.reset_origin": {"tf": 1}}, "df": 3}}}}}}, "a": {"docs": {"ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.a": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.a": {"tf": 1}}, "df": 2, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.misc.exceptions.ApplicationException": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.spectrum.spectrum.Spectrum.applied_processings_dict": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.apply_calibration_x": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.apply_creator": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.apply_processing": {"tf": 1}}, "df": 3}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.append": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.__init__": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.set_proc": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_filter.add_spectrum_filter": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_method.add_spectrum_method": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.generate_add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 14, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"tf": 1}}, "df": 2}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.pos_amp_fwhm": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.pos_amp_fwhm": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.pos_amp_fwhm": {"tf": 1}}, "df": 3, "l": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.center_amplitude": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.amplitude": {"tf": 1}}, "df": 2, "s": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.amplitudes": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.amplitudes": {"tf": 1}}, "df": 2}}}}}}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.args": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"2": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.misc.utils.argmin2d.argmin2d": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.assign": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.get_all_keys": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.misc.utils.argmin2d.align": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.align_shift": {"tf": 1}}, "df": 2}}}, "s": {"docs": {"ramanchada2.spectrum.baseline.baseline_rc1.baseline_als": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_als": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_als": {"tf": 1}}, "df": 3}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}}, "df": 12}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1}}, "df": 4}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.peaks.fit_peaks.available_models": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.available_models_type": {"tf": 1}}, "df": 2}}}}}}}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.centers_err": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.x_err": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_err": {"tf": 1}}, "df": 3, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_errorbar": {"tf": 1}}, "df": 1}}}}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.extend_left": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 2}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.enabled": {"tf": 1}}, "df": 1}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.equation": {"tf": 1}}, "df": 1}}}}}}}}, "k": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.kwargs": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.kwargs": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.get_all_keys": {"tf": 1}}, "df": 1}}}}, "x": {"0": {"docs": {"ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.x0": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.x0": {"tf": 1}}, "df": 2}, "docs": {"ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.apply_calibration_x": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.x": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.x_bin_boundaries": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.x_err": {"tf": 1}}, "df": 5, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.XCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.spe_pos_dict": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.derive_model": {"tf": 1}}, "df": 5}}}}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}}, "df": 6}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"ramanchada2.protocols.calibration.LazerZeroingComponent.zero_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 1}}, "df": 2, "s": {"docs": {"ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1}}, "df": 2}}}}}, "y": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.Y": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_MAD": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol_DL": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_err": {"tf": 1}}, "df": 7, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.id": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.description": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.url": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.wavelength": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.params": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.equation": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.temperature_c": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.raman_shift": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.response_function": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.Y": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.load": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_config": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_computed_fields": {"tf": 1}}, "df": 15}}}}}}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.laser_wl": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.spe": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.ref": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.name": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.model": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.model_units": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_divide": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_mask": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_factor": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.process": {"tf": 1}}, "df": 13}}}}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1}}, "df": 2}}}}}, "h": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 2}}, "h": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}}, "df": 4}}}}}, "fullname": {"root": {"1": {"docs": {"ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.zero_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}}, "df": 13}, "3": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.limit_3sigma": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.limit_3sigma": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.limit_3sigma": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.limit_3sigma": {"tf": 1}}, "df": 4}}}}}}, "4": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.io.experimental.rc1_parser.binary_readers.read_4byte_datablock": {"tf": 1}}, "df": 1}}}}}, "5": {"3": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"3": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"8": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.__init__": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical.__init__": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.__init__": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.__init__": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.__init__": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.__init__": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.__init__": {"tf": 1}}, "df": 13, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.raman_shift": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"2": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.auxiliary": {"tf": 1}, "ramanchada2.auxiliary.spectra": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2.loc": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2.filtered_df": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2.get_filters": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2.get_filenames": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2.prepend_prefix": {"tf": 1}, "ramanchada2.auxiliary.spectra.simulated": {"tf": 1}, "ramanchada2.auxiliary.spectra.simulated.loc": {"tf": 1}, "ramanchada2.auxiliary.spectra.simulated.FILES": {"tf": 1}, "ramanchada2.io": {"tf": 1}, "ramanchada2.io.HSDS": {"tf": 1}, "ramanchada2.io.HSDS.logger": {"tf": 1}, "ramanchada2.io.HSDS.write_nexus": {"tf": 1}, "ramanchada2.io.HSDS.DatasetExistsError": {"tf": 1}, "ramanchada2.io.HSDS.write_cha": {"tf": 1}, "ramanchada2.io.HSDS.read_cha": {"tf": 1}, "ramanchada2.io.HSDS.filter_dataset": {"tf": 1}, "ramanchada2.io.HSDS.visit_domain": {"tf": 1}, "ramanchada2.io.experimental": {"tf": 1}, "ramanchada2.io.experimental.bw_format": {"tf": 1}, "ramanchada2.io.experimental.bw_format.bw_format": {"tf": 1}, "ramanchada2.io.experimental.neegala_format": {"tf": 1}, "ramanchada2.io.experimental.neegala_format.neegala_format": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_4byte_datablock": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_bytestring": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs_meta": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.io": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.io.UnsupportedFileTypeError": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.io.parse": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.io.cleanMeta": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.third_party_readers": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readWDF": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readSPC": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readOPUS": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.logger": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.read_JCAMP": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.readTXT": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.dataFromTxtLines": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.isDataLine": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.startStop": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.getYDataType": {"tf": 1}, "ramanchada2.io.experimental.read_csv": {"tf": 1}, "ramanchada2.io.experimental.read_csv.read_csv": {"tf": 1}, "ramanchada2.io.experimental.read_txt": {"tf": 1}, "ramanchada2.io.experimental.read_txt.read_txt": {"tf": 1}, "ramanchada2.io.experimental.rruf_format": {"tf": 1}, "ramanchada2.io.experimental.rruf_format.rruf_format": {"tf": 1}, "ramanchada2.io.output": {"tf": 1}, "ramanchada2.io.output.write_csv": {"tf": 1}, "ramanchada2.io.output.write_csv.write_csv": {"tf": 1}, "ramanchada2.io.simulated": {"tf": 1}, "ramanchada2.io.simulated.crystal": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_dat": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_dat.lines_from_crystal_dat": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_out": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_out.lines_from_crystal_out": {"tf": 1}, "ramanchada2.io.simulated.lines_from_raw_dat": {"tf": 1}, "ramanchada2.io.simulated.lines_from_raw_dat.lines_from_raw_dat": {"tf": 1}, "ramanchada2.io.simulated.read_simulated_lines": {"tf": 1}, "ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1}, "ramanchada2.io.simulated.vasp": {"tf": 1}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat": {"tf": 1}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"tf": 1}, "ramanchada2.misc": {"tf": 1}, "ramanchada2.misc.base_class": {"tf": 1}, "ramanchada2.misc.base_class.BaseClass": {"tf": 1}, "ramanchada2.misc.base_class.BaseClass.origin": {"tf": 1}, "ramanchada2.misc.base_class.BaseClass.origin_list_str": {"tf": 1}, "ramanchada2.misc.constants": {"tf": 1}, "ramanchada2.misc.constants.PST_RS_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.polystyrene_rs": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}, "ramanchada2.misc.exceptions": {"tf": 1}, "ramanchada2.misc.exceptions.ApplicationException": {"tf": 1}, "ramanchada2.misc.exceptions.InputParserError": {"tf": 1}, "ramanchada2.misc.exceptions.ChadaReadNotFoundError": {"tf": 1}, "ramanchada2.misc.plottable": {"tf": 1}, "ramanchada2.misc.plottable.Plottable": {"tf": 1}, "ramanchada2.misc.plottable.Plottable.plot": {"tf": 1}, "ramanchada2.misc.spectrum_deco": {"tf": 1}, "ramanchada2.misc.spectrum_deco.dynamically_added": {"tf": 1}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_constructor": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.__init__": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.set_proc": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_filter": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_filter.logger": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_filter.add_spectrum_filter": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_method": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_method.add_spectrum_method": {"tf": 1}, "ramanchada2.misc.types": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.valuesdict": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.locations": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.centers": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.fwhm": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.boundaries": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.center_amplitude": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.centers_err": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.fwhms": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.amplitudes": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.dumps": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.loads": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe_peaks": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_csv": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.gen_fake_spectrum": {"tf": 1}, "ramanchada2.misc.types.peak_candidates": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.amplitude": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.position": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.sigma": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.skew": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.lwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.rwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.serialize": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.peaks": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.base_slope": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.base_intercept": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.boundaries": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_baseline": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_errorbar": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.positions": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.sigmas": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.fwhms": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.lwhms": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.rwhms": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.skews": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.amplitudes": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.bases": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.peak_bases": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.serialize": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.root": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.serialize": {"tf": 1}, "ramanchada2.misc.types.positive_not_multiple": {"tf": 1}, "ramanchada2.misc.types.positive_not_multiple.PositiveOddInt": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_config": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.serialize": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel.serialize": {"tf": 1}, "ramanchada2.misc.types.spectrum": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.proc": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.args": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.kwargs": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.is_constructor": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.check_proc": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_config": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.append": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.extend_left": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.pop": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.clear": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.assign": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.repr": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.cache_path": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.to_list": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldTyping": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.pre_validate": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.serialize": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.serialize": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.get_all_keys": {"tf": 1}, "ramanchada2.misc.utils": {"tf": 1}, "ramanchada2.misc.utils.argmin2d": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.argmin2d": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.find_closest_pairs_idx": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.find_closest_pairs": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.align_shift": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.match_peaks": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.laser_wl_nm": {"tf": 1}, "ramanchada2.misc.utils.svd": {"tf": 1}, "ramanchada2.misc.utils.svd.svd_solve": {"tf": 1}, "ramanchada2.misc.utils.svd.svd_inverse": {"tf": 1}, "ramanchada2.protocols": {"tf": 1}, "ramanchada2.protocols.calibration": {"tf": 1}, "ramanchada2.protocols.calibration.logger": {"tf": 1}, "ramanchada2.protocols.calibration.ProcessingModel": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.laser_wl": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.spe": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.spe_units": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.ref": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.ref_units": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.name": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.model_units": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.peaks": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.sample": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.enabled": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.fit_res": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.set_model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.convert_units": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.plot": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.fitres2df": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.spe_pos_dict": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.profile": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.zero_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.id": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.description": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.url": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.wavelength": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.params": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.equation": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.temperature_c": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.raman_shift": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.response_function": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.Y": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.load": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_config": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_computed_fields": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.load_certificates": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.get_laser_wl": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.get_certificates": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.get": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.load": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.laser_wl": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.spe": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.ref": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.name": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.model": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.model_units": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_divide": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_mask": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_factor": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.prominence_coeff": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.set_laser_wavelength": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.clear": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.save": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.from_file": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.apply_calibration_x": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.plot": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.calibration_model_factory": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.from_dict": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.to_dict": {"tf": 1}, "ramanchada2.spectral_components": {"tf": 1}, "ramanchada2.spectral_components.baseline": {"tf": 1}, "ramanchada2.spectral_components.baseline.analytical": {"tf": 1}, "ramanchada2.spectral_components.baseline.baseline_base": {"tf": 1}, "ramanchada2.spectral_components.baseline.baseline_base.BaseLineBase": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical.__init__": {"tf": 1}, "ramanchada2.spectral_components.peak_profile": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.__init__": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.a": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.x0": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.delta": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.pos_amp_fwhm": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.limit_3sigma": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.__init__": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.a": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.x0": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.w": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.delta": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.pos_amp_fwhm": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.limit_3sigma": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.voigt": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.voigt.VoigtPeak": {"tf": 1}, "ramanchada2.spectral_components.spectral_component": {"tf": 1}, "ramanchada2.spectral_components.spectral_component.SpectralComponent": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.__init__": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.kwargs": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.reset_origin": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.get_deltas": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.get_curve": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.limit_3sigma": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.delta": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.limit_3sigma": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.pos_amp_fwhm": {"tf": 1}, "ramanchada2.spectrum": {"tf": 1}, "ramanchada2.spectrum.arithmetics": {"tf": 1}, "ramanchada2.spectrum.arithmetics.add": {"tf": 1}, "ramanchada2.spectrum.arithmetics.mul": {"tf": 1}, "ramanchada2.spectrum.arithmetics.sub": {"tf": 1}, "ramanchada2.spectrum.arithmetics.truediv": {"tf": 1}, "ramanchada2.spectrum.baseline": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.generate_baseline": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.baseline_als": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.baseline_snip": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_als": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_snip": {"tf": 1}, "ramanchada2.spectrum.baseline.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.baseline.moving_minimum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.baseline.moving_minimum.subtract_moving_minimum": {"tf": 1}, "ramanchada2.spectrum.calc": {"tf": 1}, "ramanchada2.spectrum.calc.central_moments": {"tf": 1}, "ramanchada2.spectrum.calc.central_moments.central_moments": {"tf": 1}, "ramanchada2.spectrum.calibration": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.__init__": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.params": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.minx": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.maxx": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.model": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.fit": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.normalize": {"tf": 1}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_yaxis": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.creators": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.logger": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.creators.from_chada": {"tf": 1}, "ramanchada2.spectrum.creators.from_chada.from_chada": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.creators.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.creators.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.filters": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.generate_add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.filters.convolve": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.filters.resampling": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.filters.trim_axes": {"tf": 1}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1}, "ramanchada2.spectrum.peaks": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.peak_boundaries": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.logger": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.available_models": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.available_models_type": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.logger": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum": {"tf": 1}, "ramanchada2.spectrum.spectrum.logger": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.__init__": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.applied_processings_dict": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.write_csv": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.write_cha": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.write_nexus": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.write_cache": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.process": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.apply_creator": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.apply_processing": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.x": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.x_bin_boundaries": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_MAD": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol_DL": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.x_err": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_err": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.meta": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.result": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spe_distribution": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.gen_samples": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_als": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_snip": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.central_moments": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_chada": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.theoretical_lines": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.model_from_lines": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.position": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.inensity": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.sigma": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.name": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_config": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_computed_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.model_from_list": {"tf": 1}}, "df": 575}, "docs": {}, "df": 0}}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.utils.ramanshift_to_wavelength": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.laser_wl_nm": {"tf": 1}}, "df": 6}}}}}}}}, "w": {"docs": {"ramanchada2.io.simulated.lines_from_raw_dat": {"tf": 1}, "ramanchada2.io.simulated.lines_from_raw_dat.lines_from_raw_dat": {"tf": 1.4142135623730951}}, "df": 2}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.io.HSDS.read_cha": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_4byte_datablock": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_bytestring": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs_meta": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.read_JCAMP": {"tf": 1}, "ramanchada2.io.experimental.read_csv": {"tf": 1}, "ramanchada2.io.experimental.read_csv.read_csv": {"tf": 1.4142135623730951}, "ramanchada2.io.experimental.read_txt": {"tf": 1}, "ramanchada2.io.experimental.read_txt.read_txt": {"tf": 1.4142135623730951}, "ramanchada2.io.simulated.read_simulated_lines": {"tf": 1}, "ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1.4142135623730951}}, "df": 12, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.io.experimental.rc1_parser.binary_readers": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_4byte_datablock": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_bytestring": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs_meta": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.third_party_readers": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readWDF": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readSPC": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readOPUS": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.logger": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.read_JCAMP": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.readTXT": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.dataFromTxtLines": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.isDataLine": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.startStop": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.getYDataType": {"tf": 1}}, "df": 18}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1}}, "df": 1}, "c": {"docs": {"ramanchada2.io.experimental.rc1_parser.third_party_readers.readSPC": {"tf": 1}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "f": {"docs": {"ramanchada2.io.experimental.rc1_parser.third_party_readers.readWDF": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.io.experimental.rc1_parser.third_party_readers.readOPUS": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.io.experimental.rc1_parser.txt_format_readers.readTXT": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.fit_res": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.types.fit_peaks_result": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.valuesdict": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.locations": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.centers": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.fwhm": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.boundaries": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.center_amplitude": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.centers_err": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.fwhms": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.amplitudes": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.dumps": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.loads": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe_peaks": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_csv": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.gen_fake_spectrum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.result": {"tf": 1}}, "df": 18}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.response_function": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.reset_origin": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.spectrum.filters.resampling": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}}, "df": 5}}}, "e": {"docs": {"ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}}, "df": 8}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.repr": {"tf": 1}}, "df": 1}}, "f": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.ref": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.ref_units": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.ref": {"tf": 1}}, "df": 3}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}}, "df": 2}}}}}}, "c": {"1": {"docs": {"ramanchada2.io.experimental.rc1_parser": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_4byte_datablock": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_bytestring": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs_meta": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.io": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.io.UnsupportedFileTypeError": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.io.parse": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.io.cleanMeta": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.third_party_readers": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readWDF": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readSPC": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readOPUS": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.logger": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.read_JCAMP": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.readTXT": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.dataFromTxtLines": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.isDataLine": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.startStop": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.getYDataType": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.baseline_als": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.baseline_snip": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_als": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_snip": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_als": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_snip": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}}, "df": 32}, "docs": {}, "df": 0}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "f": {"docs": {"ramanchada2.io.experimental.rruf_format": {"tf": 1}, "ramanchada2.io.experimental.rruf_format.rruf_format": {"tf": 1.4142135623730951}}, "df": 2}}}, "s": {"docs": {"ramanchada2.misc.constants.PST_RS_dict": {"tf": 1}, "ramanchada2.misc.constants.polystyrene_rs": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 7}, "w": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.rwhm": {"tf": 1}}, "df": 1, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.rwhms": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.root": {"tf": 1}}, "df": 4}}}, "b": {"docs": {}, "df": 0, "f": {"docs": {"ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}}, "df": 2}}}, "a": {"docs": {"ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.a": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.a": {"tf": 1}}, "df": 2, "u": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.auxiliary": {"tf": 1}, "ramanchada2.auxiliary.spectra": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2.loc": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2.filtered_df": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2.get_filters": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2.get_filenames": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2.prepend_prefix": {"tf": 1}, "ramanchada2.auxiliary.spectra.simulated": {"tf": 1}, "ramanchada2.auxiliary.spectra.simulated.loc": {"tf": 1}, "ramanchada2.auxiliary.spectra.simulated.FILES": {"tf": 1}}, "df": 13}}}}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.misc.exceptions.ApplicationException": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.proc": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.args": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.kwargs": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.is_constructor": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.check_proc": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_config": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.append": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.extend_left": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.pop": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.clear": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.assign": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.repr": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.cache_path": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.to_list": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.applied_processings_dict": {"tf": 1}}, "df": 21}}}, "y": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.apply_calibration_x": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.apply_creator": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.apply_processing": {"tf": 1}}, "df": 3}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.append": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.__init__": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.set_proc": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_filter.add_spectrum_filter": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_method.add_spectrum_method": {"tf": 1}, "ramanchada2.spectrum.arithmetics.add": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.generate_baseline": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.generate_add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 20, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added": {"tf": 1}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1.4142135623730951}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"tf": 1.4142135623730951}}, "df": 3}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.pos_amp_fwhm": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.pos_amp_fwhm": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.pos_amp_fwhm": {"tf": 1}}, "df": 3, "l": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.center_amplitude": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.amplitude": {"tf": 1}}, "df": 2, "s": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.amplitudes": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.amplitudes": {"tf": 1}}, "df": 2}}}}}}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.args": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"2": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.misc.utils.argmin2d": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.argmin2d": {"tf": 1.4142135623730951}, "ramanchada2.misc.utils.argmin2d.find_closest_pairs_idx": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.find_closest_pairs": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.align_shift": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.match_peaks": {"tf": 1}}, "df": 7}}, "docs": {}, "df": 0}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.spectrum.arithmetics": {"tf": 1}, "ramanchada2.spectrum.arithmetics.add": {"tf": 1}, "ramanchada2.spectrum.arithmetics.mul": {"tf": 1}, "ramanchada2.spectrum.arithmetics.sub": {"tf": 1}, "ramanchada2.spectrum.arithmetics.truediv": {"tf": 1}}, "df": 5}}}}}}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.assign": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.get_all_keys": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.misc.utils.argmin2d.align": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.align_shift": {"tf": 1}}, "df": 2}}}, "s": {"docs": {"ramanchada2.spectrum.baseline.baseline_rc1.baseline_als": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_als": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_als": {"tf": 1}}, "df": 3}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}}, "df": 12}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectral_components.baseline.analytical": {"tf": 1}}, "df": 1}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.filters.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1}}, "df": 5}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.peaks.fit_peaks.available_models": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.available_models_type": {"tf": 1}}, "df": 2}}}}}}}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.spectrum.filters.trim_axes": {"tf": 1}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.spe": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.spe_units": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.spe_pos_dict": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.spe": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.spe_distribution": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1}}, "df": 10, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.auxiliary.spectra": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2.loc": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2.filtered_df": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2.get_filters": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2.get_filenames": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2.prepend_prefix": {"tf": 1}, "ramanchada2.auxiliary.spectra.simulated": {"tf": 1}, "ramanchada2.auxiliary.spectra.simulated.loc": {"tf": 1}, "ramanchada2.auxiliary.spectra.simulated.FILES": {"tf": 1}}, "df": 12, "l": {"docs": {"ramanchada2.spectral_components": {"tf": 1}, "ramanchada2.spectral_components.baseline": {"tf": 1}, "ramanchada2.spectral_components.baseline.analytical": {"tf": 1}, "ramanchada2.spectral_components.baseline.baseline_base": {"tf": 1}, "ramanchada2.spectral_components.baseline.baseline_base.BaseLineBase": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical.__init__": {"tf": 1}, "ramanchada2.spectral_components.peak_profile": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.__init__": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.a": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.x0": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.delta": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.pos_amp_fwhm": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.limit_3sigma": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.__init__": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.a": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.x0": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.w": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.delta": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.pos_amp_fwhm": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.limit_3sigma": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.voigt": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.voigt.VoigtPeak": {"tf": 1}, "ramanchada2.spectral_components.spectral_component": {"tf": 1.4142135623730951}, "ramanchada2.spectral_components.spectral_component.SpectralComponent": {"tf": 1.4142135623730951}, "ramanchada2.spectral_components.spectral_component_collection": {"tf": 1.4142135623730951}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection": {"tf": 1.4142135623730951}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.__init__": {"tf": 1.4142135623730951}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.kwargs": {"tf": 1.4142135623730951}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.reset_origin": {"tf": 1.4142135623730951}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.get_deltas": {"tf": 1.4142135623730951}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.get_curve": {"tf": 1.4142135623730951}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.limit_3sigma": {"tf": 1.4142135623730951}, "ramanchada2.spectral_components.spectral_peak": {"tf": 1.4142135623730951}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak": {"tf": 1.4142135623730951}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.delta": {"tf": 1.4142135623730951}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.limit_3sigma": {"tf": 1.4142135623730951}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.pos_amp_fwhm": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}}, "df": 46, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectral_components.spectral_component.SpectralComponent": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.__init__": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.kwargs": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.reset_origin": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.get_deltas": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.get_curve": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.limit_3sigma": {"tf": 1}}, "df": 7}}}}}}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {"ramanchada2.spectral_components.spectral_peak.SpectralPeak": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.delta": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.limit_3sigma": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.pos_amp_fwhm": {"tf": 1}}, "df": 4}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2.misc.spectrum_deco": {"tf": 1}, "ramanchada2.misc.spectrum_deco.dynamically_added": {"tf": 1}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_constructor": {"tf": 1.4142135623730951}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor": {"tf": 1.7320508075688772}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.__init__": {"tf": 1.7320508075688772}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.set_proc": {"tf": 1.7320508075688772}, "ramanchada2.misc.spectrum_deco.spectrum_filter": {"tf": 1.4142135623730951}, "ramanchada2.misc.spectrum_deco.spectrum_filter.logger": {"tf": 1.4142135623730951}, "ramanchada2.misc.spectrum_deco.spectrum_filter.add_spectrum_filter": {"tf": 1.7320508075688772}, "ramanchada2.misc.spectrum_deco.spectrum_method": {"tf": 1.4142135623730951}, "ramanchada2.misc.spectrum_deco.spectrum_method.add_spectrum_method": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.gen_fake_spectrum": {"tf": 1}, "ramanchada2.misc.types.spectrum": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.proc": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.args": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.kwargs": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.is_constructor": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.check_proc": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_config": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.append": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.extend_left": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.pop": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.clear": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.assign": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.repr": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.cache_path": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.to_list": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldTyping": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.pre_validate": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.serialize": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.serialize": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.get_all_keys": {"tf": 1}, "ramanchada2.spectrum": {"tf": 1}, "ramanchada2.spectrum.arithmetics": {"tf": 1}, "ramanchada2.spectrum.arithmetics.add": {"tf": 1}, "ramanchada2.spectrum.arithmetics.mul": {"tf": 1}, "ramanchada2.spectrum.arithmetics.sub": {"tf": 1}, "ramanchada2.spectrum.arithmetics.truediv": {"tf": 1}, "ramanchada2.spectrum.baseline": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.generate_baseline": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.baseline_als": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.baseline_snip": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_als": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_snip": {"tf": 1}, "ramanchada2.spectrum.baseline.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.baseline.moving_minimum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.baseline.moving_minimum.subtract_moving_minimum": {"tf": 1}, "ramanchada2.spectrum.calc": {"tf": 1}, "ramanchada2.spectrum.calc.central_moments": {"tf": 1}, "ramanchada2.spectrum.calc.central_moments.central_moments": {"tf": 1}, "ramanchada2.spectrum.calibration": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.__init__": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.params": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.minx": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.maxx": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.model": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.fit": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.normalize": {"tf": 1}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_yaxis": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.creators": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.logger": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.creators.from_chada": {"tf": 1}, "ramanchada2.spectrum.creators.from_chada.from_chada": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.creators.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.creators.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.filters": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.generate_add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.filters.convolve": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.filters.resampling": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.filters.trim_axes": {"tf": 1}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1}, "ramanchada2.spectrum.peaks": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.peak_boundaries": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.logger": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.available_models": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.available_models_type": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.logger": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.logger": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.__init__": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.applied_processings_dict": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.write_csv": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.write_cha": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.write_nexus": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.write_cache": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.process": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.apply_creator": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.apply_processing": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.x": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.x_bin_boundaries": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.y": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_MAD": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol_DL": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.x_err": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.y_err": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.meta": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.result": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.spe_distribution": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.gen_samples": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_als": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_snip": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.moving_minimum": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_minimum": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.central_moments": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_filter": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.from_chada": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1.7320508075688772}}, "df": 247}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.proc": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.args": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.kwargs": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.is_constructor": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.check_proc": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_config": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields": {"tf": 1}}, "df": 9}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.append": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.extend_left": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.pop": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.clear": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.assign": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.repr": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.cache_path": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.to_list": {"tf": 1}}, "df": 10}}}}}}}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldTyping": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.pre_validate": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.serialize": {"tf": 1}}, "df": 4}}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.serialize": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.get_all_keys": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}}, "df": 2, "s": {"docs": {"ramanchada2.spectrum.filters.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}}, "df": 8}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.auxiliary.spectra.simulated": {"tf": 1}, "ramanchada2.auxiliary.spectra.simulated.loc": {"tf": 1}, "ramanchada2.auxiliary.spectra.simulated.FILES": {"tf": 1}, "ramanchada2.io.simulated": {"tf": 1}, "ramanchada2.io.simulated.crystal": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_dat": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_dat.lines_from_crystal_dat": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_out": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_out.lines_from_crystal_out": {"tf": 1}, "ramanchada2.io.simulated.lines_from_raw_dat": {"tf": 1}, "ramanchada2.io.simulated.lines_from_raw_dat.lines_from_raw_dat": {"tf": 1}, "ramanchada2.io.simulated.read_simulated_lines": {"tf": 1.4142135623730951}, "ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1.7320508075688772}, "ramanchada2.io.simulated.vasp": {"tf": 1}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat": {"tf": 1}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"tf": 1}}, "df": 16}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.io.simulated.vasp.vasp_simulation_dat": {"tf": 1}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 5}}}}}}}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.sigma": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.sigma": {"tf": 1}}, "df": 2, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.sigmas": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"ramanchada2.io.experimental.rc1_parser.txt_format_readers.startStop": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {"ramanchada2.misc.base_class.BaseClass.origin_list_str": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.set_proc": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.set_model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.set_laser_wavelength": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}}, "df": 6}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.serialize": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.serialize": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.serialize": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.serialize": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel.serialize": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.serialize": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.serialize": {"tf": 1}}, "df": 7}}}}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.skew": {"tf": 1}}, "df": 1, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.skews": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.base_slope": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.utils.argmin2d.align_shift": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.zero_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.raman_shift": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}}, "df": 15}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.filters.sharpen_lines": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}}, "df": 6}}}}}}}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.misc.utils.svd": {"tf": 1}, "ramanchada2.misc.utils.svd.svd_solve": {"tf": 1.4142135623730951}, "ramanchada2.misc.utils.svd.svd_inverse": {"tf": 1.4142135623730951}}, "df": 3}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.utils.svd.svd_solve": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.sample": {"tf": 1}}, "df": 1, "s": {"docs": {"ramanchada2.spectrum.spectrum.Spectrum.gen_samples": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent.safe_divide": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_mask": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_factor": {"tf": 1}}, "df": 3}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.save": {"tf": 1}}, "df": 1}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol_DL": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol": {"tf": 1}}, "df": 2}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {"ramanchada2.spectrum.arithmetics.sub": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_als": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_snip": {"tf": 1}, "ramanchada2.spectrum.baseline.moving_minimum.subtract_moving_minimum": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_als": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_snip": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1}}, "df": 8}}}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {"ramanchada2.spectrum.baseline.baseline_rc1.baseline_snip": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_snip": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_snip": {"tf": 1}}, "df": 3}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.calibration.scale_xaxis": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_yaxis": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}}, "df": 8}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.spectrum.filters.smoothing": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}}, "df": 3}}}}}}}}}, "d": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.io.simulated.crystal.discrete_lines_dat": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_dat.lines_from_crystal_dat": {"tf": 1.4142135623730951}, "ramanchada2.io.simulated.lines_from_raw_dat": {"tf": 1}, "ramanchada2.io.simulated.lines_from_raw_dat.lines_from_raw_dat": {"tf": 1.4142135623730951}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat": {"tf": 1}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"tf": 1.4142135623730951}}, "df": 6, "a": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.io.HSDS.filter_dataset": {"tf": 1}}, "df": 1, "s": {"2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2.loc": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2.filtered_df": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2.get_filters": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2.get_filenames": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2.prepend_prefix": {"tf": 1}}, "df": 8}, "docs": {}, "df": 0}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.io.HSDS.DatasetExistsError": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"ramanchada2.io.experimental.rc1_parser.binary_readers.read_4byte_datablock": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.io.experimental.rc1_parser.txt_format_readers.dataFromTxtLines": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe_peaks": {"tf": 1}}, "df": 2}}}}}}}}, "f": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2.filtered_df": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.io.HSDS.visit_domain": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.io.simulated.crystal.discrete_lines_dat": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_dat.lines_from_crystal_dat": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_out": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_out.lines_from_crystal_out": {"tf": 1}}, "df": 4}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.spectrum.Spectrum.spe_distribution": {"tf": 1}}, "df": 1}}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.constants.PST_RS_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1_dict": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.spe_pos_dict": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.from_dict": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.to_dict": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.applied_processings_dict": {"tf": 1}}, "df": 18}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent.safe_divide": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {"ramanchada2.misc.spectrum_deco": {"tf": 1}, "ramanchada2.misc.spectrum_deco.dynamically_added": {"tf": 1}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_constructor": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.__init__": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.set_proc": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_filter": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_filter.logger": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_filter.add_spectrum_filter": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_method": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_method.add_spectrum_method": {"tf": 1}}, "df": 13}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 1}}, "df": 7}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}}, "df": 2}}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.description": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.spectral_components.peak_profile.delta": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.__init__": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.a": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.x0": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.delta": {"tf": 1.4142135623730951}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.pos_amp_fwhm": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.limit_3sigma": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.delta": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.delta": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}}, "df": 13, "s": {"docs": {"ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.get_deltas": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.__init__": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.params": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.minx": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.maxx": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.model": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.fit": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_filter": {"tf": 1}}, "df": 15, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {"ramanchada2.spectral_components.peak_profile.delta.DeltasPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.__init__": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.a": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.x0": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.delta": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.pos_amp_fwhm": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.limit_3sigma": {"tf": 1}}, "df": 7}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.__init__": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.params": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.minx": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.maxx": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.model": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.fit": {"tf": 1}}, "df": 7}}}}}}}}}}}}, "y": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added": {"tf": 1}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1.4142135623730951}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.dumps": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectrum.filters.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.generate_add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {"ramanchada2.spectrum.filters.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}}, "df": 6}}}, "l": {"docs": {"ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol_DL": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.loc": {"tf": 1}, "ramanchada2.auxiliary.spectra.simulated.loc": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.locations": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {"ramanchada2.spectrum.creators.from_local_file": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 3}}}, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.io.HSDS.logger": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.logger": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_filter.logger": {"tf": 1}, "ramanchada2.protocols.calibration.logger": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.logger": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.logger": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.logger": {"tf": 1}, "ramanchada2.spectrum.spectrum.logger": {"tf": 1}}, "df": 8}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.load": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.load_certificates": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.load": {"tf": 1}}, "df": 3, "s": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.loads": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.io.simulated.crystal.discrete_lines_dat": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_dat.lines_from_crystal_dat": {"tf": 1.4142135623730951}, "ramanchada2.io.simulated.crystal.discrete_lines_out": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_out.lines_from_crystal_out": {"tf": 1.4142135623730951}, "ramanchada2.io.simulated.lines_from_raw_dat": {"tf": 1}, "ramanchada2.io.simulated.lines_from_raw_dat.lines_from_raw_dat": {"tf": 1.4142135623730951}, "ramanchada2.io.simulated.read_simulated_lines": {"tf": 1}, "ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1.4142135623730951}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}, "ramanchada2.theoretical_lines": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.model_from_lines": {"tf": 1.7320508075688772}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.position": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.inensity": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.sigma": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.name": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_config": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_computed_fields": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.model_from_list": {"tf": 1.4142135623730951}}, "df": 32}, "a": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}}, "df": 4}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.base_class.BaseClass.origin_list_str": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.to_list": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.model_from_list": {"tf": 1}}, "df": 3, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.root": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.serialize": {"tf": 1}}, "df": 5}}}}}}}}}}}}}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.limit_3sigma": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.limit_3sigma": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.limit_3sigma": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.limit_3sigma": {"tf": 1}}, "df": 4}}}}, "w": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.lwhm": {"tf": 1}}, "df": 1, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.lwhms": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.extend_left": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.utils.ramanshift_to_wavelength.laser_wl_nm": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.laser_wl": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.get_laser_wl": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.laser_wl": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.set_laser_wavelength": {"tf": 1}}, "df": 5}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.LazerZeroingComponent": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.profile": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.zero_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.process": {"tf": 1}}, "df": 6}}}}}}}}}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.io.HSDS.filter_dataset": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_filter": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_filter.logger": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_filter.add_spectrum_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1}}, "df": 18, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.filtered_df": {"tf": 1}}, "df": 1}}, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.get_filters": {"tf": 1}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}, "ramanchada2.spectrum.filters": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.generate_add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.filters.convolve": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.filters.resampling": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.filters.trim_axes": {"tf": 1}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1}}, "df": 38}}}}, "e": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.from_file": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 4, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.get_filenames": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"ramanchada2.auxiliary.spectra.simulated.FILES": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"ramanchada2.misc.types.fit_peaks_result": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.valuesdict": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.locations": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.centers": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.fwhm": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.boundaries": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.center_amplitude": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.centers_err": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.fwhms": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.amplitudes": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.dumps": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.loads": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe_peaks": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_csv": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.gen_fake_spectrum": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.fit_res": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.fit": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.logger": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.available_models": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.available_models_type": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1}}, "df": 30, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.valuesdict": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.locations": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.centers": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.fwhm": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.boundaries": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.center_amplitude": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.centers_err": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.fwhms": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.amplitudes": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.dumps": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.loads": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe_peaks": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_csv": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.gen_fake_spectrum": {"tf": 1}}, "df": 16}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"2": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "f": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.fitres2df": {"tf": 1}}, "df": 1}}}, "docs": {}, "df": 0}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.spectrum.peaks.get_fitted_peaks": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.logger": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_computed_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_computed_fields": {"tf": 1}}, "df": 12}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.misc.utils.argmin2d.find_closest_pairs_idx": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.find_closest_pairs": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.peak_boundaries": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1}}, "df": 10}, "e": {"docs": {"ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.io.experimental.bw_format": {"tf": 1}, "ramanchada2.io.experimental.bw_format.bw_format": {"tf": 1.4142135623730951}, "ramanchada2.io.experimental.neegala_format": {"tf": 1}, "ramanchada2.io.experimental.neegala_format.neegala_format": {"tf": 1.4142135623730951}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.logger": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.read_JCAMP": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.readTXT": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.dataFromTxtLines": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.isDataLine": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.startStop": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.getYDataType": {"tf": 1}, "ramanchada2.io.experimental.rruf_format": {"tf": 1}, "ramanchada2.io.experimental.rruf_format.rruf_format": {"tf": 1.4142135623730951}}, "df": 14}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2.io.simulated.crystal.discrete_lines_dat.lines_from_crystal_dat": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_out.lines_from_crystal_out": {"tf": 1}, "ramanchada2.io.simulated.lines_from_raw_dat": {"tf": 1}, "ramanchada2.io.simulated.lines_from_raw_dat.lines_from_raw_dat": {"tf": 1.4142135623730951}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.from_file": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.from_dict": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.logger": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_chada": {"tf": 1}, "ramanchada2.spectrum.creators.from_chada.from_chada": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_local_file": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_simulation": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_chada": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.model_from_lines": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.position": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.inensity": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.sigma": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.name": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_config": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_computed_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.model_from_list": {"tf": 1.4142135623730951}}, "df": 47}}}, "w": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.pos_amp_fwhm": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.pos_amp_fwhm": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.pos_amp_fwhm": {"tf": 1}}, "df": 7, "s": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.fwhms": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.fwhms": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.gen_fake_spectrum": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent.safe_factor": {"tf": 1}}, "df": 1, "y": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.calibration_model_factory": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}}, "df": 2, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.response_function": {"tf": 1}}, "df": 1}}}}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.get_filters": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2.get_filenames": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.get_all_keys": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.get_laser_wl": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.get_certificates": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.get": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.get_deltas": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.get_curve": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.logger": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}}, "df": 17, "y": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.io.experimental.rc1_parser.txt_format_readers.getYDataType": {"tf": 1}}, "df": 1}}}}}}}}}}, "n": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.gen_fake_spectrum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.gen_samples": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.baseline.add_baseline.generate_baseline": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.generate_add_gaussian_noise_drift": {"tf": 1}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.spectral_components.peak_profile.gauss": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.__init__": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.a": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.x0": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.w": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.delta": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.pos_amp_fwhm": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.limit_3sigma": {"tf": 1}}, "df": 9, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {"ramanchada2.spectral_components.peak_profile.gauss.GaussPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.__init__": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.a": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.x0": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.w": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.delta": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.pos_amp_fwhm": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.limit_3sigma": {"tf": 1}}, "df": 8}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.filters.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.generate_add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 9}}}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.pre_validate": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.prepend_prefix": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.prepend_prefix": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.set_proc": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.proc": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.check_proc": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.process": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.process": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.spectrum.spectrum.Spectrum.apply_processing": {"tf": 1}}, "df": 1, "s": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.proc": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.args": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.kwargs": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.is_constructor": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.check_proc": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_config": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.append": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.extend_left": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.pop": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.clear": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.assign": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.repr": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.cache_path": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.to_list": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.applied_processings_dict": {"tf": 1}}, "df": 21}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.protocols.calibration.ProcessingModel": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.protocols": {"tf": 1}, "ramanchada2.protocols.calibration": {"tf": 1}, "ramanchada2.protocols.calibration.logger": {"tf": 1}, "ramanchada2.protocols.calibration.ProcessingModel": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.laser_wl": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.spe": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.spe_units": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.ref": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.ref_units": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.name": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.model_units": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.peaks": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.sample": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.enabled": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.fit_res": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.set_model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.convert_units": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.plot": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.fitres2df": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.spe_pos_dict": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.profile": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.zero_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.id": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.description": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.url": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.wavelength": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.params": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.equation": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.temperature_c": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.raman_shift": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.response_function": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.Y": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.load": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_config": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_computed_fields": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.load_certificates": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.get_laser_wl": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.get_certificates": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.get": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.load": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.laser_wl": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.spe": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.ref": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.name": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.model": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.model_units": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_divide": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_mask": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_factor": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.prominence_coeff": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.set_laser_wavelength": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.clear": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.save": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.from_file": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.apply_calibration_x": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.plot": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.calibration_model_factory": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.from_dict": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.to_dict": {"tf": 1}}, "df": 86}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.LazerZeroingComponent.profile": {"tf": 1}, "ramanchada2.spectral_components.peak_profile": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.__init__": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.a": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.x0": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.delta": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.pos_amp_fwhm": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.limit_3sigma": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.__init__": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.a": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.x0": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.w": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.delta": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.pos_amp_fwhm": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.limit_3sigma": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.voigt": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.voigt.VoigtPeak": {"tf": 1}}, "df": 21}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.prominence_coeff": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.io.experimental.rc1_parser.io.parse": {"tf": 1}}, "df": 1, "r": {"docs": {"ramanchada2.io.experimental.rc1_parser": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_4byte_datablock": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_bytestring": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs_meta": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.io": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.io.UnsupportedFileTypeError": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.io.parse": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.io.cleanMeta": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.third_party_readers": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readWDF": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readSPC": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readOPUS": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.logger": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.read_JCAMP": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.readTXT": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.dataFromTxtLines": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.isDataLine": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.startStop": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.getYDataType": {"tf": 1}}, "df": 23}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.io.experimental.rc1_parser.third_party_readers": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readWDF": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readSPC": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readOPUS": {"tf": 1}}, "df": 4}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_baseline": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_errorbar": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.params": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.params": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 1}}, "df": 5}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.cache_path": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.utils.argmin2d.find_closest_pairs_idx": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.find_closest_pairs": {"tf": 1}}, "df": 2}}}, "d": {"docs": {"ramanchada2.spectrum.filters.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1}}, "df": 3}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.constants.PST_RS_dict": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.constants.polystyrene_rs": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.spe_pos_dict": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.pos_amp_fwhm": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.pos_amp_fwhm": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.pos_amp_fwhm": {"tf": 1}}, "df": 8, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.position": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.position": {"tf": 1}}, "df": 2, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.positions": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}}, "df": 3}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.positive_not_multiple": {"tf": 1}, "ramanchada2.misc.types.positive_not_multiple.PositiveOddInt": {"tf": 1}}, "df": 2, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.types.positive_not_multiple.PositiveOddInt": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "p": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.pop": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.filters.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}}, "df": 3}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.plottable.Plottable.plot": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_baseline": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_errorbar": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.plot": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.plot": {"tf": 1}}, "df": 5, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.plottable": {"tf": 1}, "ramanchada2.misc.plottable.Plottable": {"tf": 1.4142135623730951}, "ramanchada2.misc.plottable.Plottable.plot": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {"ramanchada2.misc.types.peak_candidates": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.amplitude": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.position": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.sigma": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.skew": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.lwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.rwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.serialize": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.peaks": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.base_slope": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.base_intercept": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.boundaries": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_baseline": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_errorbar": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.positions": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.sigmas": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.fwhms": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.lwhms": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.rwhms": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.skews": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.amplitudes": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.bases": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.peak_bases": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.serialize": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.root": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.serialize": {"tf": 1}, "ramanchada2.spectral_components.peak_profile": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.__init__": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.a": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.x0": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.delta": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.pos_amp_fwhm": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.limit_3sigma": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.__init__": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.a": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.x0": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.w": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.delta": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.pos_amp_fwhm": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.limit_3sigma": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.voigt": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.voigt.VoigtPeak": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.delta": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.limit_3sigma": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.pos_amp_fwhm": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.peak_boundaries": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1}}, "df": 74, "s": {"docs": {"ramanchada2.misc.types.fit_peaks_result": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.valuesdict": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.locations": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.centers": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.fwhm": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.boundaries": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.center_amplitude": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.centers_err": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.fwhms": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.amplitudes": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.dumps": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.loads": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe_peaks": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_csv": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.gen_fake_spectrum": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.peaks": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.match_peaks": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.peaks": {"tf": 1}, "ramanchada2.spectrum.peaks": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks.peak_boundaries": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.fit_peaks": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.fit_peaks.logger": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.fit_peaks.available_models": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.fit_peaks.available_models_type": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.peaks.get_fitted_peaks": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.get_fitted_peaks.logger": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1}}, "df": 38}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.amplitude": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.position": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.sigma": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.skew": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.lwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.rwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.serialize": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_computed_fields": {"tf": 1}}, "df": 12}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.peaks": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.base_slope": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.base_intercept": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.boundaries": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_baseline": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_errorbar": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.positions": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.sigmas": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.fwhms": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.lwhms": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.rwhms": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.skews": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.amplitudes": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.bases": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.peak_bases": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.serialize": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_computed_fields": {"tf": 1}}, "df": 22}}}}}}}}}}}}}}}}}}}}}}, "y": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2.misc.types.pydantic_base_model": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_config": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.serialize": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel.serialize": {"tf": 1}}, "df": 8}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_config": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.serialize": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_computed_fields": {"tf": 1}}, "df": 5}}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel.serialize": {"tf": 1}}, "df": 2}}}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.position": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.inensity": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.sigma": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.name": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_config": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_computed_fields": {"tf": 1}}, "df": 9}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {"ramanchada2.io": {"tf": 1}, "ramanchada2.io.HSDS": {"tf": 1}, "ramanchada2.io.HSDS.logger": {"tf": 1}, "ramanchada2.io.HSDS.write_nexus": {"tf": 1}, "ramanchada2.io.HSDS.DatasetExistsError": {"tf": 1}, "ramanchada2.io.HSDS.write_cha": {"tf": 1}, "ramanchada2.io.HSDS.read_cha": {"tf": 1}, "ramanchada2.io.HSDS.filter_dataset": {"tf": 1}, "ramanchada2.io.HSDS.visit_domain": {"tf": 1}, "ramanchada2.io.experimental": {"tf": 1}, "ramanchada2.io.experimental.bw_format": {"tf": 1}, "ramanchada2.io.experimental.bw_format.bw_format": {"tf": 1}, "ramanchada2.io.experimental.neegala_format": {"tf": 1}, "ramanchada2.io.experimental.neegala_format.neegala_format": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_4byte_datablock": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_bytestring": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs_meta": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.io": {"tf": 1.4142135623730951}, "ramanchada2.io.experimental.rc1_parser.io.UnsupportedFileTypeError": {"tf": 1.4142135623730951}, "ramanchada2.io.experimental.rc1_parser.io.parse": {"tf": 1.4142135623730951}, "ramanchada2.io.experimental.rc1_parser.io.cleanMeta": {"tf": 1.4142135623730951}, "ramanchada2.io.experimental.rc1_parser.third_party_readers": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readWDF": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readSPC": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readOPUS": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.logger": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.read_JCAMP": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.readTXT": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.dataFromTxtLines": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.isDataLine": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.startStop": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.getYDataType": {"tf": 1}, "ramanchada2.io.experimental.read_csv": {"tf": 1}, "ramanchada2.io.experimental.read_csv.read_csv": {"tf": 1}, "ramanchada2.io.experimental.read_txt": {"tf": 1}, "ramanchada2.io.experimental.read_txt.read_txt": {"tf": 1}, "ramanchada2.io.experimental.rruf_format": {"tf": 1}, "ramanchada2.io.experimental.rruf_format.rruf_format": {"tf": 1}, "ramanchada2.io.output": {"tf": 1}, "ramanchada2.io.output.write_csv": {"tf": 1}, "ramanchada2.io.output.write_csv.write_csv": {"tf": 1}, "ramanchada2.io.simulated": {"tf": 1}, "ramanchada2.io.simulated.crystal": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_dat": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_dat.lines_from_crystal_dat": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_out": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_out.lines_from_crystal_out": {"tf": 1}, "ramanchada2.io.simulated.lines_from_raw_dat": {"tf": 1}, "ramanchada2.io.simulated.lines_from_raw_dat.lines_from_raw_dat": {"tf": 1}, "ramanchada2.io.simulated.read_simulated_lines": {"tf": 1}, "ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1}, "ramanchada2.io.simulated.vasp": {"tf": 1}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat": {"tf": 1}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"tf": 1}}, "df": 59}, "s": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.is_constructor": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.io.experimental.rc1_parser.txt_format_readers.isDataLine": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.exceptions.InputParserError": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.__init__": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical.__init__": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.__init__": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.__init__": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.__init__": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.__init__": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.__init__": {"tf": 1}}, "df": 13}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.base_intercept": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.utils.svd.svd_inverse": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.inensity": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.id": {"tf": 1}}, "df": 1, "x": {"docs": {"ramanchada2.misc.utils.argmin2d.find_closest_pairs_idx": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.io.HSDS": {"tf": 1}, "ramanchada2.io.HSDS.logger": {"tf": 1}, "ramanchada2.io.HSDS.write_nexus": {"tf": 1}, "ramanchada2.io.HSDS.DatasetExistsError": {"tf": 1}, "ramanchada2.io.HSDS.write_cha": {"tf": 1}, "ramanchada2.io.HSDS.read_cha": {"tf": 1}, "ramanchada2.io.HSDS.filter_dataset": {"tf": 1}, "ramanchada2.io.HSDS.visit_domain": {"tf": 1}}, "df": 8}}}, "d": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.spectrum.creators.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 3}}, "h": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}}, "df": 4}}}, "w": {"docs": {"ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.w": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.io.HSDS.write_nexus": {"tf": 1}, "ramanchada2.io.HSDS.write_cha": {"tf": 1}, "ramanchada2.io.output.write_csv": {"tf": 1}, "ramanchada2.io.output.write_csv.write_csv": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.write_csv": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.write_cha": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.write_nexus": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.write_cache": {"tf": 1}}, "df": 8}}}}, "l": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.laser_wl_nm": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.laser_wl": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.get_laser_wl": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.laser_wl": {"tf": 1}}, "df": 13}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"ramanchada2.misc.utils.ramanshift_to_wavelength": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.laser_wl_nm": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.wavelength": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.set_laser_wavelength": {"tf": 1}}, "df": 8}}}}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.io.HSDS.write_nexus": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.write_nexus": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.io.experimental.neegala_format": {"tf": 1}, "ramanchada2.io.experimental.neegala_format.neegala_format": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 14}}, "w": {"docs": {"ramanchada2.spectrum.calibration.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}}, "df": 3}}, "g": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs_meta": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 7}}}, "m": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.laser_wl_nm": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.zero_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}}, "df": 15}, "o": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.types.positive_not_multiple": {"tf": 1}, "ramanchada2.misc.types.positive_not_multiple.PositiveOddInt": {"tf": 1}}, "df": 2}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.calibration.normalize": {"tf": 1}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.filters.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.generate_add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_MAD": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol_DL": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 14}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.name": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.name": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.name": {"tf": 1}}, "df": 3}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectral_components.baseline.numerical": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical.__init__": {"tf": 1}}, "df": 3}}}}}}}, "d": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}}, "df": 4}}}}}, "c": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.temperature_c": {"tf": 1}}, "df": 1, "h": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.io.HSDS.write_cha": {"tf": 1}, "ramanchada2.io.HSDS.read_cha": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.write_cha": {"tf": 1}}, "df": 3, "d": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.spectrum.creators.from_chada": {"tf": 1}, "ramanchada2.spectrum.creators.from_chada.from_chada": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_chada": {"tf": 1}}, "df": 3, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.exceptions.ChadaReadNotFoundError": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.calibration.change_x_units": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}}, "df": 5}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.check_proc": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.io.experimental.rc1_parser.io.cleanMeta": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.clear": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.clear": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.base_class": {"tf": 1}, "ramanchada2.misc.base_class.BaseClass": {"tf": 1}, "ramanchada2.misc.base_class.BaseClass.origin": {"tf": 1}, "ramanchada2.misc.base_class.BaseClass.origin_list_str": {"tf": 1}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.utils.argmin2d.find_closest_pairs_idx": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.find_closest_pairs": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"ramanchada2.io.experimental.read_csv": {"tf": 1}, "ramanchada2.io.experimental.read_csv.read_csv": {"tf": 1.4142135623730951}, "ramanchada2.io.output.write_csv": {"tf": 1}, "ramanchada2.io.output.write_csv.write_csv": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_csv": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.write_csv": {"tf": 1}}, "df": 6}}, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.io.simulated.crystal": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_dat": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_dat.lines_from_crystal_dat": {"tf": 1.4142135623730951}, "ramanchada2.io.simulated.crystal.discrete_lines_out": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_out.lines_from_crystal_out": {"tf": 1.4142135623730951}}, "df": 5}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.spectrum.spectrum.Spectrum.apply_creator": {"tf": 1}}, "df": 1, "s": {"docs": {"ramanchada2.spectrum.creators": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.logger": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.creators.from_chada": {"tf": 1}, "ramanchada2.spectrum.creators.from_chada.from_chada": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.creators.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.creators.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}}, "df": 20}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.constants": {"tf": 1}, "ramanchada2.misc.constants.PST_RS_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.polystyrene_rs": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 17}}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.spectrum_deco.spectrum_constructor": {"tf": null}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor": {"tf": null}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.__init__": {"tf": null}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.set_proc": {"tf": null}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.is_constructor": {"tf": null}}, "df": 5, "s": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_config": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_config": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_config": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_config": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_config": {"tf": 1}}, "df": 6}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.convert_units": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.filters.convolve": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1}}, "df": 5}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_computed_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_computed_fields": {"tf": 1}}, "df": 6}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectral_components.spectral_component": {"tf": 1}, "ramanchada2.spectral_components.spectral_component.SpectralComponent": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.__init__": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.kwargs": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.reset_origin": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.get_deltas": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.get_curve": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.limit_3sigma": {"tf": 1}, "ramanchada2.spectrum.creators.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}}, "df": 13, "s": {"docs": {"ramanchada2.spectral_components": {"tf": 1}, "ramanchada2.spectral_components.baseline": {"tf": 1}, "ramanchada2.spectral_components.baseline.analytical": {"tf": 1}, "ramanchada2.spectral_components.baseline.baseline_base": {"tf": 1}, "ramanchada2.spectral_components.baseline.baseline_base.BaseLineBase": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical.__init__": {"tf": 1}, "ramanchada2.spectral_components.peak_profile": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.__init__": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.a": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.x0": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.delta": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.pos_amp_fwhm": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.limit_3sigma": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.__init__": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.a": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.x0": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.w": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.delta": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.pos_amp_fwhm": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.limit_3sigma": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.voigt": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.voigt.VoigtPeak": {"tf": 1}, "ramanchada2.spectral_components.spectral_component": {"tf": 1}, "ramanchada2.spectral_components.spectral_component.SpectralComponent": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.__init__": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.kwargs": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.reset_origin": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.get_deltas": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.get_curve": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.limit_3sigma": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.delta": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.limit_3sigma": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.pos_amp_fwhm": {"tf": 1}}, "df": 43}}}}}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.prominence_coeff": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectral_components.spectral_component_collection": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.__init__": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.kwargs": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.reset_origin": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.get_deltas": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.get_curve": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.limit_3sigma": {"tf": 1}, "ramanchada2.spectrum.creators.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}}, "df": 11}}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.center_amplitude": {"tf": 1}}, "df": 1, "s": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.centers": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.centers_err": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectrum.calc.central_moments": {"tf": 1}, "ramanchada2.spectrum.calc.central_moments.central_moments": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.central_moments": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.protocols.calibration.CertificatesDict.load_certificates": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.get_certificates": {"tf": 1}}, "df": 2, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.CertificatesDict": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.load_certificates": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.get_laser_wl": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.get_certificates": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.get": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.load": {"tf": 1}}, "df": 6}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.peak_candidates": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.amplitude": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.position": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.sigma": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.skew": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.lwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.rwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.serialize": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.peaks": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.base_slope": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.base_intercept": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.boundaries": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_baseline": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_errorbar": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.positions": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.sigmas": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.fwhms": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.lwhms": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.rwhms": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.skews": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.amplitudes": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.bases": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.peak_bases": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.serialize": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.root": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.serialize": {"tf": 1}}, "df": 40}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.cache_path": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.logger": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.write_cache": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}}, "df": 6}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.protocols.calibration": {"tf": 1}, "ramanchada2.protocols.calibration.logger": {"tf": 1}, "ramanchada2.protocols.calibration.ProcessingModel": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.laser_wl": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.spe": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.spe_units": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.ref": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.ref_units": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.name": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.model_units": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.peaks": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.sample": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.enabled": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.fit_res": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.set_model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.convert_units": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.plot": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.fitres2df": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.spe_pos_dict": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.profile": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.zero_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.id": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.description": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.url": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.wavelength": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.params": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.equation": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.temperature_c": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.raman_shift": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.response_function": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.Y": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.load": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_config": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_computed_fields": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.load_certificates": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.get_laser_wl": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.get_certificates": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.get": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.load": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.laser_wl": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.spe": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.ref": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.name": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.model": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.model_units": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_divide": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_mask": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_factor": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.prominence_coeff": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.set_laser_wavelength": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.clear": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.save": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.from_file": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.apply_calibration_x": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.plot": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.calibration_model_factory": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.from_dict": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.to_dict": {"tf": 1}, "ramanchada2.spectrum.calibration": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.__init__": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.params": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.minx": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.maxx": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.model": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.fit": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.normalize": {"tf": 1}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_yaxis": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1}}, "df": 112, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.laser_wl": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.spe": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.spe_units": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.ref": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.ref_units": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.name": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.model_units": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.peaks": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.sample": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.enabled": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.fit_res": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.set_model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.convert_units": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.plot": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.fitres2df": {"tf": 1}}, "df": 20}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.prominence_coeff": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.set_laser_wavelength": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.clear": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.save": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.from_file": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.apply_calibration_x": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.plot": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.calibration_model_factory": {"tf": 1}}, "df": 13}}}}}}}}, "e": {"docs": {"ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_filter": {"tf": 1}}, "df": 4}}}}}}, "c": {"docs": {"ramanchada2.spectrum.calc": {"tf": 1}, "ramanchada2.spectrum.calc.central_moments": {"tf": 1}, "ramanchada2.spectrum.calc.central_moments.central_moments": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.logger": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}}, "df": 7}}}, "m": {"docs": {"ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.zero_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}}, "df": 13}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.get_curve": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.from_dict": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.to_dict": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.io.HSDS.visit_domain": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {"ramanchada2.io.simulated.vasp": {"tf": 1}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat": {"tf": 1.4142135623730951}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"tf": 1.7320508075688772}}, "df": 3}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.valuesdict": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.pre_validate": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectral_components.peak_profile.voigt": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.voigt.VoigtPeak": {"tf": 1}}, "df": 2, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {"ramanchada2.spectral_components.peak_profile.voigt.VoigtPeak": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.io.experimental": {"tf": 1}, "ramanchada2.io.experimental.bw_format": {"tf": 1}, "ramanchada2.io.experimental.bw_format.bw_format": {"tf": 1}, "ramanchada2.io.experimental.neegala_format": {"tf": 1}, "ramanchada2.io.experimental.neegala_format.neegala_format": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_4byte_datablock": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_bytestring": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs_meta": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.io": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.io.UnsupportedFileTypeError": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.io.parse": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.io.cleanMeta": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.third_party_readers": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readWDF": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readSPC": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readOPUS": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.logger": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.read_JCAMP": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.readTXT": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.dataFromTxtLines": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.isDataLine": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.startStop": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.getYDataType": {"tf": 1}, "ramanchada2.io.experimental.read_csv": {"tf": 1}, "ramanchada2.io.experimental.read_csv.read_csv": {"tf": 1}, "ramanchada2.io.experimental.read_txt": {"tf": 1}, "ramanchada2.io.experimental.read_txt.read_txt": {"tf": 1}, "ramanchada2.io.experimental.rruf_format": {"tf": 1}, "ramanchada2.io.experimental.rruf_format.rruf_format": {"tf": 1}}, "df": 34}}}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.creators.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 3}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.exceptions": {"tf": 1}, "ramanchada2.misc.exceptions.ApplicationException": {"tf": 1}, "ramanchada2.misc.exceptions.InputParserError": {"tf": 1}, "ramanchada2.misc.exceptions.ChadaReadNotFoundError": {"tf": 1}}, "df": 4}}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.extend_left": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.centers_err": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.x_err": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_err": {"tf": 1}}, "df": 3, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_errorbar": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.enabled": {"tf": 1}}, "df": 1}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.equation": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "w": {"docs": {"ramanchada2.io.experimental.bw_format": {"tf": 1}, "ramanchada2.io.experimental.bw_format.bw_format": {"tf": 1.4142135623730951}}, "df": 2}, "i": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.spectrum.Spectrum.x_bin_boundaries": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.io.experimental.rc1_parser.binary_readers": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_4byte_datablock": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_bytestring": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs_meta": {"tf": 1}}, "df": 6}}}}}, "y": {"docs": {"ramanchada2.spectrum.calibration.by_deltas": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.__init__": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.params": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.minx": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.maxx": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.model": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.fit": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_filter": {"tf": 1}}, "df": 14, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.io.experimental.rc1_parser.binary_readers.read_bytestring": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.base_class": {"tf": 1}, "ramanchada2.misc.base_class.BaseClass": {"tf": 1}, "ramanchada2.misc.base_class.BaseClass.origin": {"tf": 1}, "ramanchada2.misc.base_class.BaseClass.origin_list_str": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.base_slope": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.base_intercept": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_config": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.serialize": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel.serialize": {"tf": 1}, "ramanchada2.spectral_components.baseline.baseline_base": {"tf": 1}, "ramanchada2.spectral_components.baseline.baseline_base.BaseLineBase": {"tf": 1}}, "df": 16, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.base_class.BaseClass": {"tf": 1}, "ramanchada2.misc.base_class.BaseClass.origin": {"tf": 1}, "ramanchada2.misc.base_class.BaseClass.origin_list_str": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_baseline": {"tf": 1}, "ramanchada2.spectral_components.baseline": {"tf": 1}, "ramanchada2.spectral_components.baseline.analytical": {"tf": 1}, "ramanchada2.spectral_components.baseline.baseline_base": {"tf": 1.4142135623730951}, "ramanchada2.spectral_components.baseline.baseline_base.BaseLineBase": {"tf": 1.4142135623730951}, "ramanchada2.spectral_components.baseline.numerical": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical.__init__": {"tf": 1}, "ramanchada2.spectrum.baseline": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.add_baseline.generate_baseline": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.baseline.baseline_rc1": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.baseline_rc1.baseline_als": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.baseline.baseline_rc1.baseline_snip": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_als": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_snip": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.baseline.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.baseline.moving_minimum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.baseline.moving_minimum.subtract_moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_als": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_snip": {"tf": 1}}, "df": 23, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectral_components.baseline.baseline_base.BaseLineBase": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectral_components.baseline.numerical.BaselineNumerical": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical.__init__": {"tf": 1}}, "df": 2}}}}}}}}}}}}}, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.bases": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.peak_bases": {"tf": 1}}, "df": 2}}}, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 2, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.boundaries": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.boundaries": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.peak_boundaries": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.x_bin_boundaries": {"tf": 1}}, "df": 4}}}}}}}}}, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs_meta": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.meta": {"tf": 1}}, "df": 2, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.misc.types.spectrum.metadata": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldTyping": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.pre_validate": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.serialize": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.serialize": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.get_all_keys": {"tf": 1}}, "df": 10}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.misc.spectrum_deco.spectrum_method": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_method.add_spectrum_method": {"tf": 1.4142135623730951}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.filters.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1}}, "df": 5}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2.misc": {"tf": 1}, "ramanchada2.misc.base_class": {"tf": 1}, "ramanchada2.misc.base_class.BaseClass": {"tf": 1}, "ramanchada2.misc.base_class.BaseClass.origin": {"tf": 1}, "ramanchada2.misc.base_class.BaseClass.origin_list_str": {"tf": 1}, "ramanchada2.misc.constants": {"tf": 1}, "ramanchada2.misc.constants.PST_RS_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.polystyrene_rs": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}, "ramanchada2.misc.exceptions": {"tf": 1}, "ramanchada2.misc.exceptions.ApplicationException": {"tf": 1}, "ramanchada2.misc.exceptions.InputParserError": {"tf": 1}, "ramanchada2.misc.exceptions.ChadaReadNotFoundError": {"tf": 1}, "ramanchada2.misc.plottable": {"tf": 1}, "ramanchada2.misc.plottable.Plottable": {"tf": 1}, "ramanchada2.misc.plottable.Plottable.plot": {"tf": 1}, "ramanchada2.misc.spectrum_deco": {"tf": 1}, "ramanchada2.misc.spectrum_deco.dynamically_added": {"tf": 1}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_constructor": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.__init__": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.set_proc": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_filter": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_filter.logger": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_filter.add_spectrum_filter": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_method": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_method.add_spectrum_method": {"tf": 1}, "ramanchada2.misc.types": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.valuesdict": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.locations": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.centers": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.fwhm": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.boundaries": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.center_amplitude": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.centers_err": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.fwhms": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.amplitudes": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.dumps": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.loads": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe_peaks": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_csv": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.gen_fake_spectrum": {"tf": 1}, "ramanchada2.misc.types.peak_candidates": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.amplitude": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.position": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.sigma": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.skew": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.lwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.rwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.serialize": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.peaks": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.base_slope": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.base_intercept": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.boundaries": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_baseline": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_errorbar": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.positions": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.sigmas": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.fwhms": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.lwhms": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.rwhms": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.skews": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.amplitudes": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.bases": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.peak_bases": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.serialize": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.root": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.serialize": {"tf": 1}, "ramanchada2.misc.types.positive_not_multiple": {"tf": 1}, "ramanchada2.misc.types.positive_not_multiple.PositiveOddInt": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_config": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.serialize": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel.serialize": {"tf": 1}, "ramanchada2.misc.types.spectrum": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.proc": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.args": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.kwargs": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.is_constructor": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.check_proc": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_config": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.append": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.extend_left": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.pop": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.clear": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.assign": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.repr": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.cache_path": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.to_list": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldTyping": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.pre_validate": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.serialize": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.serialize": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.get_all_keys": {"tf": 1}, "ramanchada2.misc.utils": {"tf": 1}, "ramanchada2.misc.utils.argmin2d": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.argmin2d": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.find_closest_pairs_idx": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.find_closest_pairs": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.align_shift": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.match_peaks": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.laser_wl_nm": {"tf": 1}, "ramanchada2.misc.utils.svd": {"tf": 1}, "ramanchada2.misc.utils.svd.svd_solve": {"tf": 1}, "ramanchada2.misc.utils.svd.svd_inverse": {"tf": 1}}, "df": 158}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2.spectrum.baseline.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.baseline.moving_minimum.moving_minimum": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.moving_minimum.subtract_moving_minimum": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_minimum": {"tf": 1}}, "df": 5}}}}, "x": {"docs": {"ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.minx": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 2}}}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_config": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.serialize": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_computed_fields": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel.serialize": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_config": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.model_units": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.set_model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_config": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_computed_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.model": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.model_units": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.calibration_model_factory": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.model": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.model_from_lines": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.position": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.inensity": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.sigma": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.name": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_config": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_computed_fields": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.model_from_list": {"tf": 1.4142135623730951}}, "df": 49, "s": {"docs": {"ramanchada2.spectrum.peaks.fit_peaks.available_models": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.available_models_type": {"tf": 1}}, "df": 2}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.spectrum.baseline.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.baseline.moving_minimum.moving_minimum": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.moving_minimum.subtract_moving_minimum": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1}}, "df": 15}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.spectrum.calc.central_moments": {"tf": 1}, "ramanchada2.spectrum.calc.central_moments.central_moments": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.central_moments": {"tf": 1}}, "df": 3}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectrum.arithmetics.mul": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "i": {"docs": {"ramanchada2.spectrum.creators.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 3, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.positive_not_multiple": {"tf": 1}, "ramanchada2.misc.types.positive_not_multiple.PositiveOddInt": {"tf": 1}}, "df": 2}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {"ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1}}, "df": 5}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1}}, "df": 2}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"ramanchada2.misc.utils.argmin2d.match_peaks": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent.safe_mask": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "x": {"docs": {"ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.maxx": {"tf": 1}}, "df": 1}}, "d": {"docs": {"ramanchada2.spectrum.spectrum.Spectrum.y_noise_MAD": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.io.experimental.rc1_parser.io.UnsupportedFileTypeError": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.spe_units": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.ref_units": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.model_units": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.convert_units": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.model_units": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}}, "df": 10}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.utils": {"tf": 1}, "ramanchada2.misc.utils.argmin2d": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.argmin2d": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.find_closest_pairs_idx": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.find_closest_pairs": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.align_shift": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.match_peaks": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.laser_wl_nm": {"tf": 1}, "ramanchada2.misc.utils.svd": {"tf": 1}, "ramanchada2.misc.utils.svd.svd_solve": {"tf": 1}, "ramanchada2.misc.utils.svd.svd_inverse": {"tf": 1}}, "df": 17}}}}, "r": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.url": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.io.experimental.rc1_parser.third_party_readers": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readWDF": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readSPC": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readOPUS": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}, "ramanchada2.theoretical_lines": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.model_from_lines": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.position": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.inensity": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.sigma": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.name": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_config": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_computed_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.model_from_list": {"tf": 1}}, "df": 16}}}}}}}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.io.experimental.rc1_parser.txt_format_readers": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.logger": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.read_JCAMP": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.readTXT": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.dataFromTxtLines": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.isDataLine": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.startStop": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.getYDataType": {"tf": 1}, "ramanchada2.io.experimental.read_txt": {"tf": 1}, "ramanchada2.io.experimental.read_txt.read_txt": {"tf": 1.4142135623730951}}, "df": 10}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.peaks.fit_peaks.available_models_type": {"tf": 1}}, "df": 1, "s": {"docs": {"ramanchada2.misc.types": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.valuesdict": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.locations": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.centers": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.fwhm": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.boundaries": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.center_amplitude": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.centers_err": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.fwhms": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.amplitudes": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.dumps": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.loads": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe_peaks": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_csv": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.gen_fake_spectrum": {"tf": 1}, "ramanchada2.misc.types.peak_candidates": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.amplitude": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.position": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.sigma": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.skew": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.lwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.rwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.serialize": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.peaks": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.base_slope": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.base_intercept": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.boundaries": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_baseline": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_errorbar": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.positions": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.sigmas": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.fwhms": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.lwhms": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.rwhms": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.skews": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.amplitudes": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.bases": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.peak_bases": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.serialize": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.root": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.serialize": {"tf": 1}, "ramanchada2.misc.types.positive_not_multiple": {"tf": 1}, "ramanchada2.misc.types.positive_not_multiple.PositiveOddInt": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_config": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.serialize": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel.serialize": {"tf": 1}, "ramanchada2.misc.types.spectrum": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.proc": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.args": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.kwargs": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.is_constructor": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.check_proc": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_config": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.append": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.extend_left": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.pop": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.clear": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.assign": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.repr": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.cache_path": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.to_list": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldTyping": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.pre_validate": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.serialize": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.serialize": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.get_all_keys": {"tf": 1}}, "df": 99}}}}, "o": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe_peaks": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_csv": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.to_list": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1": {"tf": 1.4142135623730951}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm": {"tf": 1.4142135623730951}, "ramanchada2.misc.utils.ramanshift_to_wavelength.laser_wl_nm": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.zero_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.to_dict": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}}, "df": 20}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.temperature_c": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectrum.creators.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1}}, "df": 3}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"ramanchada2.spectrum.arithmetics.truediv": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2.spectrum.filters.trim_axes": {"tf": 1}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1}}, "df": 3}}}}, "j": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"ramanchada2.io.experimental.rc1_parser.txt_format_readers.read_JCAMP": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.io.simulated.crystal.discrete_lines_out": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_out.lines_from_crystal_out": {"tf": 1.4142135623730951}}, "df": 2, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.io.output": {"tf": 1}, "ramanchada2.io.output.write_csv": {"tf": 1}, "ramanchada2.io.output.write_csv.write_csv": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {"ramanchada2.spectrum.creators.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.logger": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.misc.base_class.BaseClass.origin": {"tf": 1}, "ramanchada2.misc.base_class.BaseClass.origin_list_str": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.reset_origin": {"tf": 1}}, "df": 3}}}}}}, "k": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.kwargs": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.kwargs": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.get_all_keys": {"tf": 1}}, "df": 1}}}}, "x": {"0": {"docs": {"ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.x0": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.x0": {"tf": 1}}, "df": 2}, "docs": {"ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.apply_calibration_x": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.x": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.x_bin_boundaries": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.x_err": {"tf": 1}}, "df": 10, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.XCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.spe_pos_dict": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.derive_model": {"tf": 1}}, "df": 5}}}}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.spectrum.calibration.scale_xaxis": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}}, "df": 8}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"ramanchada2.protocols.calibration.LazerZeroingComponent.zero_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 1}}, "df": 2, "s": {"docs": {"ramanchada2.spectrum.filters.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1}}, "df": 3}}}}}, "y": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.Y": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_MAD": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol_DL": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_err": {"tf": 1}}, "df": 7, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.id": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.description": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.url": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.wavelength": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.params": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.equation": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.temperature_c": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.raman_shift": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.response_function": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.Y": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.load": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_config": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_computed_fields": {"tf": 1}}, "df": 15}}}}}}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.laser_wl": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.spe": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.ref": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.name": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.model": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.model_units": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_divide": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_mask": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_factor": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.process": {"tf": 1}}, "df": 13}}}}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.spectrum.calibration.scale_yaxis": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1}}, "df": 3}}}}}}}, "annotation": {"root": {"0": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.amplitude": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.sigma": {"tf": 1}}, "df": 2}, "docs": {"ramanchada2.misc.constants.NEON_WL": {"tf": 1}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.amplitude": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakModel.position": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.sigma": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakModel.skew": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.lwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.rwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.peaks": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.base_slope": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.base_intercept": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.boundaries": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.root": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.proc": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.args": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.kwargs": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_config": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.root": {"tf": 2}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.root": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.id": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.description": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.url": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.wavelength": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.params": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.equation": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.temperature_c": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.raman_shift": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_config": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_computed_fields": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.meta": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.position": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.inensity": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.sigma": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.name": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_config": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_computed_fields": {"tf": 1}}, "df": 51, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_computed_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_computed_fields": {"tf": 1}}, "df": 12}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}}, "df": 6}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"6": {"4": {"docs": {"ramanchada2.spectrum.spectrum.Spectrum.y": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.position": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.skew": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.lwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.rwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.base_slope": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.base_intercept": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.boundaries": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.root": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.position": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.inensity": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.sigma": {"tf": 1}}, "df": 12}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.proc": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.id": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.params": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.equation": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.name": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.root": {"tf": 2.449489742783178}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.root": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.meta": {"tf": 1}}, "df": 3}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.root": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.root": {"tf": 1}}, "df": 1}}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectrum.spectrum.Spectrum.meta": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.root": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.amplitude": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.sigma": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.peaks": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.root": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.meta": {"tf": 1}}, "df": 5}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.boundaries": {"tf": 1}}, "df": 1}}}}}}}}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.root": {"tf": 1.7320508075688772}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.amplitude": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.sigma": {"tf": 1}}, "df": 2}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.root": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.root": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.root": {"tf": 1}}, "df": 1}}}}}}}}}}}, "y": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.root": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.root": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.amplitude": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakModel.sigma": {"tf": 1.4142135623730951}}, "df": 2}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_computed_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_computed_fields": {"tf": 1}}, "df": 12}}}}}}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_config": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_config": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_config": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}, "o": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.root": {"tf": 1}}, "df": 1, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_computed_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_computed_fields": {"tf": 1}}, "df": 6}}}}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_config": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_config": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_config": {"tf": 1}}, "df": 3, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_config": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_config": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_config": {"tf": 1}}, "df": 3}}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.peaks": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.root": {"tf": 1}}, "df": 2}}}}}}}}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_computed_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_computed_fields": {"tf": 1}}, "df": 12}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.peaks": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.root": {"tf": 1}}, "df": 2, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.peaks": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.root": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.root": {"tf": 1}}, "df": 1}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.args": {"tf": 1}}, "df": 1, "[": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"2": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.peaks": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.root": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}}}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.root": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.peaks": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.root": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.meta": {"tf": 1}}, "df": 5}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.root": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.meta": {"tf": 1}}, "df": 2}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.kwargs": {"tf": 1}}, "df": 1, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.root": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.root": {"tf": 1}}, "df": 2}}}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.root": {"tf": 1}}, "df": 1, "[": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.spectrum.spectrum.Spectrum.y": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.root": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.root": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.root": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.spectrum.spectrum.Spectrum.y": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.root": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"2": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.root": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.meta": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}}}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.description": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.url": {"tf": 1}}, "df": 2}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.temperature_c": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.raman_shift": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.wavelength": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.temperature_c": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.raman_shift": {"tf": 1}}, "df": 3}}}, "x": {"2": {"7": {"docs": {"ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "v": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model": {"tf": 1}}, "df": 1}}}}}}}, "default_value": {"root": {"0": {"0": {"6": {"0": {"1": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "4": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"2": {"7": {"2": {"1": {"0": {"4": {"8": {"7": {"0": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"3": {"0": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"8": {"7": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"4": {"5": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "1": {"0": {"9": {"4": {"0": {"9": {"1": {"9": {"0": {"0": {"2": {"7": {"3": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 3}, "ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 2.23606797749979}}, "df": 2}, "3": {"4": {"7": {"8": {"2": {"7": {"0": {"9": {"6": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"0": {"5": {"4": {"4": {"2": {"1": {"9": {"4": {"6": {"1": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"8": {"9": {"1": {"9": {"8": {"4": {"3": {"3": {"6": {"8": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"5": {"8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 5}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"2": {"0": {"8": {"2": {"3": {"9": {"9": {"5": {"2": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"5": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"2": {"0": {"3": {"9": {"6": {"7": {"7": {"3": {"4": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"6": {"4": {"2": {"7": {"0": {"8": {"4": {"8": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"7": {"6": {"3": {"2": {"4": {"0": {"7": {"6": {"3": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 4.58257569495584}, "ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 2.23606797749979}}, "df": 2}, "2": {"0": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 2.8284271247461903}}, "df": 1}, "1": {"9": {"5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"7": {"4": {"0": {"3": {"3": {"8": {"2": {"3": {"8": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 3}}, "df": 1}, "3": {"0": {"2": {"2": {"1": {"0": {"9": {"3": {"5": {"2": {"1": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"2": {"9": {"6": {"3": {"8": {"2": {"1": {"7": {"8": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"4": {"2": {"7": {"4": {"4": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"4": {"8": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "5": {"8": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"2": {"0": {"3": {"0": {"8": {"9": {"8": {"2": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"0": {"1": {"3": {"6": {"0": {"5": {"4": {"4": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"1": {"5": {"1": {"4": {"6": {"7": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "9": {"9": {"0": {"6": {"7": {"8": {"2": {"2": {"9": {"4": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 3.3166247903554}}, "df": 1}, "4": {"0": {"8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "1": {"5": {"6": {"3": {"5": {"4": {"2": {"2": {"2": {"1": {"1": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"3": {"9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"0": {"6": {"3": {"5": {"8": {"2": {"1": {"6": {"9": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"8": {"0": {"2": {"1": {"2": {"0": {"7": {"2": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"3": {"6": {"1": {"4": {"7": {"5": {"2": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"1": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "9": {"5": {"4": {"2": {"4": {"4": {"2": {"4": {"1": {"0": {"8": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"4": {"4": {"8": {"8": {"2": {"0": {"7": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"0": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 4}}, "df": 1}, "2": {"3": {"7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"1": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "6": {"8": {"9": {"3": {"4": {"2": {"4": {"0": {"3": {"6": {"5": {"8": {"0": {"8": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"9": {"2": {"7": {"7": {"8": {"9": {"9": {"3": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"3": {"8": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"2": {"2": {"6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"4": {"5": {"7": {"3": {"3": {"0": {"2": {"9": {"8": {"9": {"0": {"9": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "8": {"4": {"4": {"7": {"8": {"4": {"5": {"2": {"0": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"2": {"1": {"6": {"0": {"3": {"9": {"7": {"1": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"9": {"5": {"1": {"6": {"9": {"8": {"4": {"4": {"8": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"1": {"3": {"7": {"4": {"2": {"3": {"4": {"8": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "4": {"2": {"5": {"6": {"4": {"8": {"9": {"6": {"6": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"3": {"5": {"5": {"6": {"0": {"2": {"0": {"9": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"6": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"4": {"6": {"7": {"0": {"2": {"4": {"2": {"9": {"7": {"8": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"3": {"9": {"7": {"5": {"1": {"5": {"7": {"9": {"6": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"1": {"5": {"7": {"8": {"1": {"8": {"9": {"1": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"6": {"2": {"6": {"6": {"4": {"3": {"9": {"2": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"1": {"6": {"8": {"4": {"7": {"7": {"5": {"3": {"2": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"6": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"4": {"4": {"6": {"0": {"2": {"6": {"9": {"0": {"2": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"4": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"4": {"1": {"8": {"4": {"4": {"5": {"5": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"3": {"2": {"2": {"8": {"4": {"4": {"4": {"9": {"6": {"9": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"7": {"2": {"6": {"9": {"1": {"0": {"5": {"3": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"9": {"7": {"3": {"4": {"6": {"4": {"8": {"6": {"2": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 12.922847983320086}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 12.922847983320086}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 12.922847983320086}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 12.922847983320086}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 3.3166247903554}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 3.1622776601683795}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 3.3166247903554}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 3.3166247903554}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 3.1622776601683795}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 3}, "ramanchada2.misc.constants.NEON_WL": {"tf": 5.656854249492381}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.positive_not_multiple.PositiveOddInt": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1.4142135623730951}}, "df": 16}, "1": {"0": {"0": {"0": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 5, "x": {"1": {"0": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "1": {"docs": {"ramanchada2.misc.constants.PST_RS_dict": {"tf": 1}, "ramanchada2.misc.constants.polystyrene_rs": {"tf": 1}}, "df": 2}, "docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 8.54400374531753}, "ramanchada2.misc.constants.PST_RS_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 8.831760866327848}, "ramanchada2.misc.constants.polystyrene_rs": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 5.291502622129181}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 5.291502622129181}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 5.291502622129181}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 5.291502622129181}}, "df": 8, "m": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "x": {"2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "x": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 2}}, "df": 1}}, "2": {"9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"1": {"docs": {"ramanchada2.misc.constants.PST_RS_dict": {"tf": 1}, "ramanchada2.misc.constants.polystyrene_rs": {"tf": 1}}, "df": 2}, "5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "6": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"3": {"6": {"8": {"5": {"2": {"9": {"9": {"7": {"2": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "7": {"2": {"2": {"1": {"0": {"0": {"6": {"5": {"6": {"4": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 3}, "9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "8": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "5": {"2": {"8": {"5": {"3": {"0": {"8": {"9": {"8": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "8": {"4": {"3": {"5": {"3": {"7": {"4": {"1": {"4": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"3": {"6": {"1": {"8": {"1": {"9": {"2": {"6": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "4": {"0": {"9": {"1": {"9": {"0": {"3": {"7": {"2": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.PST_RS_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 3.4641016151377544}, "ramanchada2.misc.constants.polystyrene_rs": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 2.449489742783178}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 2.449489742783178}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 2.449489742783178}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 2.449489742783178}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 10, "s": {"docs": {}, "df": 0, "x": {"5": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "1": {"0": {"0": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}}}, "3": {"2": {"1": {"6": {"5": {"4": {"2": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}}}, "1": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "8": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "9": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"3": {"7": {"8": {"6": {"8": {"4": {"8": {"0": {"7": {"2": {"4": {"6": {"4": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "4": {"0": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"1": {"3": {"8": {"4": {"3": {"0": {"1": {"3": {"8": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "5": {"docs": {"ramanchada2.misc.constants.PST_RS_dict": {"tf": 1}, "ramanchada2.misc.constants.polystyrene_rs": {"tf": 1}}, "df": 2}, "7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 3}, "9": {"7": {"4": {"4": {"6": {"8": {"7": {"0": {"0": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"0": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "1": {"7": {"5": {"9": {"9": {"5": {"7": {"7": {"2": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "7": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "8": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 3}, "5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "9": {"8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 4, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.loc": {"tf": 1}, "ramanchada2.auxiliary.spectra.simulated.loc": {"tf": 1}, "ramanchada2.auxiliary.spectra.simulated.FILES": {"tf": 1.7320508075688772}}, "df": 3}}}}}}, "2": {"0": {"0": {"0": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.7320508075688772}}, "df": 1}}}, "docs": {}, "df": 0}, "2": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 3}, "6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 5.744562646538029}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 2.23606797749979}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 2.23606797749979}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 2.23606797749979}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 2.23606797749979}}, "df": 5}, "1": {"5": {"9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "8": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"0": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "1": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "4": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "3": {"1": {"3": {"4": {"5": {"3": {"9": {"3": {"2": {"2": {"9": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"4": {"3": {"4": {"9": {"9": {"3": {"7": {"1": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"4": {"8": {"4": {"8": {"2": {"5": {"8": {"4": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 3}, "4": {"5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "7": {"1": {"6": {"5": {"5": {"3": {"2": {"8": {"8": {"1": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"0": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 3}, "8": {"3": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "8": {"5": {"9": {"8": {"8": {"1": {"3": {"6": {"5": {"2": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"1": {"0": {"2": {"8": {"4": {"4": {"6": {"3": {"2": {"7": {"5": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"7": {"6": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "2": {"1": {"3": {"9": {"7": {"8": {"8": {"4": {"4": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.PST_RS_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.polystyrene_rs": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 10}, "3": {"0": {"0": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}}}, "9": {"2": {"1": {"8": {"0": {"9": {"9": {"6": {"4": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 2}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.7320508075688772}}, "df": 5, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}}}, "1": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 3}, "docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 3}, "2": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "4": {"1": {"5": {"0": {"1": {"4": {"3": {"2": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"4": {"1": {"3": {"9": {"3": {"2": {"6": {"5": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"8": {"6": {"8": {"4": {"7": {"6": {"4": {"9": {"3": {"3": {"2": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 3}, "9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"0": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 3}, "2": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {}, "df": 0}, "3": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "6": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "7": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "8": {"7": {"5": {"5": {"6": {"9": {"8": {"4": {"8": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"4": {"5": {"0": {"0": {"3": {"7": {"7": {"2": {"9": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {"ramanchada2.misc.constants.PST_RS_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 2.8284271247461903}, "ramanchada2.misc.constants.polystyrene_rs": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 2}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 2}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 2}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 2}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 10}, "4": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "1": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 2}, "1": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "5": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"2": {"3": {"1": {"9": {"4": {"7": {"4": {"8": {"3": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "4": {"4": {"2": {"0": {"1": {"3": {"1": {"2": {"9": {"1": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 3}, "9": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "5": {"0": {"docs": {"ramanchada2.misc.constants.PST_RS_dict": {"tf": 1}, "ramanchada2.misc.constants.polystyrene_rs": {"tf": 1}}, "df": 2}, "2": {"2": {"0": {"7": {"7": {"5": {"7": {"4": {"8": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"8": {"1": {"9": {"2": {"5": {"5": {"4": {"2": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "9": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "6": {"5": {"8": {"5": {"8": {"8": {"8": {"1": {"2": {"6": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"4": {"3": {"5": {"7": {"6": {"9": {"6": {"5": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"9": {"6": {"2": {"0": {"2": {"8": {"9": {"9": {"7": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "5": {"0": {"0": {"0": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "x": {"2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}, "docs": {}, "df": 0}, "3": {"6": {"2": {"0": {"2": {"5": {"5": {"9": {"4": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 6}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 3}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 3}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 3}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 3}}, "df": 5}, "1": {"1": {"3": {"5": {"0": {"7": {"8": {"1": {"8": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"7": {"6": {"5": {"3": {"2": {"7": {"9": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 3}, "9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"4": {"9": {"3": {"2": {"3": {"8": {"5": {"6": {"4": {"7": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"1": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"5": {"6": {"9": {"5": {"7": {"9": {"2": {"2": {"9": {"2": {"9": {"6": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"2": {"0": {"0": {"9": {"7": {"2": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "6": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"0": {"3": {"6": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"0": {"7": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"9": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"6": {"3": {"8": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"3": {"5": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"0": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "1": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "4": {"6": {"2": {"5": {"8": {"5": {"0": {"3": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "9": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "7": {"7": {"7": {"8": {"4": {"7": {"9": {"0": {"1": {"5": {"4": {"6": {"9": {"2": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "4": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "8": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "8": {"0": {"0": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"docs": {"ramanchada2.misc.constants.PST_RS_dict": {"tf": 1}, "ramanchada2.misc.constants.polystyrene_rs": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "9": {"1": {"3": {"5": {"9": {"3": {"1": {"3": {"9": {"3": {"2": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"3": {"7": {"4": {"1": {"7": {"9": {"4": {"3": {"1": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 2.449489742783178}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 2.6457513110645907}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 2.6457513110645907}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 2.6457513110645907}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 2.6457513110645907}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 10, "s": {"docs": {}, "df": 0, "x": {"5": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}}}, "6": {"0": {"2": {"docs": {"ramanchada2.misc.constants.PST_RS_dict": {"tf": 1}, "ramanchada2.misc.constants.polystyrene_rs": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "1": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "4": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1.4142135623730951}}, "df": 2}, "6": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 2}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "3": {"1": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "2": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"5": {"3": {"2": {"8": {"7": {"9": {"8": {"1": {"8": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"3": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.PST_RS_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.polystyrene_rs": {"tf": 1}}, "df": 3}, "7": {"0": {"0": {"6": {"8": {"0": {"2": {"7": {"2": {"1": {"0": {"8": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 5}, "1": {"0": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 3}, "6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "5": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"2": {"1": {"4": {"0": {"7": {"5": {"9": {"4": {"0": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"2": {"9": {"2": {"7": {"3": {"8": {"6": {"1": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"8": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "9": {"0": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"4": {"5": {"3": {"0": {"8": {"8": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"7": {"0": {"0": {"4": {"1": {"7": {"4": {"8": {"4": {"5": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "7": {"0": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "8": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "9": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "6": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 2}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 2}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 2}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.NEON_WL": {"tf": 2.449489742783178}}, "df": 6}, "8": {"0": {"3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 4}, "9": {"3": {"8": {"7": {"6": {"4": {"6": {"1": {"4": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 5}, "1": {"7": {"7": {"5": {"8": {"9": {"7": {"1": {"8": {"4": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"0": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "4": {"0": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "4": {"7": {"7": {"5": {"7": {"0": {"9": {"8": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "6": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "8": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "6": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "6": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "7": {"1": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "8": {"1": {"8": {"3": {"8": {"0": {"7": {"1": {"9": {"1": {"7": {"7": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"4": {"6": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"2": {"9": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "3": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "5": {"2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "7": {"8": {"5": {"1": {"1": {"8": {"5": {"3": {"9": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"0": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "3": {"7": {"1": {"9": {"9": {"1": {"2": {"4": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "7": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"7": {"6": {"1": {"9": {"0": {"4": {"7": {"6": {"1": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"1": {"1": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"1": {"docs": {"ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "5": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "8": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "7": {"1": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "2": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "6": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 3}, "7": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "8": {"6": {"0": {"8": {"5": {"6": {"2": {"3": {"8": {"8": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "9": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "6": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "8": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.4142135623730951}, "ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1}, "ramanchada2.misc.constants.PST_RS_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.polystyrene_rs": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 2}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 2.8284271247461903}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 2.23606797749979}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 3.1622776601683795}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 3.1622776601683795}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 2.23606797749979}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 2.8284271247461903}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 8.602325267042627}, "ramanchada2.misc.constants.NEON_WL": {"tf": 4.795831523312719}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1.4142135623730951}}, "df": 19}, "2": {"0": {"0": {"0": {"0": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.4142135623730951}}, "df": 1, "x": {"2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}, "docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.7320508075688772}}, "df": 1}}}, "2": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 3}, "3": {"3": {"9": {"9": {"6": {"1": {"1": {"8": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"1": {"7": {"7": {"3": {"8": {"0": {"2": {"1": {"5": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 4.123105625617661}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 2.23606797749979}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 2.23606797749979}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 2.23606797749979}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 2.23606797749979}}, "df": 5}, "1": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "6": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "7": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "8": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "4": {"0": {"0": {"0": {"7": {"9": {"3": {"5": {"3": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"3": {"7": {"1": {"5": {"4": {"9": {"5": {"2": {"4": {"3": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "3": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "4": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "9": {"4": {"9": {"2": {"4": {"6": {"5": {"4": {"6": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"9": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "6": {"1": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "2": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "3": {"3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "4": {"9": {"2": {"0": {"6": {"3": {"4": {"9": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"8": {"9": {"2": {"5": {"9": {"8": {"5": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"0": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "8": {"8": {"9": {"8": {"7": {"0": {"5": {"9": {"7": {"2": {"6": {"1": {"6": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "9": {"2": {"7": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "6": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "7": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 3.872983346207417}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 2.23606797749979}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 2.23606797749979}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 2.23606797749979}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 2.23606797749979}}, "df": 5}, "1": {"0": {"0": {"6": {"5": {"6": {"4": {"5": {"5": {"1": {"4": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.4142135623730951}}, "df": 1}}}, "2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {}, "df": 0}, "1": {"7": {"7": {"9": {"4": {"3": {"6": {"1": {"8": {"8": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "9": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "4": {"6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 5}, "docs": {}, "df": 0}, "6": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "6": {"7": {"0": {"0": {"8": {"0": {"8": {"5": {"5": {"8": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "7": {"0": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "6": {"8": {"7": {"0": {"7": {"4": {"8": {"2": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"1": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "2": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "8": {"1": {"8": {"3": {"8": {"0": {"7": {"4": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "8": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"0": {"0": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1, "x": {"2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}, "docs": {}, "df": 0}, "8": {"8": {"9": {"8": {"7": {"0": {"6": {"2": {"1": {"6": {"4": {"7": {"3": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "4": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "4": {"2": {"0": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 5}, "docs": {}, "df": 0}, "5": {"0": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 3}, "3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "5": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "9": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 3}, "3": {"0": {"3": {"5": {"6": {"5": {"7": {"9": {"3": {"6": {"2": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"0": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "8": {"8": {"7": {"6": {"6": {"5": {"8": {"0": {"2": {"3": {"0": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"2": {"8": {"4": {"2": {"1": {"0": {"7": {"8": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"0": {"5": {"1": {"6": {"9": {"1": {"7": {"2": {"3": {"9": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 3}, "7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "4": {"1": {"3": {"5": {"6": {"6": {"7": {"3": {"9": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"5": {"8": {"8": {"1": {"9": {"8": {"1": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"0": {"2": {"8": {"5": {"2": {"5": {"5": {"5": {"9": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "7": {"0": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "9": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "3": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 3}, "4": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"0": {"0": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}}}, "1": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "1": {"2": {"5": {"5": {"3": {"7": {"3": {"0": {"9": {"8": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "3": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "2": {"0": {"7": {"5": {"4": {"4": {"8": {"2": {"1": {"4": {"8": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "8": {"6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "9": {"2": {"5": {"5": {"2": {"8": {"5": {"5": {"7": {"8": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 3}, "5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "5": {"0": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "1": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "7": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"2": {"3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 5}, "docs": {}, "df": 0}, "9": {"1": {"2": {"8": {"0": {"2": {"9": {"7": {"1": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "9": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "8": {"0": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "7": {"8": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"0": {"0": {"0": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "x": {"2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 2.23606797749979}}, "df": 1}, "docs": {}, "df": 0}}}}, "docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "x": {"3": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "5": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}, "4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "5": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 2}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 5}, "1": {"6": {"4": {"1": {"1": {"3": {"7": {"8": {"3": {"4": {"7": {"1": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"0": {"3": {"4": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "7": {"0": {"0": {"6": {"8": {"0": {"2": {"7": {"2": {"8": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "9": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "8": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "4": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "3": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 3}, "4": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "7": {"0": {"5": {"0": {"4": {"9": {"7": {"5": {"5": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"2": {"3": {"5": {"8": {"2": {"7": {"6": {"6": {"4": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "7": {"0": {"6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "3": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "8": {"2": {"0": {"5": {"6": {"8": {"7": {"9": {"6": {"4": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "x": {"5": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "6": {"0": {"7": {"7": {"0": {"9": {"7": {"5": {"0": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"1": {"4": {"1": {"3": {"7": {"1": {"9": {"4": {"8": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"1": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "2": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "5": {"8": {"2": {"0": {"5": {"6": {"8": {"9": {"2": {"8": {"0": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "6": {"9": {"6": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"5": {"7": {"3": {"6": {"4": {"8": {"2": {"9": {"4": {"5": {"8": {"2": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"5": {"9": {"1": {"5": {"2": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"3": {"6": {"2": {"7": {"4": {"1": {"5": {"8": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"2": {"2": {"3": {"4": {"1": {"4": {"3": {"2": {"6": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"1": {"4": {"6": {"4": {"7": {"1": {"6": {"1": {"7": {"8": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"1": {"1": {"9": {"9": {"1": {"1": {"6": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"7": {"7": {"1": {"8": {"6": {"6": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"1": {"2": {"6": {"9": {"8": {"4": {"1": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "7": {"0": {"7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "1": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "3": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"2": {"8": {"0": {"7": {"9": {"1": {"9": {"1": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "5": {"0": {"9": {"7": {"8": {"5": {"1": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"5": {"9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"6": {"3": {"8": {"0": {"4": {"7": {"4": {"8": {"1": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"2": {"0": {"7": {"0": {"9": {"4": {"9": {"1": {"9": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 5}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "9": {"7": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"ramanchada2.misc.constants.PST_RS_dict": {"tf": 1}, "ramanchada2.misc.constants.polystyrene_rs": {"tf": 1}}, "df": 2}, "8": {"0": {"0": {"0": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}}}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 3}, "1": {"8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "2": {"5": {"6": {"9": {"9": {"3": {"3": {"7": {"5": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"5": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "9": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "4": {"7": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"8": {"4": {"1": {"4": {"0": {"5": {"9": {"5": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"2": {"docs": {"ramanchada2.misc.constants.PST_RS_dict": {"tf": 1}, "ramanchada2.misc.constants.polystyrene_rs": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 4}, "3": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "5": {"7": {"9": {"0": {"4": {"7": {"0": {"1": {"8": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"4": {"2": {"8": {"5": {"7": {"1": {"4": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"9": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "8": {"0": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "2": {"2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 3}, "4": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"8": {"1": {"3": {"3": {"6": {"1": {"0": {"7": {"7": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.PST_RS_dict": {"tf": 1}, "ramanchada2.misc.constants.polystyrene_rs": {"tf": 1}}, "df": 2}, "9": {"0": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "4": {"docs": {"ramanchada2.misc.constants.PST_RS_dict": {"tf": 1}, "ramanchada2.misc.constants.polystyrene_rs": {"tf": 1}}, "df": 2}, "7": {"2": {"2": {"9": {"1": {"0": {"0": {"5": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 2}}, "df": 1}, "2": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "2": {"1": {"7": {"3": {"5": {"0": {"4": {"0": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"5": {"8": {"3": {"5": {"6": {"6": {"9": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "3": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "7": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "4": {"7": {"8": {"4": {"5": {"8": {"0": {"4": {"9": {"8": {"8": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "6": {"2": {"5": {"7": {"9": {"9": {"8": {"0": {"5": {"5": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"6": {"7": {"0": {"9": {"3": {"7": {"7": {"2": {"8": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.7320508075688772}}, "df": 1}, "7": {"3": {"9": {"9": {"1": {"9": {"8": {"2": {"7": {"8": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.7320508075688772}}, "df": 1}, "8": {"8": {"1": {"0": {"4": {"5": {"6": {"4": {"8": {"2": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "9": {"1": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {}, "df": 0}, "4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "5": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 2}, "ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1}, "ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 2.23606797749979}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 2}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 2}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 2.23606797749979}, "ramanchada2.misc.constants.NEON_WL": {"tf": 3.1622776601683795}}, "df": 14}, "3": {"0": {"0": {"0": {"0": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.7320508075688772}}, "df": 1, "x": {"3": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}, "9": {"4": {"6": {"6": {"7": {"0": {"8": {"7": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "x": {"7": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "8": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 3.7416573867739413}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 2.449489742783178}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 2.449489742783178}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 2.449489742783178}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 2.449489742783178}}, "df": 5}, "1": {"0": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "1": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "6": {"9": {"7": {"9": {"2": {"1": {"4": {"5": {"2": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "2": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 2.23606797749979}}, "df": 1}, "4": {"1": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "2": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "8": {"5": {"3": {"9": {"1": {"4": {"1": {"4": {"6": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.7320508075688772}}, "df": 1}, "5": {"4": {"docs": {"ramanchada2.misc.constants.PST_RS_dict": {"tf": 1}, "ramanchada2.misc.constants.polystyrene_rs": {"tf": 1}}, "df": 2}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 2}}, "df": 1}, "6": {"2": {"6": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "7": {"1": {"9": {"3": {"6": {"7": {"0": {"9": {"7": {"9": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"4": {"7": {"3": {"4": {"8": {"6": {"4": {"8": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.7320508075688772}}, "df": 1}, "8": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 2.23606797749979}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 4.795831523312719}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 3.7416573867739413}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 3.7416573867739413}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 3.7416573867739413}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 3.7416573867739413}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 8}, "1": {"0": {"0": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}}}, "7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "1": {"1": {"3": {"9": {"1": {"6": {"0": {"6": {"1": {"0": {"7": {"5": {"1": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"2": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "3": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"0": {"9": {"7": {"2": {"8": {"1": {"4": {"6": {"9": {"4": {"1": {"6": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"1": {"0": {"2": {"8": {"3": {"9": {"7": {"6": {"7": {"1": {"5": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"2": {"3": {"5": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"3": {"7": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"1": {"1": {"1": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"4": {"6": {"0": {"5": {"5": {"2": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"0": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "1": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "4": {"2": {"9": {"6": {"0": {"8": {"3": {"6": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"4": {"9": {"0": {"4": {"0": {"9": {"8": {"7": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.7320508075688772}}, "df": 1}, "5": {"5": {"5": {"6": {"9": {"5": {"8": {"0": {"3": {"0": {"9": {"2": {"3": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "4": {"7": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"8": {"7": {"0": {"3": {"9": {"1": {"8": {"9": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"6": {"1": {"1": {"6": {"1": {"4": {"5": {"4": {"5": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "7": {"2": {"8": {"6": {"6": {"5": {"2": {"0": {"6": {"8": {"5": {"4": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "8": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "8": {"0": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "1": {"4": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 3}, "2": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 3}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "9": {"3": {"4": {"3": {"6": {"4": {"1": {"5": {"2": {"7": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "2": {"0": {"0": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.4142135623730951}}, "df": 1, "x": {"4": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}, "8": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "9": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "8": {"4": {"6": {"2": {"0": {"0": {"4": {"1": {"7": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.7320508075688772}}, "df": 1}, "2": {"8": {"6": {"9": {"7": {"8": {"9": {"7": {"2": {"5": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "3": {"6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 2}}, "df": 1}, "4": {"3": {"9": {"2": {"3": {"0": {"1": {"5": {"8": {"6": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"8": {"5": {"9": {"6": {"1": {"1": {"3": {"4": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.7320508075688772}}, "df": 1}, "5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "6": {"3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "8": {"3": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "7": {"9": {"8": {"1": {"8": {"5": {"9": {"4": {"1": {"1": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"8": {"1": {"6": {"9": {"6": {"1": {"5": {"5": {"1": {"5": {"4": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.PST_RS_dict": {"tf": 1}, "ramanchada2.misc.constants.polystyrene_rs": {"tf": 1}}, "df": 2}, "3": {"0": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "7": {"7": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "9": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "1": {"0": {"1": {"9": {"2": {"4": {"8": {"9": {"7": {"4": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"5": {"7": {"5": {"9": {"6": {"3": {"7": {"1": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.7320508075688772}}, "df": 1}, "3": {"5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "8": {"5": {"9": {"2": {"6": {"1": {"5": {"9": {"6": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.7320508075688772}}, "df": 1}, "5": {"6": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "7": {"5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 2.449489742783178}}, "df": 1}, "7": {"8": {"6": {"8": {"4": {"8": {"0": {"7": {"2": {"7": {"5": {"8": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "8": {"9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "9": {"0": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "4": {"0": {"1": {"3": {"6": {"0": {"5": {"4": {"4": {"2": {"1": {"6": {"9": {"2": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"2": {"2": {"0": {"9": {"7": {"1": {"7": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 2.23606797749979}}, "df": 1}, "2": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "8": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 4}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "4": {"7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "9": {"0": {"3": {"7": {"5": {"5": {"1": {"2": {"7": {"8": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "5": {"7": {"3": {"3": {"0": {"4": {"1": {"5": {"7": {"5": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.7320508075688772}}, "df": 1}, "6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.7320508075688772}}, "df": 1}, "7": {"7": {"6": {"3": {"4": {"8": {"1": {"8": {"1": {"6": {"1": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "8": {"0": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "1": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "6": {"0": {"2": {"6": {"8": {"6": {"9": {"4": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "9": {"0": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "6": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 3}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "5": {"0": {"1": {"0": {"9": {"4": {"0": {"9": {"1": {"6": {"8": {"7": {"9": {"7": {"7": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 3}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 5}, "1": {"4": {"7": {"3": {"9": {"2": {"2": {"8": {"3": {"3": {"9": {"0": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"7": {"7": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"8": {"1": {"0": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"2": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"2": {"9": {"8": {"3": {"6": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "2": {"5": {"7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "3": {"3": {"4": {"1": {"9": {"6": {"7": {"0": {"1": {"6": {"1": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "7": {"4": {"1": {"0": {"8": {"9": {"8": {"4": {"6": {"8": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"6": {"4": {"8": {"0": {"4": {"9": {"2": {"0": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "8": {"3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "9": {"3": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "6": {"0": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "2": {"3": {"7": {"9": {"0": {"5": {"2": {"3": {"9": {"8": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"9": {"2": {"7": {"4": {"6": {"3": {"4": {"0": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"8": {"8": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "4": {"3": {"0": {"8": {"4": {"5": {"6": {"4": {"2": {"5": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 3}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "5": {"4": {"2": {"6": {"6": {"9": {"5": {"8": {"4": {"2": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"2": {"2": {"0": {"2": {"3": {"6": {"8": {"2": {"4": {"1": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 3}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "9": {"0": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 3}, "6": {"1": {"4": {"5": {"0": {"8": {"4": {"1": {"3": {"9": {"6": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"2": {"4": {"5": {"7": {"5": {"1": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "9": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 4}, "docs": {}, "df": 0}, "7": {"0": {"0": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "1": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "2": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "3": {"5": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"1": {"9": {"9": {"0": {"6": {"3": {"7": {"7": {"7": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"7": {"2": {"6": {"6": {"0": {"2": {"3": {"9": {"7": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"0": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "1": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "3": {"3": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"3": {"6": {"7": {"6": {"1": {"3": {"7": {"4": {"3": {"5": {"4": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"8": {"3": {"8": {"8": {"3": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"5": {"4": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"1": {"1": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"0": {"0": {"6": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"5": {"4": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 3}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "7": {"1": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "2": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "3": {"5": {"1": {"5": {"6": {"5": {"0": {"8": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "8": {"6": {"8": {"4": {"8": {"0": {"7": {"2": {"5": {"6": {"1": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "3": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"6": {"7": {"6": {"1": {"9": {"9": {"6": {"9": {"5": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"3": {"9": {"5": {"7": {"9": {"3": {"6": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"5": {"2": {"7": {"0": {"9": {"1": {"0": {"2": {"6": {"2": {"4": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"0": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.7320508075688772}}, "df": 1}}}, "7": {"4": {"3": {"9": {"8": {"2": {"4": {"9": {"4": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"8": {"0": {"5": {"1": {"6": {"2": {"6": {"0": {"7": {"3": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "2": {"1": {"3": {"9": {"4": {"7": {"6": {"1": {"7": {"5": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 3}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "4": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "5": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "6": {"1": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "2": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "6": {"7": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"8": {"docs": {"ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "9": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"4": {"7": {"2": {"2": {"3": {"8": {"7": {"9": {"8": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"3": {"3": {"3": {"7": {"7": {"8": {"7": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"5": {"7": {"6": {"9": {"4": {"0": {"2": {"1": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "9": {"0": {"9": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "1": {"0": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "9": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "2": {"7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"2": {"0": {"7": {"4": {"6": {"1": {"4": {"1": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "7": {"3": {"0": {"8": {"5": {"3": {"3": {"9": {"2": {"0": {"2": {"7": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "4": {"5": {"5": {"7": {"8": {"2": {"3": {"1": {"6": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "6": {"3": {"6": {"9": {"5": {"5": {"2": {"2": {"0": {"1": {"8": {"7": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "8": {"2": {"5": {"3": {"9": {"6": {"8": {"2": {"5": {"5": {"2": {"4": {"6": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"2": {"6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "9": {"2": {"8": {"5": {"8": {"3": {"5": {"3": {"1": {"9": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {"ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1}, "ramanchada2.misc.constants.PST_RS_dict": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.polystyrene_rs": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 2.23606797749979}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 3.3166247903554}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 3.3166247903554}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 2.23606797749979}, "ramanchada2.misc.constants.NEON_WL": {"tf": 4.123105625617661}}, "df": 15}, "4": {"0": {"0": {"0": {"0": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1, "x": {"4": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}, "docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "x": {"4": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}, "3": {"2": {"1": {"3": {"3": {"5": {"8": {"8": {"6": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"4": {"0": {"6": {"3": {"3": {"3": {"9": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 2}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 2}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 2}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 2}}, "df": 5}, "1": {"1": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 3}, "3": {"5": {"4": {"5": {"7": {"1": {"1": {"3": {"6": {"0": {"3": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "7": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"7": {"3": {"9": {"0": {"2": {"0": {"7": {"8": {"9": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"3": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "4": {"2": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"0": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "7": {"1": {"5": {"6": {"4": {"5": {"2": {"3": {"9": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "7": {"2": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "1": {"6": {"3": {"2": {"6": {"5": {"3": {"0": {"6": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 2}, "7": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 3}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 2}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 2}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 2}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 2}}, "df": 5, "m": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "x": {"3": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "s": {"docs": {}, "df": 0, "x": {"5": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}}}, "1": {"1": {"1": {"5": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"1": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 3}, "7": {"9": {"6": {"2": {"3": {"5": {"0": {"0": {"7": {"1": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"7": {"5": {"4": {"9": {"2": {"3": {"4": {"1": {"3": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"6": {"9": {"3": {"1": {"3": {"8": {"5": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "6": {"2": {"8": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "4": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "7": {"8": {"7": {"9": {"6": {"3": {"5": {"9": {"1": {"8": {"4": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"4": {"3": {"1": {"0": {"7": {"2": {"2": {"0": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "9": {"3": {"0": {"6": {"2": {"7": {"1": {"5": {"1": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"1": {"3": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 3}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 4}, "2": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 3}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "4": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "3": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "6": {"1": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "2": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "7": {"0": {"9": {"1": {"0": {"5": {"9": {"9": {"1": {"4": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"7": {"2": {"6": {"0": {"0": {"4": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "7": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "9": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "8": {"0": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "3": {"1": {"8": {"9": {"1": {"6": {"4": {"7": {"9": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"5": {"9": {"5": {"6": {"9": {"3": {"8": {"9": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "9": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"0": {"8": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "9": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"8": {"2": {"6": {"0": {"3": {"2": {"0": {"3": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"7": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "8": {"2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "4": {"4": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"4": {"6": {"1": {"2": {"4": {"1": {"4": {"0": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "7": {"9": {"9": {"7": {"5": {"5": {"1": {"1": {"0": {"0": {"2": {"0": {"1": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 4}, "8": {"3": {"0": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"docs": {"ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "9": {"3": {"9": {"2": {"6": {"1": {"1": {"8": {"3": {"9": {"2": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"9": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "8": {"2": {"4": {"9": {"4": {"5": {"2": {"9": {"4": {"1": {"7": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "4": {"0": {"9": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 3}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "1": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 3}, "7": {"5": {"6": {"5": {"8": {"1": {"4": {"3": {"4": {"8": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"8": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "2": {"3": {"5": {"9": {"5": {"4": {"0": {"1": {"1": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"4": {"5": {"1": {"1": {"3": {"1": {"4": {"3": {"8": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "8": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.7320508075688772}}, "df": 1}, "3": {"0": {"5": {"6": {"5": {"7": {"4": {"0": {"4": {"0": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"9": {"3": {"0": {"4": {"4": {"5": {"8": {"7": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "4": {"3": {"4": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "4": {"4": {"4": {"4": {"4": {"4": {"4": {"4": {"4": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 5}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "6": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "7": {"3": {"8": {"5": {"2": {"5": {"4": {"3": {"1": {"4": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "4": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "7": {"2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "9": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"0": {"0": {"docs": {"ramanchada2.misc.constants.neon_rs_spe": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.7320508075688772}}, "df": 2}, "7": {"6": {"5": {"8": {"6": {"4": {"3": {"3": {"2": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"8": {"7": {"7": {"5": {"6": {"3": {"9": {"0": {"0": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "7": {"3": {"3": {"0": {"4": {"1": {"5": {"7": {"5": {"4": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 2}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 2}, "ramanchada2.misc.constants.NEON_WL": {"tf": 2}}, "df": 3}, "6": {"1": {"2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "7": {"2": {"7": {"1": {"4": {"3": {"6": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"3": {"3": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"4": {"8": {"4": {"3": {"3": {"0": {"9": {"6": {"4": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"1": {"8": {"4": {"2": {"8": {"5": {"2": {"6": {"3": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"2": {"0": {"1": {"8": {"1": {"4": {"0": {"5": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"3": {"6": {"4": {"7": {"1": {"3": {"2": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"9": {"3": {"2": {"5": {"6": {"8": {"8": {"5": {"1": {"7": {"1": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"1": {"8": {"4": {"1": {"3": {"0": {"7": {"1": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"0": {"0": {"9": {"2": {"6": {"6": {"4": {"8": {"7": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}}}, "4": {"5": {"9": {"5": {"1": {"8": {"5": {"9": {"9": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"6": {"5": {"5": {"3": {"2": {"8": {"7": {"9": {"8": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"5": {"7": {"6": {"5": {"2": {"2": {"5": {"6": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.7320508075688772}}, "df": 1}, "3": {"3": {"3": {"5": {"4": {"3": {"7": {"0": {"4": {"6": {"3": {"8": {"6": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "7": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"8": {"9": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"2": {"2": {"9": {"0": {"2": {"4": {"9": {"4": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "6": {"1": {"9": {"0": {"4": {"7": {"5": {"9": {"6": {"9": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"8": {"3": {"5": {"3": {"7": {"1": {"1": {"0": {"3": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "9": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "8": {"0": {"0": {"8": {"9": {"4": {"3": {"1": {"7": {"2": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}}}, "2": {"2": {"9": {"7": {"9": {"7": {"3": {"3": {"9": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 2}, "9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"4": {"0": {"0": {"4": {"3": {"7": {"6": {"3": {"6": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"2": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "3": {"1": {"9": {"7": {"7": {"0": {"1": {"7": {"5": {"1": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "5": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"9": {"6": {"8": {"3": {"4": {"3": {"2": {"0": {"2": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"2": {"6": {"0": {"7": {"7": {"0": {"9": {"7": {"5": {"1": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"2": {"6": {"6": {"0": {"1": {"4": {"5": {"4": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"5": {"2": {"5": {"0": {"9": {"6": {"6": {"8": {"4": {"8": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"9": {"1": {"1": {"1": {"6": {"3": {"7": {"3": {"0": {"6": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "9": {"1": {"5": {"5": {"7": {"0": {"6": {"9": {"5": {"1": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "1": {"2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "7": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"3": {"4": {"1": {"3": {"5": {"6": {"6": {"7": {"3": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"4": {"0": {"6": {"1": {"9": {"6": {"1": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "3": {"8": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"1": {"9": {"5": {"8": {"0": {"0": {"9": {"4": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"3": {"0": {"6": {"9": {"4": {"6": {"0": {"8": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"6": {"6": {"2": {"1": {"3": {"1": {"5": {"1": {"8": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"5": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1}, "ramanchada2.misc.constants.PST_RS_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 2}, "ramanchada2.misc.constants.polystyrene_rs": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 2.449489742783178}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 2.449489742783178}, "ramanchada2.misc.constants.NEON_WL": {"tf": 2.8284271247461903}}, "df": 11}, "5": {"0": {"0": {"0": {"0": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1, "x": {"2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}, "docs": {}, "df": 0}, "9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 2}}, "df": 1}, "1": {"0": {"9": {"4": {"0": {"9": {"1": {"8": {"1": {"3": {"2": {"0": {"3": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"1": {"9": {"9": {"1": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "9": {"3": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"4": {"1": {"8": {"4": {"6": {"0": {"2": {"4": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"7": {"2": {"7": {"7": {"7": {"5": {"7": {"1": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"4": {"0": {"1": {"3": {"6": {"0": {"1": {"1": {"2": {"8": {"1": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"2": {"7": {"7": {"9": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"2": {"9": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "8": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"0": {"4": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"4": {"8": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "5": {"4": {"7": {"0": {"4": {"5": {"8": {"7": {"7": {"8": {"2": {"2": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"5": {"0": {"8": {"5": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "7": {"5": {"5": {"3": {"0": {"8": {"8": {"1": {"7": {"5": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 5.196152422706632}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 4}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 4}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 4}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 4}}, "df": 5, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}}}, "1": {"0": {"3": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"0": {"8": {"7": {"9": {"9": {"0": {"2": {"1": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"6": {"0": {"7": {"1": {"8": {"9": {"8": {"0": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "4": {"7": {"1": {"6": {"5": {"5": {"3": {"2": {"8": {"8": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"0": {"4": {"2": {"2": {"8": {"4": {"6": {"3": {"2": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "5": {"8": {"7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"6": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "9": {"0": {"2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "9": {"1": {"1": {"9": {"5": {"9": {"6": {"0": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"7": {"8": {"7": {"7": {"4": {"6": {"1": {"7": {"0": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"1": {"6": {"4": {"1": {"2": {"0": {"9": {"1": {"3": {"9": {"6": {"8": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"0": {"8": {"0": {"6": {"0": {"5": {"8": {"6": {"9": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"0": {"0": {"7": {"9": {"1": {"3": {"5": {"1": {"2": {"4": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"9": {"2": {"2": {"2": {"3": {"7": {"1": {"8": {"1": {"8": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 5.656854249492381}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 6, "n": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 2.23606797749979}}, "df": 1}}}, "3": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"8": {"6": {"7": {"5": {"3": {"9": {"8": {"0": {"8": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 3}, "4": {"3": {"4": {"4": {"4": {"0": {"1": {"3": {"4": {"8": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "5": {"1": {"4": {"7": {"3": {"8": {"1": {"4": {"1": {"8": {"9": {"6": {"8": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"8": {"6": {"2": {"1": {"2": {"9": {"3": {"6": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"1": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "7": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"8": {"8": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"9": {"5": {"4": {"5": {"6": {"7": {"4": {"7": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"0": {"2": {"9": {"6": {"2": {"6": {"5": {"1": {"4": {"9": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "1": {"7": {"4": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"5": {"0": {"1": {"1": {"3": {"3": {"7": {"8": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"1": {"docs": {"ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "4": {"8": {"5": {"7": {"7": {"6": {"8": {"0": {"5": {"2": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"5": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"8": {"3": {"1": {"2": {"5": {"7": {"3": {"8": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 5}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"0": {"0": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}}}, "docs": {}, "df": 0}, "1": {"9": {"1": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "5": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"2": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"6": {"7": {"2": {"3": {"1": {"6": {"1": {"2": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"2": {"8": {"7": {"9": {"8": {"1": {"8": {"5": {"9": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "5": {"6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "8": {"6": {"3": {"1": {"9": {"8": {"1": {"5": {"6": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"5": {"2": {"2": {"6": {"4": {"7": {"8": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"1": {"2": {"4": {"3": {"2": {"6": {"1": {"7": {"2": {"0": {"0": {"7": {"7": {"8": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"2": {"7": {"0": {"3": {"2": {"9": {"9": {"0": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"5": {"5": {"1": {"4": {"2": {"2": {"3": {"1": {"9": {"6": {"8": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "9": {"1": {"7": {"7": {"0": {"9": {"0": {"9": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"1": {"6": {"2": {"5": {"1": {"1": {"8": {"3": {"3": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "6": {"5": {"8": {"2": {"8": {"0": {"8": {"9": {"5": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"9": {"3": {"4": {"2": {"4": {"0": {"3": {"6": {"3": {"5": {"1": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"9": {"2": {"7": {"7": {"8": {"9": {"9": {"3": {"4": {"3": {"9": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"5": {"1": {"3": {"5": {"4": {"4": {"1": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "7": {"0": {"0": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}}}, "2": {"5": {"1": {"9": {"4": {"4": {"1": {"4": {"3": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "2": {"5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "3": {"0": {"4": {"1": {"5": {"7": {"5": {"4": {"9": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"2": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"3": {"7": {"4": {"4": {"2": {"4": {"2": {"3": {"1": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "6": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"1": {"docs": {"ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "5": {"4": {"9": {"2": {"3": {"4": {"1": {"3": {"5": {"6": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"6": {"4": {"8": {"8": {"9": {"0": {"2": {"8": {"1": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"4": {"2": {"6": {"7": {"0": {"4": {"2": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "7": {"3": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "4": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "7": {"8": {"4": {"7": {"8": {"9": {"7": {"3": {"3": {"9": {"2": {"5": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "8": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"1": {"9": {"0": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"9": {"7": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"5": {"2": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "7": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.7320508075688772}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"7": {"5": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"6": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "1": {"2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"7": {"6": {"6": {"4": {"3": {"9": {"9": {"0": {"9": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "5": {"2": {"5": {"4": {"2": {"1": {"4": {"9": {"4": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "8": {"1": {"8": {"9": {"9": {"8": {"8": {"8": {"1": {"4": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "9": {"5": {"6": {"9": {"1": {"6": {"0": {"9": {"9": {"7": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "9": {"0": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 7}, "2": {"2": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"7": {"8": {"7": {"4": {"2": {"8": {"1": {"1": {"3": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "6": {"5": {"0": {"4": {"1": {"8": {"5": {"4": {"0": {"6": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "7": {"8": {"1": {"5": {"6": {"7": {"9": {"2": {"3": {"4": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 5}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "9": {"0": {"7": {"6": {"0": {"8": {"4": {"4": {"5": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"6": {"2": {"3": {"6": {"3": {"2": {"3": {"8": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.PST_RS_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 2}, "ramanchada2.misc.constants.polystyrene_rs": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 2.23606797749979}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 2}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 2.8284271247461903}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 2.8284271247461903}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 2}, "ramanchada2.misc.constants.NEON_WL": {"tf": 3.4641016151377544}}, "df": 12, "m": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "x": {"2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "s": {"docs": {}, "df": 0, "x": {"5": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "6": {"0": {"0": {"0": {"0": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "x": {"2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}}}}, "docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1, "x": {"4": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 2.449489742783178}}, "df": 1}, "docs": {}, "df": 0}}}}, "2": {"4": {"4": {"0": {"9": {"4": {"3": {"3": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 2}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 2}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 2}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 2}}, "df": 5}, "1": {"0": {"4": {"6": {"7": {"8": {"3": {"2": {"6": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 5}, "3": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "4": {"1": {"4": {"8": {"1": {"1": {"5": {"5": {"3": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"7": {"2": {"8": {"1": {"0": {"8": {"4": {"1": {"8": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"1": {"2": {"6": {"9": {"1": {"4": {"6": {"6": {"0": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "7": {"1": {"7": {"2": {"4": {"2": {"6": {"4": {"8": {"6": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "8": {"5": {"4": {"6": {"9": {"3": {"0": {"3": {"3": {"1": {"8": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"8": {"4": {"2": {"9": {"8": {"1": {"6": {"9": {"8": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"9": {"7": {"7": {"3": {"2": {"4": {"2": {"6": {"7": {"1": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 3.872983346207417}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 2.8284271247461903}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 2.8284271247461903}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 2.8284271247461903}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 2.8284271247461903}}, "df": 5}, "1": {"0": {"6": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"6": {"3": {"3": {"6": {"2": {"6": {"4": {"4": {"9": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"0": {"2": {"4": {"5": {"5": {"0": {"8": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "4": {"5": {"8": {"5": {"7": {"3": {"8": {"3": {"6": {"2": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "6": {"3": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "docs": {}, "df": 0}, "2": {"0": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {"ramanchada2.misc.constants.PST_RS_dict": {"tf": 1}, "ramanchada2.misc.constants.polystyrene_rs": {"tf": 1}}, "df": 2}, "1": {"4": {"4": {"4": {"2": {"0": {"1": {"3": {"1": {"2": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"3": {"3": {"3": {"5": {"4": {"2": {"2": {"2": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "2": {"2": {"3": {"3": {"1": {"2": {"1": {"9": {"1": {"1": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"4": {"8": {"5": {"0": {"1": {"1": {"0": {"7": {"4": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"2": {"0": {"5": {"6": {"8": {"7": {"5": {"9": {"4": {"4": {"7": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"4": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "8": {"1": {"1": {"7": {"9": {"1": {"3": {"8": {"3": {"3": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"6": {"3": {"8": {"7": {"7": {"9": {"6": {"6": {"1": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "3": {"0": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "1": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 6}, "3": {"4": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 3}, "ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 10}, "4": {"4": {"5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"7": {"3": {"3": {"0": {"4": {"1": {"2": {"5": {"9": {"5": {"8": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"2": {"0": {"6": {"3": {"4": {"9": {"2": {"0": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"0": {"1": {"8": {"0": {"3": {"5": {"2": {"8": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"8": {"8": {"1": {"7": {"8": {"8": {"5": {"6": {"5": {"8": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"4": {"4": {"1": {"5": {"3": {"8": {"7": {"4": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 8}, "9": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "4": {"0": {"5": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {}, "df": 0}, "6": {"1": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 9}, "1": {"0": {"4": {"2": {"2": {"6": {"2": {"0": {"9": {"4": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "2": {"9": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 3}, "4": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "9": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"1": {"0": {"6": {"7": {"3": {"3": {"8": {"8": {"1": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"0": {"0": {"0": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}}}, "docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}}}, "6": {"7": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "7": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 8}, "2": {"5": {"9": {"3": {"9": {"9": {"9": {"2": {"2": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "8": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 8}, "5": {"4": {"7": {"1": {"5": {"4": {"8": {"9": {"5": {"3": {"8": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"4": {"5": {"5": {"1": {"4": {"2": {"2": {"3": {"1": {"7": {"8": {"4": {"8": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"7": {"5": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"7": {"1": {"8": {"5": {"3": {"3": {"9": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"8": {"1": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 8}, "docs": {}, "df": 0}, "6": {"0": {"7": {"7": {"6": {"2": {"7": {"0": {"1": {"1": {"6": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "3": {"4": {"2": {"5": {"2": {"7": {"0": {"3": {"2": {"3": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"2": {"4": {"7": {"3": {"9": {"6": {"6": {"5": {"5": {"1": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "5": {"7": {"8": {"0": {"9": {"0": {"9": {"3": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"4": {"3": {"7": {"6": {"4": {"2": {"3": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"7": {"7": {"6": {"0": {"5": {"3": {"1": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 5}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 6}, "7": {"4": {"2": {"2": {"7": {"3": {"6": {"0": {"0": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 8}, "8": {"1": {"8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "2": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "9": {"3": {"4": {"2": {"1": {"9": {"5": {"7": {"1": {"0": {"0": {"9": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"7": {"2": {"6": {"9": {"6": {"3": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"0": {"3": {"4": {"8": {"0": {"5": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "6": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"8": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"9": {"7": {"6": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"1": {"5": {"7": {"1": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"6": {"8": {"6": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"1": {"5": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "2": {"9": {"6": {"3": {"0": {"7": {"9": {"8": {"3": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"0": {"6": {"2": {"5": {"4": {"3": {"8": {"7": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"8": {"9": {"1": {"1": {"9": {"3": {"1": {"8": {"1": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 8}, "5": {"7": {"3": {"6": {"9": {"6": {"1": {"4": {"2": {"4": {"8": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"4": {"6": {"1": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"9": {"0": {"9": {"1": {"3": {"2": {"0": {"4": {"8": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"2": {"2": {"6": {"2": {"5": {"4": {"2": {"8": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"7": {"9": {"2": {"0": {"3": {"5": {"6": {"0": {"7": {"8": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"2": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"2": {"7": {"2": {"0": {"4": {"2": {"7": {"3": {"4": {"2": {"3": {"0": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "7": {"1": {"1": {"4": {"3": {"7": {"7": {"2": {"1": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"5": {"3": {"9": {"6": {"7": {"2": {"9": {"0": {"8": {"8": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"3": {"3": {"4": {"7": {"9": {"2": {"1": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"1": {"8": {"0": {"8": {"1": {"4": {"1": {"3": {"6": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"1": {"2": {"2": {"1": {"5": {"6": {"9": {"3": {"8": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"7": {"2": {"6": {"9": {"0": {"2": {"2": {"8": {"4": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"0": {"7": {"4": {"8": {"2": {"9": {"9": {"3": {"1": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"2": {"7": {"7": {"8": {"9": {"9": {"3": {"4": {"3": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "4": {"4": {"7": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"4": {"2": {"4": {"0": {"3": {"5": {"3": {"8": {"7": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"1": {"2": {"9": {"7": {"7": {"2": {"9": {"7": {"3": {"4": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"3": {"2": {"5": {"5": {"9": {"9": {"1": {"8": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"1": {"5": {"2": {"6": {"2": {"0": {"8": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 3}, "2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "4": {"7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"1": {"2": {"4": {"5": {"6": {"3": {"5": {"1": {"1": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"0": {"2": {"0": {"7": {"5": {"8": {"6": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"8": {"6": {"3": {"1": {"0": {"1": {"0": {"4": {"6": {"4": {"3": {"7": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"3": {"9": {"3": {"6": {"8": {"4": {"9": {"5": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1}, "ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 2}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 2.449489742783178}}, "df": 13}, "7": {"0": {"0": {"2": {"1": {"8": {"8": {"1": {"8": {"3": {"8": {"0": {"8": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"8": {"0": {"2": {"7": {"1": {"7": {"2": {"7": {"9": {"0": {"0": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"7": {"8": {"0": {"1": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"3": {"9": {"5": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 5}, "1": {"3": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "3": {"6": {"9": {"2": {"0": {"1": {"6": {"4": {"0": {"8": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "4": {"1": {"1": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"1": {"docs": {"ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 5}, "9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 7}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 3}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 2}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 2}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 2}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 2}}, "df": 5}, "1": {"0": {"7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "1": {"6": {"2": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "7": {"7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"1": {"5": {"0": {"7": {"7": {"1": {"9": {"0": {"5": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "3": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "5": {"2": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"0": {"6": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"1": {"docs": {"ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "8": {"4": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"1": {"9": {"6": {"2": {"4": {"3": {"8": {"8": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"8": {"3": {"8": {"6": {"2": {"5": {"8": {"3": {"8": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"6": {"9": {"0": {"7": {"3": {"3": {"4": {"0": {"1": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 5}, "2": {"5": {"3": {"3": {"3": {"6": {"6": {"3": {"6": {"1": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 5}, "4": {"9": {"5": {"7": {"3": {"6": {"2": {"0": {"7": {"0": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "5": {"4": {"7": {"1": {"2": {"8": {"3": {"2": {"0": {"6": {"8": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"1": {"2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 5}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"0": {"8": {"2": {"9": {"9": {"1": {"4": {"7": {"9": {"9": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"7": {"5": {"1": {"0": {"9": {"8": {"3": {"0": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"0": {"4": {"1": {"5": {"7": {"5": {"4": {"9": {"2": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"5": {"4": {"3": {"7": {"0": {"4": {"3": {"3": {"6": {"6": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 5}, "6": {"9": {"6": {"1": {"4": {"3": {"0": {"5": {"1": {"6": {"2": {"6": {"3": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"1": {"6": {"7": {"1": {"3": {"7": {"1": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "7": {"0": {"8": {"4": {"7": {"4": {"1": {"2": {"4": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"6": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"0": {"4": {"8": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "5": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"6": {"5": {"3": {"0": {"0": {"3": {"2": {"2": {"4": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"9": {"6": {"5": {"7": {"0": {"3": {"7": {"1": {"3": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"0": {"3": {"1": {"6": {"7": {"4": {"4": {"7": {"4": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"0": {"7": {"7": {"6": {"2": {"7": {"0": {"1": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 5}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 5}, "docs": {}, "df": 0}, "5": {"0": {"5": {"4": {"7": {"0": {"4": {"5": {"5": {"8": {"6": {"5": {"1": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"3": {"5": {"9": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"5": {"5": {"4": {"3": {"9": {"4": {"1": {"3": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"4": {"5": {"9": {"6": {"7": {"3": {"2": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"1": {"3": {"8": {"0": {"0": {"7": {"1": {"1": {"9": {"8": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"3": {"5": {"2": {"2": {"9": {"7": {"5": {"7": {"0": {"0": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 5}, "3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "5": {"6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "6": {"3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "9": {"2": {"9": {"9": {"7": {"8": {"1": {"1": {"8": {"1": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"8": {"8": {"2": {"7": {"4": {"1": {"5": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"0": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "8": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"1": {"docs": {"ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"3": {"4": {"4": {"9": {"0": {"5": {"9": {"1": {"4": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"6": {"8": {"4": {"1": {"1": {"0": {"5": {"3": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"1": {"0": {"9": {"4": {"6": {"3": {"9": {"4": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "5": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "6": {"3": {"7": {"8": {"1": {"7": {"6": {"7": {"8": {"5": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"7": {"4": {"1": {"6": {"6": {"6": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "9": {"5": {"9": {"1": {"2": {"2": {"4": {"7": {"3": {"7": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"0": {"2": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "9": {"7": {"5": {"0": {"5": {"6": {"9": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"7": {"0": {"9": {"5": {"7": {"2": {"9": {"4": {"9": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 5}, "4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 5}, "5": {"1": {"1": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"1": {"0": {"2": {"0": {"4": {"0": {"8": {"1": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"4": {"9": {"6": {"6": {"5": {"7": {"4": {"0": {"7": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"4": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"0": {"9": {"5": {"8": {"2": {"1": {"5": {"9": {"2": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"6": {"9": {"8": {"0": {"3": {"0": {"6": {"3": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 5}, "5": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 7.3484692283495345}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 6, "n": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.4142135623730951}}, "df": 1}}}, "6": {"3": {"1": {"6": {"3": {"9": {"3": {"3": {"6": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 2}, "7": {"0": {"4": {"4": {"2": {"1": {"4": {"3": {"1": {"6": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"4": {"6": {"1": {"7": {"0": {"6": {"7": {"8": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"3": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "7": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 5}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"5": {"6": {"0": {"7": {"1": {"0": {"6": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 2}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 2}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 6}, "3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 6}, "4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 11}, "5": {"docs": {"ramanchada2.misc.constants.PST_RS_dict": {"tf": 1}, "ramanchada2.misc.constants.polystyrene_rs": {"tf": 1}}, "df": 2}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "9": {"1": {"5": {"2": {"5": {"3": {"0": {"6": {"3": {"8": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 2.23606797749979}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 2.23606797749979}, "ramanchada2.misc.constants.NEON_WL": {"tf": 2.6457513110645907}}, "df": 10}, "8": {"0": {"0": {"0": {"0": {"docs": {}, "df": 0, "x": {"5": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "x": {"2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 2.8284271247461903}}, "df": 1}, "docs": {}, "df": 0}}}}, "1": {"7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"5": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 2.23606797749979}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 2.23606797749979}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 2.23606797749979}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 2.23606797749979}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 2.23606797749979}}, "df": 5, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1, "x": {"1": {"0": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}, "2": {"7": {"2": {"1": {"0": {"8": {"8": {"4": {"2": {"9": {"4": {"8": {"8": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 3}, "3": {"0": {"6": {"3": {"4": {"5": {"7": {"3": {"3": {"0": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"1": {"4": {"8": {"9": {"5": {"4": {"2": {"9": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"2": {"9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"3": {"6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 2}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 2}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 8}, "9": {"4": {"2": {"8": {"8": {"2": {"0": {"2": {"9": {"5": {"1": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 4.69041575982343}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 2.23606797749979}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 2.23606797749979}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 2.23606797749979}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 2.23606797749979}}, "df": 5}, "1": {"0": {"1": {"6": {"7": {"0": {"6": {"3": {"3": {"1": {"2": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 8}, "2": {"7": {"1": {"8": {"4": {"9": {"6": {"6": {"8": {"7": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 6}, "3": {"0": {"5": {"5": {"8": {"6": {"4": {"5": {"2": {"5": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 8}, "4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "6": {"4": {"6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "8": {"0": {"1": {"9": {"1": {"2": {"5": {"9": {"7": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}}, "df": 1}, "7": {"3": {"1": {"9": {"2": {"6": {"7": {"1": {"3": {"9": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"5": {"9": {"4": {"1": {"0": {"4": {"3": {"0": {"7": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "5": {"7": {"7": {"4": {"8": {"1": {"9": {"5": {"8": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "1": {"6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "3": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "4": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "5": {"5": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 6}, "6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 2.449489742783178}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 2.449489742783178}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 6}, "7": {"6": {"2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 3}, "6": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"9": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"8": {"5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 5}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"0": {"1": {"4": {"1": {"7": {"4": {"5": {"3": {"6": {"1": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 8}, "1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 6}, "3": {"5": {"3": {"0": {"5": {"5": {"0": {"0": {"8": {"1": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"4": {"6": {"7": {"1": {"2": {"0": {"0": {"4": {"0": {"2": {"3": {"3": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"5": {"8": {"9": {"9": {"6": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "8": {"6": {"1": {"8": {"1": {"2": {"3": {"4": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 8}, "7": {"1": {"7": {"2": {"6": {"0": {"9": {"6": {"5": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 2}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 2}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 2}}, "df": 8}, "9": {"9": {"0": {"4": {"2": {"8": {"5": {"0": {"3": {"4": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"1": {"2": {"6": {"9": {"8": {"4": {"1": {"2": {"1": {"4": {"0": {"4": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 2}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 2}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 6}, "2": {"7": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"9": {"8": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 8}, "7": {"2": {"1": {"1": {"3": {"6": {"0": {"8": {"2": {"6": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 6}, "9": {"4": {"7": {"9": {"3": {"3": {"1": {"0": {"1": {"9": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 8}, "docs": {}, "df": 0}, "5": {"0": {"2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "3": {"4": {"0": {"1": {"3": {"6": {"0": {"5": {"4": {"3": {"1": {"0": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"9": {"8": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"5": {"9": {"3": {"7": {"7": {"1": {"6": {"7": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"2": {"1": {"2": {"6": {"8": {"5": {"3": {"7": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"4": {"3": {"7": {"9": {"9": {"3": {"0": {"5": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 3}, "5": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 8}, "5": {"6": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 5}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"7": {"6": {"2": {"3": {"3": {"0": {"1": {"8": {"0": {"8": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 8}, "8": {"5": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 8}, "docs": {}, "df": 0}, "6": {"0": {"9": {"9": {"8": {"2": {"6": {"6": {"8": {"5": {"9": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 3}, "2": {"1": {"4": {"4": {"4": {"2": {"0": {"1": {"3": {"1": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"0": {"6": {"3": {"8": {"6": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"1": {"0": {"3": {"8": {"1": {"5": {"9": {"4": {"8": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "9": {"4": {"5": {"5": {"7": {"8": {"2": {"3": {"1": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 8}, "4": {"3": {"5": {"0": {"0": {"3": {"7": {"6": {"1": {"5": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 5}, "5": {"6": {"4": {"2": {"5": {"6": {"4": {"2": {"8": {"5": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 2}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 2}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 6}, "6": {"4": {"5": {"4": {"1": {"9": {"0": {"9": {"1": {"8": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 6}, "7": {"1": {"6": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"1": {"docs": {"ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "3": {"6": {"7": {"0": {"4": {"1": {"2": {"8": {"8": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 3}, "8": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "9": {"6": {"5": {"8": {"5": {"7": {"1": {"2": {"6": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.NEON_WL": {"tf": 2}}, "df": 6}, "docs": {}, "df": 0}, "7": {"0": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 8}, "1": {"1": {"5": {"6": {"1": {"8": {"8": {"8": {"6": {"3": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"3": {"4": {"9": {"6": {"2": {"9": {"2": {"4": {"1": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"2": {"3": {"0": {"5": {"2": {"2": {"0": {"2": {"2": {"8": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"2": {"7": {"3": {"5": {"2": {"2": {"9": {"7": {"5": {"7": {"1": {"3": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"7": {"0": {"8": {"7": {"7": {"3": {"4": {"4": {"7": {"2": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"4": {"6": {"1": {"7": {"0": {"6": {"7": {"8": {"0": {"5": {"1": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 8}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 2}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 2}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 2}}, "df": 8}, "9": {"4": {"5": {"7": {"2": {"4": {"2": {"0": {"3": {"2": {"1": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"6": {"6": {"3": {"8": {"9": {"2": {"2": {"0": {"2": {"0": {"8": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"3": {"5": {"3": {"5": {"2": {"3": {"2": {"9": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 6}, "4": {"2": {"7": {"7": {"9": {"0": {"5": {"4": {"5": {"8": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"9": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "6": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 5}, "7": {"1": {"1": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "9": {"0": {"8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "1": {"0": {"8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {}, "df": 0}, "3": {"9": {"7": {"9": {"2": {"4": {"6": {"6": {"4": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "2": {"5": {"8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"7": {"7": {"8": {"9": {"5": {"5": {"2": {"9": {"8": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "9": {"6": {"7": {"1": {"7": {"7": {"2": {"4": {"2": {"8": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"2": {"8": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "7": {"1": {"5": {"5": {"3": {"6": {"1": {"0": {"5": {"0": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"6": {"8": {"0": {"0": {"8": {"3": {"6": {"7": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.PST_RS_dict": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.polystyrene_rs": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 2.449489742783178}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 2.449489742783178}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 2.6457513110645907}}, "df": 12}, "9": {"0": {"0": {"0": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.4142135623730951}}, "df": 1}}}, "1": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"2": {"6": {"7": {"5": {"7": {"3": {"6": {"0": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.4142135623730951}}, "df": 1}, "5": {"6": {"5": {"0": {"6": {"8": {"1": {"3": {"3": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"8": {"0": {"3": {"8": {"8": {"7": {"7": {"7": {"8": {"8": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"3": {"5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"2": {"8": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "8": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "9": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1}, "ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 3.3166247903554}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 6}, "1": {"0": {"2": {"8": {"4": {"4": {"6": {"3": {"8": {"9": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"3": {"0": {"0": {"8": {"2": {"3": {"6": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "9": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "1": {"5": {"6": {"4": {"6": {"2": {"5": {"4": {"5": {"3": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "3": {"4": {"3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "4": {"6": {"6": {"0": {"8": {"3": {"1": {"5": {"0": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "5": {"8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "8": {"3": {"1": {"9": {"3": {"4": {"8": {"3": {"9": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1}}, "df": 1}, "2": {"0": {"0": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"5": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "1": {"1": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "2": {"4": {"8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 5}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 5}, "3": {"4": {"1": {"8": {"3": {"8": {"2": {"8": {"9": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 3}, "4": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"0": {"4": {"2": {"4": {"1": {"2": {"4": {"8": {"8": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"9": {"2": {"7": {"9": {"3": {"5": {"5": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"3": {"9": {"3": {"9": {"1": {"9": {"8": {"8": {"0": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"3": {"7": {"6": {"4": {"1": {"7": {"2": {"3": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"4": {"1": {"8": {"6": {"7": {"3": {"1": {"8": {"1": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "8": {"9": {"9": {"9": {"6": {"8": {"4": {"4": {"4": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 5}, "9": {"7": {"0": {"5": {"2": {"1": {"5": {"4": {"1": {"9": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1}}, "df": 1}, "3": {"0": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "1": {"9": {"7": {"2": {"7": {"8": {"9": {"8": {"5": {"9": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 5}, "2": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "5": {"6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "7": {"2": {"1": {"6": {"8": {"0": {"3": {"8": {"8": {"9": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "8": {"7": {"3": {"0": {"8": {"5": {"3": {"3": {"3": {"3": {"8": {"3": {"4": {"3": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1}}, "df": 1}, "4": {"0": {"8": {"0": {"6": {"0": {"5": {"4": {"9": {"3": {"3": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "3": {"1": {"0": {"7": {"2": {"2": {"1": {"0": {"0": {"6": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"2": {"9": {"5": {"4": {"0": {"4": {"8": {"1": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "6": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "6": {"7": {"0": {"8": {"7": {"2": {"9": {"3": {"9": {"4": {"5": {"5": {"1": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"9": {"1": {"1": {"1": {"7": {"6": {"9": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "9": {"5": {"4": {"6": {"5": {"9": {"5": {"4": {"1": {"2": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "7": {"3": {"0": {"8": {"3": {"9": {"8": {"2": {"1": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "9": {"2": {"5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {}, "df": 0}, "6": {"9": {"8": {"4": {"3": {"6": {"2": {"7": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1}}, "df": 1}, "5": {"0": {"0": {"5": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"8": {"docs": {"ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 2}, "9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}}}, "docs": {}, "df": 0}, "1": {"7": {"1": {"9": {"7": {"8": {"5": {"4": {"2": {"1": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"3": {"0": {"8": {"6": {"2": {"1": {"7": {"0": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"7": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "3": {"7": {"6": {"0": {"3": {"0": {"1": {"4": {"4": {"5": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 8}, "4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "5": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 5}, "8": {"6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "9": {"1": {"8": {"3": {"6": {"7": {"3": {"4": {"6": {"9": {"4": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1}}, "df": 1}, "6": {"1": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "3": {"3": {"1": {"7": {"8": {"6": {"4": {"7": {"1": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"7": {"1": {"8": {"8": {"2": {"0": {"8": {"6": {"1": {"7": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"0": {"2": {"7": {"5": {"4": {"5": {"4": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 7}, "7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "8": {"3": {"4": {"1": {"0": {"6": {"1": {"4": {"3": {"7": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "7": {"0": {"4": {"2": {"7": {"1": {"1": {"6": {"2": {"8": {"6": {"8": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"9": {"6": {"1": {"6": {"2": {"5": {"8": {"5": {"4": {"2": {"5": {"2": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"2": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"5": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "8": {"7": {"6": {"8": {"7": {"4": {"5": {"7": {"8": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "7": {"3": {"2": {"4": {"2": {"6": {"3": {"0": {"3": {"8": {"6": {"docs": {"ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"0": {"7": {"6": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"3": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"9": {"8": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 5}, "2": {"4": {"9": {"4": {"5": {"2": {"9": {"5": {"4": {"0": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"0": {"6": {"0": {"3": {"1": {"8": {"8": {"2": {"5": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"7": {"6": {"4": {"9": {"0": {"9": {"5": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "3": {"3": {"4": {"0": {"2": {"8": {"3": {"9": {"0": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"4": {"3": {"3": {"0": {"9": {"7": {"7": {"5": {"5": {"docs": {"ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"4": {"1": {"4": {"2": {"3": {"7": {"2": {"6": {"6": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"4": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"1": {"1": {"9": {"3": {"0": {"9": {"5": {"6": {"7": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"7": {"0": {"1": {"8": {"2": {"3": {"8": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"6": {"0": {"4": {"0": {"2": {"5": {"7": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"1": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"3": {"7": {"1": {"4": {"0": {"2": {"3": {"5": {"2": {"2": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"7": {"2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "4": {"0": {"4": {"1": {"6": {"6": {"0": {"9": {"5": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "3": {"7": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"0": {"2": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"9": {"2": {"3": {"2": {"4": {"3": {"4": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"9": {"1": {"9": {"1": {"9": {"6": {"1": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"2": {"4": {"5": {"2": {"8": {"4": {"9": {"5": {"7": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"1": {"8": {"2": {"9": {"8": {"1": {"8": {"0": {"6": {"docs": {"ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"8": {"docs": {"ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1}}, "df": 2}, "9": {"docs": {"ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.constants.PST_RS_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.polystyrene_rs": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.4142135623730951}}, "df": 10}, "docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 27.568097504180443}, "ramanchada2.auxiliary.spectra.datasets2.loc": {"tf": 1}, "ramanchada2.auxiliary.spectra.simulated.loc": {"tf": 1}, "ramanchada2.auxiliary.spectra.simulated.FILES": {"tf": 2.23606797749979}, "ramanchada2.io.HSDS.logger": {"tf": 1.4142135623730951}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.logger": {"tf": 1.4142135623730951}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 13.038404810405298}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 13.038404810405298}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 13.076696830622021}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 13.076696830622021}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 6.164414002968976}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 7.745966692414834}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 7.416198487095663}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1.4142135623730951}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"tf": 1.4142135623730951}, "ramanchada2.misc.spectrum_deco.spectrum_filter.logger": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_config": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 2.8284271247461903}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_config": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 2.449489742783178}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.positive_not_multiple.PositiveOddInt": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_config": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_config": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 2.6457513110645907}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldTyping": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.logger": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_config": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 3.1622776601683795}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_computed_fields": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.logger": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.fit_peaks.logger": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.fit_peaks.available_models": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.fit_peaks.available_models_type": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.logger": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.logger": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_config": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 3.1622776601683795}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_computed_fields": {"tf": 1}}, "df": 43, "x": {"1": {"0": {"0": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"0": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "7": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 47.74934554525329}, "ramanchada2.auxiliary.spectra.datasets2.loc": {"tf": 1.4142135623730951}, "ramanchada2.auxiliary.spectra.simulated.loc": {"tf": 1.4142135623730951}, "ramanchada2.auxiliary.spectra.simulated.FILES": {"tf": 3.4641016151377544}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 2.449489742783178}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 2.449489742783178}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 8.94427190999916}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"tf": 4.242640687119285}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_config": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 2.8284271247461903}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_config": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 2.8284271247461903}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_config": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 2.449489742783178}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 4}, "ramanchada2.spectrum.peaks.fit_peaks.available_models": {"tf": 3.7416573867739413}, "ramanchada2.spectrum.peaks.fit_peaks.available_models_type": {"tf": 3.7416573867739413}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 4.242640687119285}}, "df": 18}, "docs": {}, "df": 0}, "5": {"0": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.constants.neon_rs_spe": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.7320508075688772}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1.4142135623730951}}, "df": 3}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "p": {"0": {"1": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 3}}, "df": 1}, "2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 3}}, "df": 1}, "3": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 3}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 9.746794344808963}, "ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1}}, "df": 2}, "r": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.logger": {"tf": 1}}, "df": 2}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 9.746794344808963}, "ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.misc.constants.neon_rs_spe": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.7320508075688772}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"tf": 1}}, "df": 3, "s": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {"ramanchada2.misc.spectrum_deco.spectrum_filter.logger": {"tf": 1}}, "df": 1}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 2}}, "df": 4}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.auxiliary.spectra.simulated.FILES": {"tf": 1.7320508075688772}}, "df": 1, "a": {"docs": {"ramanchada2.auxiliary.spectra.simulated.FILES": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldTyping": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}}, "df": 1, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldTyping": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldTyping": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "w": {"5": {"3": {"2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1, "/": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 2}}, "df": 1, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "q": {"0": {"4": {"3": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"0": {"2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "1": {"0": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"5": {"3": {"2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"2": {"2": {"4": {"2": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"0": {"2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "1": {"0": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "s": {"0": {"docs": {}, "df": 0, "b": {"0": {"2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "1": {"0": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "n": {"0": {"2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "1": {"0": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "p": {"0": {"2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "1": {"0": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "1": {"docs": {}, "df": 0, "n": {"0": {"2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "1": {"0": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"1": {"0": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"0": {"2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "1": {"0": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"5": {"3": {"2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}}}}}}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"8": {"5": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"0": {"2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "s": {"0": {"docs": {}, "df": 0, "b": {"0": {"2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "n": {"0": {"2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "p": {"0": {"2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "1": {"docs": {}, "df": 0, "n": {"0": {"2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"0": {"2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"0": {"2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"2": {"2": {"4": {"1": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}}}, "e": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "k": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 7.54983443527075}, "ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 2.23606797749979}}, "df": 2}}}}, "y": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 9.746794344808963}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 2.6457513110645907}, "ramanchada2.misc.spectrum_deco.spectrum_filter.logger": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.logger": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.spectrum.peaks.get_fitted_peaks.logger": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1.4142135623730951}}, "df": 1}, "d": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 2}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 2}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 2.8284271247461903}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 2.23606797749979}}, "df": 5}}}}}}}}, "m": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 6.4031242374328485}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 6.4031242374328485}, "ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 2.23606797749979}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}}, "n": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.misc.constants.neon_rs_spe": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.7320508075688772}}, "df": 2}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.io.experimental.rc1_parser.txt_format_readers.logger": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"6": {"4": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 18.275666882497067}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 18.275666882497067}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 18.275666882497067}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 18.275666882497067}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 8.602325267042627}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 10.862780491200215}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 10.392304845413264}}, "df": 7}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 2}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldTyping": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1.7320508075688772}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2.misc.constants.neon_rs_spe": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.7320508075688772}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"tf": 3}, "ramanchada2.spectrum.creators.from_cache_or_calc.logger": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 2}}, "df": 4}}}}}, "m": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 6.4031242374328485}}, "df": 1, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 2.449489742783178}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectrum.peaks.fit_peaks.available_models": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.available_models_type": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2.misc.spectrum_deco.spectrum_filter.logger": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1.4142135623730951}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "i": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "r": {"5": {"3": {"2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 3.1622776601683795}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"8": {"5": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 5.196152422706632}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"5": {"3": {"2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 3.7416573867739413}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"8": {"5": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 4.69041575982343}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}}, "c": {"docs": {}, "df": 0, "v": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 9.486832980505138}}, "df": 1}}, "o": {"docs": {"ramanchada2.io.experimental.rc1_parser.txt_format_readers.logger": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1.7320508075688772}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 3.4641016151377544}}, "df": 1}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 9.746794344808963}, "ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1}}, "df": 2}}}}}, "c": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}}, "df": 1}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.protocols.calibration.logger": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 3.1622776601683795}, "ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectrum.peaks.fit_peaks.available_models": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.available_models_type": {"tf": 1}}, "df": 2}}}}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.loc": {"tf": 1}, "ramanchada2.auxiliary.spectra.simulated.loc": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"2": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.loc": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.auxiliary.spectra.simulated.loc": {"tf": 1}}, "df": 1, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.auxiliary.spectra.simulated.FILES": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.auxiliary.spectra.simulated.FILES": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.io.experimental.rc1_parser.txt_format_readers.logger": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}}, "df": 1}}, "b": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.auxiliary.spectra.simulated.FILES": {"tf": 1.4142135623730951}}, "df": 1}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}}, "df": 1, "s": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.logger": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.get_fitted_peaks.logger": {"tf": 1.4142135623730951}}, "df": 4}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"4": {"docs": {"ramanchada2.spectrum.peaks.fit_peaks.available_models": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.available_models_type": {"tf": 1}}, "df": 2}, "7": {"docs": {"ramanchada2.spectrum.peaks.fit_peaks.available_models": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.available_models_type": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}}}}}}, "t": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 9.746794344808963}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.logger": {"tf": 1}}, "df": 2}}, "o": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1.4142135623730951}}, "df": 1, "p": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 4.242640687119285}, "ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 2.23606797749979}}, "df": 2}, "x": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"3": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.loc": {"tf": 1}, "ramanchada2.auxiliary.spectra.simulated.loc": {"tf": 1}, "ramanchada2.auxiliary.spectra.simulated.FILES": {"tf": 1.7320508075688772}}, "df": 3}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_config": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldTyping": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 2.8284271247461903}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}}, "df": 9, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"tf": 1}}, "df": 1}}}}}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_config": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_config": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.misc.types.positive_not_multiple.PositiveOddInt": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldTyping": {"tf": 2.6457513110645907}, "ramanchada2.spectrum.peaks.fit_peaks.available_models_type": {"tf": 1}}, "df": 3}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 9.746794344808963}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.misc.constants.neon_rs_spe": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.7320508075688772}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "d": {"5": {"3": {"2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "n": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.4142135623730951}}, "df": 1}}}, "t": {"docs": {"ramanchada2.io.HSDS.logger": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.logger": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 2.449489742783178}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 2.449489742783178}, "ramanchada2.misc.spectrum_deco.spectrum_filter.logger": {"tf": 1}, "ramanchada2.protocols.calibration.logger": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.logger": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.logger": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.logger": {"tf": 1}, "ramanchada2.spectrum.spectrum.logger": {"tf": 1}}, "df": 10}, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.io.experimental.rc1_parser.txt_format_readers.logger": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_filter.logger": {"tf": 1}, "ramanchada2.protocols.calibration.logger": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.logger": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.logger": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.logger": {"tf": 1}, "ramanchada2.spectrum.spectrum.logger": {"tf": 1}}, "df": 7}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.peaks.fit_peaks.available_models": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.available_models_type": {"tf": 1}}, "df": 2}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.constants.neon_rs_spe": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.7320508075688772}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"tf": 1.4142135623730951}}, "df": 3}, "a": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1.4142135623730951}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}}, "df": 1, "[": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldTyping": {"tf": 1}}, "df": 1}}}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectrum.peaks.fit_peaks.available_models_type": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}}, "df": 2}}}}}}}, "w": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 9.746794344808963}}, "df": 1}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.io.HSDS.logger": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.logger": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_filter.logger": {"tf": 1}, "ramanchada2.protocols.calibration.logger": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.logger": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.logger": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.logger": {"tf": 1}, "ramanchada2.spectrum.spectrum.logger": {"tf": 1}}, "df": 8}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}, "s": {"0": {"docs": {}, "df": 0, "b": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 3.3166247903554}, "ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1}}, "df": 2}, "n": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 3.1622776601683795}, "ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1}}, "df": 2}, "p": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 3.1622776601683795}, "ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1}}, "df": 2}}, "1": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 3.1622776601683795}, "ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1}}, "df": 2}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 9.746794344808963}, "ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 2.23606797749979}, "ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1}}, "df": 2}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.misc.constants.neon_rs_spe": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}}, "df": 4}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"tf": 1}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 3.1622776601683795}, "ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1}}, "df": 2, "e": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1.7320508075688772}}, "df": 1}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldTyping": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "m": {"2": {"2": {"4": {"1": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.4142135623730951}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1.7320508075688772}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2.misc.spectrum_deco.spectrum_filter.logger": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_cache_or_calc.logger": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.logger": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.logger": {"tf": 1}, "ramanchada2.spectrum.spectrum.logger": {"tf": 1.4142135623730951}}, "df": 5}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 2}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}}, "df": 1}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1.7320508075688772}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldTyping": {"tf": 2.449489742783178}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 3.3166247903554}, "ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1.4142135623730951}}, "df": 2}}, "w": {"2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 3.1622776601683795}, "ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"5": {"3": {"2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"8": {"5": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "r": {"7": {"8": {"5": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "p": {"docs": {"ramanchada2.misc.constants.neon_rs_dict": {"tf": 18.275666882497067}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 18.275666882497067}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 18.275666882497067}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 18.275666882497067}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 8.602325267042627}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 10.862780491200215}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 10.392304845413264}}, "df": 7}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.constants.neon_rs_spe": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.7320508075688772}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1.7320508075688772}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 2}}, "df": 1}}}}}}}, "m": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1.4142135623730951}}, "df": 1}, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldTyping": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldTyping": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "l": {"0": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 2}}, "df": 1}, "docs": {}, "df": 0}, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.io.experimental.rc1_parser.txt_format_readers.logger": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"tf": 1}}, "df": 1}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {}, "df": 0, "o": {"6": {"3": {"3": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}}}, "s": {"0": {"docs": {}, "df": 0, "b": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "n": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "p": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}}, "1": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0, "i": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}}}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"8": {"5": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "q": {"0": {"4": {"3": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"1": {"0": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"7": {"8": {"5": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"1": {"0": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "s": {"0": {"docs": {}, "df": 0, "b": {"1": {"0": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "n": {"1": {"0": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "p": {"1": {"0": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "1": {"docs": {}, "df": 0, "n": {"1": {"0": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"1": {"0": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"1": {"0": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"7": {"8": {"5": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 6.164414002968976}, "ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 2.23606797749979}}, "df": 2}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"2": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"2": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.loc": {"tf": 1}, "ramanchada2.auxiliary.spectra.simulated.loc": {"tf": 1}, "ramanchada2.auxiliary.spectra.simulated.FILES": {"tf": 1.7320508075688772}}, "df": 3}, "docs": {}, "df": 0}}}}}}}}}}}}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "r": {"6": {"3": {"3": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 2.8284271247461903}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "h": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1.4142135623730951}}, "df": 1}}, "d": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"tf": 1}}, "df": 1}}}, "z": {"0": {"1": {"0": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 3}}, "df": 1}, "docs": {}, "df": 0}, "2": {"0": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 2.8284271247461903}}, "df": 1}, "docs": {}, "df": 0}, "5": {"0": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 3.7416573867739413}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"0": {"0": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 3.7416573867739413}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.io.HSDS.logger": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.io.HSDS.logger": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "w": {"docs": {"ramanchada2.auxiliary.spectra.simulated.FILES": {"tf": 1.4142135623730951}}, "df": 1}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.auxiliary.spectra.simulated.FILES": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}}, "df": 2, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"2": {"docs": {"ramanchada2.io.experimental.rc1_parser.txt_format_readers.logger": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_filter.logger": {"tf": 1}, "ramanchada2.protocols.calibration.logger": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.logger": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.logger": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.logger": {"tf": 1}, "ramanchada2.spectrum.spectrum.logger": {"tf": 1}}, "df": 7}, "docs": {}, "df": 0}}}}}}}}}, "c": {"1": {"docs": {"ramanchada2.io.experimental.rc1_parser.txt_format_readers.logger": {"tf": 1}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1.7320508075688772}}, "df": 2}, "docs": {}, "df": 0}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.io.experimental.rc1_parser.txt_format_readers.logger": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 2}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 2}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 2.8284271247461903}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 2.23606797749979}}, "df": 5}}}}}}}, "b": {"docs": {}, "df": 0, "f": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}}, "df": 1}}}, "c": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}}, "df": 1, "o": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldTyping": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.constants.neon_rs_spe": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.7320508075688772}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1.4142135623730951}}, "df": 3, "d": {"docs": {"ramanchada2.auxiliary.spectra.simulated.FILES": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.auxiliary.spectra.simulated.FILES": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.logger": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.auxiliary.spectra.simulated.FILES": {"tf": 1.7320508075688772}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.protocols.calibration.logger": {"tf": 1}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.logger": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.auxiliary.spectra.simulated.FILES": {"tf": 2}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.spectrum.creators.from_cache_or_calc.logger": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1.4142135623730951}}, "df": 1}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {"ramanchada2.auxiliary.spectra.simulated.FILES": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectrum.peaks.fit_peaks.available_models": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.available_models_type": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.auxiliary.spectra.simulated.FILES": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_config": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_config": {"tf": 1}}, "df": 3}}}}}, "s": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 2.23606797749979}}, "df": 1}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1.4142135623730951}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_config": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_config": {"tf": 1}}, "df": 3}}}}}}}, "g": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 2}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 2}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 2.8284271247461903}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 2.23606797749979}}, "df": 5}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.types.positive_not_multiple.PositiveOddInt": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldTyping": {"tf": 1}}, "df": 2}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldTyping": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldTyping": {"tf": 1}}, "df": 1}}}}}}}}}}}, "y": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldTyping": {"tf": 1.7320508075688772}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.io.HSDS.logger": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.logger": {"tf": 1}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 2.449489742783178}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 2.449489742783178}, "ramanchada2.misc.spectrum_deco.spectrum_filter.logger": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 2}, "ramanchada2.misc.types.positive_not_multiple.PositiveOddInt": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.logger": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.logger": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.logger": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.logger": {"tf": 1}, "ramanchada2.spectrum.spectrum.logger": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 2}}, "df": 13}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.misc.constants.neon_rs_spe": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.7320508075688772}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.fit_peaks.available_models": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.available_models_type": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}}, "df": 6}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.logger": {"tf": 1}}, "df": 2}}}, "y": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1}}, "df": 1}}}}}, "k": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldTyping": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}}, "df": 1}}}}}, "signature": {"root": {"0": {"0": {"1": {"docs": {"ramanchada2.spectrum.baseline.baseline_rc1.baseline_als": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_als": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_als": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {"ramanchada2.io.experimental.rc1_parser.third_party_readers.readOPUS": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.readTXT": {"tf": 1.4142135623730951}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 2}, "ramanchada2.misc.utils.argmin2d.align_shift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.baseline_als": {"tf": 2.23606797749979}, "ramanchada2.spectrum.baseline.baseline_rc1.baseline_snip": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_als": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.__init__": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.generate_add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 2.23606797749979}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 2}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol_DL": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.gen_samples": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_als": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 2.23606797749979}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.4142135623730951}}, "df": 59}, "1": {"0": {"0": {"0": {"0": {"0": {"docs": {"ramanchada2.spectrum.baseline.baseline_rc1.baseline_als": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_als": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_als": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.utils.argmin2d.align": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.align_shift": {"tf": 1}}, "df": 2}, "docs": {"ramanchada2.spectrum.baseline.baseline_rc1.baseline_als": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_als": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_als": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 15}, "docs": {"ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}}, "df": 12}, "5": {"0": {"docs": {"ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}}, "df": 2}, "docs": {"ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 2}, "docs": {"ramanchada2.misc.utils.argmin2d.align": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.laser_wl_nm": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.convert_units": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.__init__": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.LazerZeroingComponent.zero_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 2}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.apply_calibration_x": {"tf": 1}, "ramanchada2.spectrum.calc.central_moments.central_moments": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.__init__": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.generate_add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol_DL": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.central_moments": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 31}, "2": {"0": {"0": {"0": {"docs": {"ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}}, "df": 8}, "docs": {"ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"docs": {"ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}}, "df": 2}, "docs": {"ramanchada2.spectrum.baseline.add_baseline.generate_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calc.central_moments.central_moments": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.central_moments": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 5}, "3": {"0": {"docs": {"ramanchada2.spectrum.baseline.baseline_rc1.baseline_snip": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_snip": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_snip": {"tf": 1}}, "df": 3}, "9": {"docs": {"ramanchada2.io.HSDS.visit_domain": {"tf": 1.4142135623730951}, "ramanchada2.io.output.write_csv.write_csv": {"tf": 1.4142135623730951}, "ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 5.291502622129181}, "ramanchada2.misc.plottable.Plottable.plot": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_csv": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationComponent.convert_units": {"tf": 2}, "ramanchada2.protocols.calibration.CalibrationComponent.process": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationComponent.plot": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.XCalibrationComponent.__init__": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.XCalibrationComponent.process": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.XCalibrationComponent.derive_model": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.LazerZeroingComponent.__init__": {"tf": 2.449489742783178}, "ramanchada2.protocols.calibration.LazerZeroingComponent.process": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.YCalibrationCertificate.load": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CertificatesDict.get": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CertificatesDict.load": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.YCalibrationComponent.process": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 2.8284271247461903}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"tf": 2.449489742783178}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 2.8284271247461903}, "ramanchada2.protocols.calibration.CalibrationModel.apply_calibration_x": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.plot": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 4}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 4}, "ramanchada2.spectrum.creators.from_chada.from_chada": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 5.830951894845301}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 6.782329983125268}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 7.483314773547883}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 3.7416573867739413}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 6.782329983125268}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 3.1622776601683795}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 3.1622776601683795}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 4}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 2}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 3.4641016151377544}, "ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 5.656854249492381}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 5.291502622129181}, "ramanchada2.spectrum.spectrum.Spectrum.write_csv": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 4}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 4}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 4}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 3.7416573867739413}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 6.782329983125268}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 3.1622776601683795}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 3.1622776601683795}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 3.4641016151377544}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 5.291502622129181}, "ramanchada2.spectrum.spectrum.Spectrum.from_chada": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 5.830951894845301}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 6.782329983125268}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 7.483314773547883}, "ramanchada2.theoretical_lines.model_from_lines.model_from_lines": {"tf": 2.449489742783178}}, "df": 55}, "docs": {"ramanchada2.protocols.calibration.CalibrationModel.calibration_model_factory": {"tf": 1}, "ramanchada2.spectrum.calc.central_moments.central_moments": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.central_moments": {"tf": 1}}, "df": 3}, "4": {"0": {"0": {"0": {"docs": {"ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}}, "df": 8}, "docs": {}, "df": 0}, "docs": {"ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}}, "df": 2}, "5": {"docs": {"ramanchada2.protocols.calibration.LazerZeroingComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.zero_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 1}}, "df": 4}, "docs": {"ramanchada2.spectrum.calc.central_moments.central_moments": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.central_moments": {"tf": 1}}, "df": 2}, "5": {"0": {"0": {"0": {"docs": {"ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 4}, "2": {"0": {"docs": {"ramanchada2.protocols.calibration.LazerZeroingComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.zero_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 1}}, "df": 4}, "docs": {}, "df": 0}, "3": {"2": {"docs": {"ramanchada2.protocols.calibration.CertificatesDict.get": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.boundaries": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}}, "df": 3}, "6": {"docs": {"ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}}, "df": 2}, "7": {"8": {"5": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.load": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.get_certificates": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.load": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {"ramanchada2.spectrum.baseline.baseline_rc1.baseline_als": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_als": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_als": {"tf": 1}}, "df": 3}, "8": {"docs": {"ramanchada2.io.experimental.rc1_parser.binary_readers.read_4byte_datablock": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.auxiliary.spectra.datasets2.filtered_df": {"tf": 3.4641016151377544}, "ramanchada2.auxiliary.spectra.datasets2.get_filters": {"tf": 3.4641016151377544}, "ramanchada2.auxiliary.spectra.datasets2.get_filenames": {"tf": 3.4641016151377544}, "ramanchada2.auxiliary.spectra.datasets2.prepend_prefix": {"tf": 3.1622776601683795}, "ramanchada2.io.HSDS.write_nexus": {"tf": 10.770329614269007}, "ramanchada2.io.HSDS.write_cha": {"tf": 10.770329614269007}, "ramanchada2.io.HSDS.read_cha": {"tf": 9.695359714832659}, "ramanchada2.io.HSDS.filter_dataset": {"tf": 9.219544457292887}, "ramanchada2.io.HSDS.visit_domain": {"tf": 6.48074069840786}, "ramanchada2.io.experimental.bw_format.bw_format": {"tf": 6.557438524302}, "ramanchada2.io.experimental.neegala_format.neegala_format": {"tf": 6.557438524302}, "ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 4.69041575982343}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs": {"tf": 3.1622776601683795}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_4byte_datablock": {"tf": 4.69041575982343}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_bytestring": {"tf": 3.1622776601683795}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs_meta": {"tf": 3.1622776601683795}, "ramanchada2.io.experimental.rc1_parser.io.parse": {"tf": 4.242640687119285}, "ramanchada2.io.experimental.rc1_parser.io.cleanMeta": {"tf": 3.1622776601683795}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readWDF": {"tf": 3.1622776601683795}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readSPC": {"tf": 3.1622776601683795}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readOPUS": {"tf": 4.242640687119285}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.read_JCAMP": {"tf": 4.242640687119285}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.readTXT": {"tf": 5.830951894845301}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.dataFromTxtLines": {"tf": 3.1622776601683795}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.isDataLine": {"tf": 3.1622776601683795}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.startStop": {"tf": 3.1622776601683795}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.getYDataType": {"tf": 3.1622776601683795}, "ramanchada2.io.experimental.read_csv.read_csv": {"tf": 8.426149773176359}, "ramanchada2.io.experimental.read_txt.read_txt": {"tf": 8.426149773176359}, "ramanchada2.io.experimental.rruf_format.rruf_format": {"tf": 9}, "ramanchada2.io.output.write_csv.write_csv": {"tf": 5.5677643628300215}, "ramanchada2.io.simulated.crystal.discrete_lines_dat.lines_from_crystal_dat": {"tf": 5.656854249492381}, "ramanchada2.io.simulated.crystal.discrete_lines_out.lines_from_crystal_out": {"tf": 5.656854249492381}, "ramanchada2.io.simulated.lines_from_raw_dat.lines_from_raw_dat": {"tf": 5.656854249492381}, "ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 13.30413469565007}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"tf": 5.656854249492381}, "ramanchada2.misc.plottable.Plottable.plot": {"tf": 7}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.__init__": {"tf": 3.4641016151377544}, "ramanchada2.misc.spectrum_deco.spectrum_filter.add_spectrum_filter": {"tf": 3.1622776601683795}, "ramanchada2.misc.spectrum_deco.spectrum_method.add_spectrum_method": {"tf": 3.1622776601683795}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.valuesdict": {"tf": 3.1622776601683795}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.boundaries": {"tf": 4.242640687119285}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.center_amplitude": {"tf": 3.7416573867739413}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.dumps": {"tf": 3.1622776601683795}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.loads": {"tf": 4.795831523312719}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe": {"tf": 3.1622776601683795}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe_peaks": {"tf": 3.1622776601683795}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_csv": {"tf": 5.830951894845301}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.gen_fake_spectrum": {"tf": 3.7416573867739413}, "ramanchada2.misc.types.peak_candidates.PeakModel.serialize": {"tf": 3.1622776601683795}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_baseline": {"tf": 3.1622776601683795}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_errorbar": {"tf": 3.1622776601683795}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 3.1622776601683795}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 3.1622776601683795}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.serialize": {"tf": 3.1622776601683795}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 3.1622776601683795}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 3.1622776601683795}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.serialize": {"tf": 3.1622776601683795}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.serialize": {"tf": 3.1622776601683795}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel.serialize": {"tf": 3.1622776601683795}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.check_proc": {"tf": 4.242640687119285}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.append": {"tf": 5.656854249492381}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.extend_left": {"tf": 6.708203932499369}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.pop": {"tf": 3.1622776601683795}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.clear": {"tf": 3.1622776601683795}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.assign": {"tf": 4.69041575982343}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.repr": {"tf": 3.1622776601683795}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.cache_path": {"tf": 3.1622776601683795}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.to_list": {"tf": 3.1622776601683795}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.pre_validate": {"tf": 3.7416573867739413}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.serialize": {"tf": 3.1622776601683795}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.serialize": {"tf": 3.1622776601683795}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.get_all_keys": {"tf": 4.123105625617661}, "ramanchada2.misc.utils.argmin2d.argmin2d": {"tf": 3.1622776601683795}, "ramanchada2.misc.utils.argmin2d.find_closest_pairs_idx": {"tf": 3.7416573867739413}, "ramanchada2.misc.utils.argmin2d.find_closest_pairs": {"tf": 3.7416573867739413}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 11.832159566199232}, "ramanchada2.misc.utils.argmin2d.align_shift": {"tf": 8.306623862918075}, "ramanchada2.misc.utils.argmin2d.match_peaks": {"tf": 3.7416573867739413}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm_dict": {"tf": 3.7416573867739413}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1_dict": {"tf": 3.7416573867739413}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1": {"tf": 3.7416573867739413}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm": {"tf": 3.7416573867739413}, "ramanchada2.misc.utils.ramanshift_to_wavelength.laser_wl_nm": {"tf": 3.7416573867739413}, "ramanchada2.misc.utils.svd.svd_solve": {"tf": 3.7416573867739413}, "ramanchada2.misc.utils.svd.svd_inverse": {"tf": 3.1622776601683795}, "ramanchada2.protocols.calibration.CalibrationComponent.__init__": {"tf": 5.656854249492381}, "ramanchada2.protocols.calibration.CalibrationComponent.set_model": {"tf": 5.477225575051661}, "ramanchada2.protocols.calibration.CalibrationComponent.convert_units": {"tf": 6.48074069840786}, "ramanchada2.protocols.calibration.CalibrationComponent.process": {"tf": 7.211102550927978}, "ramanchada2.protocols.calibration.CalibrationComponent.derive_model": {"tf": 6.6332495807108}, "ramanchada2.protocols.calibration.CalibrationComponent.plot": {"tf": 7}, "ramanchada2.protocols.calibration.CalibrationComponent.fitres2df": {"tf": 3.7416573867739413}, "ramanchada2.protocols.calibration.XCalibrationComponent.__init__": {"tf": 5.830951894845301}, "ramanchada2.protocols.calibration.XCalibrationComponent.process": {"tf": 7.211102550927978}, "ramanchada2.protocols.calibration.XCalibrationComponent.derive_model": {"tf": 7.615773105863909}, "ramanchada2.protocols.calibration.LazerZeroingComponent.__init__": {"tf": 8}, "ramanchada2.protocols.calibration.LazerZeroingComponent.derive_model": {"tf": 6.6332495807108}, "ramanchada2.protocols.calibration.LazerZeroingComponent.zero_nm_to_shift_cm_1": {"tf": 5.0990195135927845}, "ramanchada2.protocols.calibration.LazerZeroingComponent.process": {"tf": 7.211102550927978}, "ramanchada2.protocols.calibration.YCalibrationCertificate.Y": {"tf": 3.7416573867739413}, "ramanchada2.protocols.calibration.YCalibrationCertificate.load": {"tf": 4.898979485566356}, "ramanchada2.protocols.calibration.CertificatesDict.load_certificates": {"tf": 3.7416573867739413}, "ramanchada2.protocols.calibration.CertificatesDict.get_laser_wl": {"tf": 3.1622776601683795}, "ramanchada2.protocols.calibration.CertificatesDict.get_certificates": {"tf": 4.242640687119285}, "ramanchada2.protocols.calibration.CertificatesDict.get": {"tf": 5.291502622129181}, "ramanchada2.protocols.calibration.CertificatesDict.load": {"tf": 4.898979485566356}, "ramanchada2.protocols.calibration.YCalibrationComponent.__init__": {"tf": 5.916079783099616}, "ramanchada2.protocols.calibration.YCalibrationComponent.derive_model": {"tf": 6.6332495807108}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_divide": {"tf": 4.242640687119285}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_mask": {"tf": 4.242640687119285}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_factor": {"tf": 4.242640687119285}, "ramanchada2.protocols.calibration.YCalibrationComponent.process": {"tf": 7.211102550927978}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 3.4641016151377544}, "ramanchada2.protocols.calibration.CalibrationModel.set_laser_wavelength": {"tf": 3.7416573867739413}, "ramanchada2.protocols.calibration.CalibrationModel.clear": {"tf": 3.1622776601683795}, "ramanchada2.protocols.calibration.CalibrationModel.save": {"tf": 3.7416573867739413}, "ramanchada2.protocols.calibration.CalibrationModel.from_file": {"tf": 3.1622776601683795}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 12.96148139681572}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"tf": 10.14889156509222}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 11.045361017187261}, "ramanchada2.protocols.calibration.CalibrationModel.apply_calibration_x": {"tf": 6.557438524302}, "ramanchada2.protocols.calibration.CalibrationModel.plot": {"tf": 7}, "ramanchada2.protocols.calibration.CalibrationModel.calibration_model_factory": {"tf": 9.899494936611665}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.__init__": {"tf": 4}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.from_dict": {"tf": 3.872983346207417}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.to_dict": {"tf": 3.1622776601683795}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical.__init__": {"tf": 3.4641016151377544}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.__init__": {"tf": 3.1622776601683795}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.__init__": {"tf": 3.1622776601683795}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.__init__": {"tf": 3.7416573867739413}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.reset_origin": {"tf": 3.1622776601683795}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.get_deltas": {"tf": 3.1622776601683795}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.get_curve": {"tf": 3.1622776601683795}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.delta": {"tf": 3.1622776601683795}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.limit_3sigma": {"tf": 3.1622776601683795}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.pos_amp_fwhm": {"tf": 3.1622776601683795}, "ramanchada2.spectrum.baseline.add_baseline.generate_baseline": {"tf": 11.180339887498949}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 10.770329614269007}, "ramanchada2.spectrum.baseline.baseline_rc1.baseline_als": {"tf": 11.135528725660043}, "ramanchada2.spectrum.baseline.baseline_rc1.baseline_snip": {"tf": 6.855654600401044}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_als": {"tf": 9.16515138991168}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_snip": {"tf": 7.54983443527075}, "ramanchada2.spectrum.baseline.moving_minimum.moving_minimum": {"tf": 7.54983443527075}, "ramanchada2.spectrum.baseline.moving_minimum.subtract_moving_minimum": {"tf": 7.54983443527075}, "ramanchada2.spectrum.calc.central_moments.central_moments": {"tf": 9.643650760992955}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.__init__": {"tf": 6.164414002968976}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.fit": {"tf": 5.830951894845301}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 12.041594578792296}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_filter": {"tf": 9.695359714832659}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"tf": 11.874342087037917}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 14.45683229480096}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 6.48074069840786}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 6.48074069840786}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 7.937253933193772}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 7.937253933193772}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 10.954451150103322}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 9.16515138991168}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 10.63014581273465}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 7.937253933193772}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 9.539392014169456}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 7.416198487095663}, "ramanchada2.spectrum.creators.from_chada.from_chada": {"tf": 6.164414002968976}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 9.899494936611665}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 13.038404810405298}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 16.673332000533065}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 6}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 4.47213595499958}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 16.61324772583615}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 5.5677643628300215}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 9.746794344808963}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.generate_add_gaussian_noise_drift": {"tf": 11.445523142259598}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 12.96148139681572}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 8.831760866327848}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 13.856406460551018}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 9.746794344808963}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 9.591663046625438}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 9.591663046625438}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 9.591663046625438}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 9.591663046625438}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 9.591663046625438}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 9.591663046625438}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 7.54983443527075}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 7.3484692283495345}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 18.05547008526779}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 12.328828005937952}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 13.674794331177344}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 14.422205101855956}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 15.556349186104045}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 7.937253933193772}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 10}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 11.532562594670797}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 9.797958971132712}, "ramanchada2.spectrum.peaks.find_peaks.peak_boundaries": {"tf": 4.69041575982343}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 16.822603841260722}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 8.246211251235321}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 15.362291495737216}, "ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 13.2664991614216}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 15.132745950421556}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 9.539392014169456}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 9.433981132056603}, "ramanchada2.spectrum.spectrum.Spectrum.__init__": {"tf": 14.071247279470288}, "ramanchada2.spectrum.spectrum.Spectrum.applied_processings_dict": {"tf": 3.1622776601683795}, "ramanchada2.spectrum.spectrum.Spectrum.write_csv": {"tf": 6.164414002968976}, "ramanchada2.spectrum.spectrum.Spectrum.write_cha": {"tf": 4.242640687119285}, "ramanchada2.spectrum.spectrum.Spectrum.write_nexus": {"tf": 4.242640687119285}, "ramanchada2.spectrum.spectrum.Spectrum.write_cache": {"tf": 3.1622776601683795}, "ramanchada2.spectrum.spectrum.Spectrum.process": {"tf": 4.898979485566356}, "ramanchada2.spectrum.spectrum.Spectrum.apply_creator": {"tf": 7.0710678118654755}, "ramanchada2.spectrum.spectrum.Spectrum.apply_processing": {"tf": 6.324555320336759}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_MAD": {"tf": 3.1622776601683795}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol_DL": {"tf": 6.855654600401044}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol": {"tf": 6.855654600401044}, "ramanchada2.spectrum.spectrum.Spectrum.spe_distribution": {"tf": 6.082762530298219}, "ramanchada2.spectrum.spectrum.Spectrum.gen_samples": {"tf": 7}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 10.770329614269007}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_als": {"tf": 9.16515138991168}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_snip": {"tf": 7.54983443527075}, "ramanchada2.spectrum.spectrum.Spectrum.moving_minimum": {"tf": 7.54983443527075}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_minimum": {"tf": 7.54983443527075}, "ramanchada2.spectrum.spectrum.Spectrum.central_moments": {"tf": 9.643650760992955}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 6.48074069840786}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 6.48074069840786}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 7.937253933193772}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 7.937253933193772}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 12.041594578792296}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_filter": {"tf": 9.695359714832659}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine": {"tf": 11.874342087037917}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 14.45683229480096}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 7.937253933193772}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 9.539392014169456}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 9.16515138991168}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 10.63014581273465}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 10.954451150103322}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 9.591663046625438}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 7.54983443527075}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 8.831760866327848}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 9.797958971132712}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 7.3484692283495345}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 9.746794344808963}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 11.532562594670797}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 15.556349186104045}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 7.937253933193772}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 10}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 13.856406460551018}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 9.591663046625438}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 9.591663046625438}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 18.05547008526779}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 12.328828005937952}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 13.674794331177344}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 14.422205101855956}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 12.96148139681572}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 9.746794344808963}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 9.591663046625438}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 9.591663046625438}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 9.591663046625438}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 9.433981132056603}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 15.362291495737216}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 16.822603841260722}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 8.246211251235321}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 15.132745950421556}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 9.539392014169456}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 7.416198487095663}, "ramanchada2.spectrum.spectrum.Spectrum.from_chada": {"tf": 6.164414002968976}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 13.038404810405298}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 9.899494936611665}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 16.673332000533065}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 16.61324772583615}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 6}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 4.47213595499958}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 5.5677643628300215}, "ramanchada2.theoretical_lines.model_from_lines.model_from_lines": {"tf": 10.723805294763608}, "ramanchada2.theoretical_lines.model_from_lines.model_from_list": {"tf": 7.745966692414834}}, "df": 273, "k": {"docs": {}, "df": 0, "w": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.derive_model": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.XCalibrationComponent.derive_model": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.LazerZeroingComponent.derive_model": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.YCalibrationComponent.derive_model": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.calibration_model_factory": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1.4142135623730951}}, "df": 18, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.filtered_df": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2.get_filters": {"tf": 1}, "ramanchada2.auxiliary.spectra.datasets2.get_filenames": {"tf": 1}, "ramanchada2.io.HSDS.filter_dataset": {"tf": 1}, "ramanchada2.io.HSDS.visit_domain": {"tf": 1}, "ramanchada2.misc.plottable.Plottable.plot": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_csv": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.append": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.assign": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.plot": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.plot": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.__init__": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.__init__": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.__init__": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.__init__": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.process": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1}}, "df": 38}}}}}, "e": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.load": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.get": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.load": {"tf": 1}}, "df": 3}, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}}, "df": 2}}}}}}, "f": {"docs": {"ramanchada2.io.experimental.rc1_parser.binary_readers.read_4byte_datablock": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_bytestring": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs_meta": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.io.HSDS.filter_dataset": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.io.parse": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readWDF": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readSPC": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readOPUS": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.read_JCAMP": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.readTXT": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.load_certificates": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 13, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.io.HSDS.write_nexus": {"tf": 1}, "ramanchada2.io.HSDS.write_cha": {"tf": 1}, "ramanchada2.io.HSDS.read_cha": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.save": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.from_file": {"tf": 1}, "ramanchada2.spectrum.creators.from_chada.from_chada": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.write_csv": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_chada": {"tf": 1}}, "df": 9, "s": {"docs": {"ramanchada2.auxiliary.spectra.datasets2.prepend_prefix": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.calibration_model_factory": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}}, "df": 14}}, "t": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.derive_model": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.XCalibrationComponent.derive_model": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.LazerZeroingComponent.derive_model": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.YCalibrationComponent.derive_model": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.calibration_model_factory": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.fit": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1}}, "df": 19, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {"ramanchada2.spectrum.baseline.add_baseline.generate_baseline": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.io.experimental.bw_format.bw_format": {"tf": 1}, "ramanchada2.io.experimental.neegala_format.neegala_format": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_dat.lines_from_crystal_dat": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_out.lines_from_crystal_out": {"tf": 1}, "ramanchada2.io.simulated.lines_from_raw_dat.lines_from_raw_dat": {"tf": 1}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"tf": 1}}, "df": 6}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {"ramanchada2.spectrum.baseline.add_baseline.generate_baseline": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}}, "df": 3}}, "o": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2.theoretical_lines.model_from_lines.model_from_list": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {"ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"6": {"4": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1.4142135623730951}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.align_shift": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.baseline_rc1.baseline_als": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.__init__": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 2}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.generate_add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 2}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.spe_distribution": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.model_from_lines": {"tf": 1.4142135623730951}}, "df": 70}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}}, "df": 2}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.misc.spectrum_deco.spectrum_filter.add_spectrum_filter": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_method.add_spectrum_method": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}}, "df": 4, "c": {"docs": {"ramanchada2.misc.utils.argmin2d.align": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}}, "df": 3, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.misc.utils.argmin2d.align": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.calibration_model_factory": {"tf": 1}, "ramanchada2.spectrum.calc.central_moments.central_moments": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.fit": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.central_moments": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1}}, "df": 33}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1.4142135623730951}}, "df": 6}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.io.HSDS.write_nexus": {"tf": 1.4142135623730951}, "ramanchada2.io.HSDS.write_cha": {"tf": 1.4142135623730951}, "ramanchada2.io.HSDS.read_cha": {"tf": 1.4142135623730951}, "ramanchada2.io.experimental.bw_format.bw_format": {"tf": 1}, "ramanchada2.io.experimental.neegala_format.neegala_format": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1}, "ramanchada2.io.experimental.rruf_format.rruf_format": {"tf": 1}, "ramanchada2.io.output.write_csv.write_csv": {"tf": 1}, "ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.loads": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.check_proc": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.get_all_keys": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.creators.from_chada.from_chada": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.__init__": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.process": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_chada": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.model_from_lines": {"tf": 1.4142135623730951}}, "df": 24, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}}, "df": 4}}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.apply_creator": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.apply_processing": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 4, "s": {"docs": {"ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_filter": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}}, "df": 6}}}, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 2}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.io.HSDS.write_nexus": {"tf": 1.4142135623730951}, "ramanchada2.io.HSDS.write_cha": {"tf": 1.4142135623730951}, "ramanchada2.io.HSDS.read_cha": {"tf": 1.4142135623730951}, "ramanchada2.io.experimental.read_csv.read_csv": {"tf": 1.4142135623730951}, "ramanchada2.io.experimental.read_txt.read_txt": {"tf": 1.4142135623730951}, "ramanchada2.io.experimental.rruf_format.rruf_format": {"tf": 1.4142135623730951}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.__init__": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}}, "df": 18}}}}}}, "e": {"2": {"docs": {"ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 2}, "3": {"docs": {"ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 2}, "docs": {"ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.__init__": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}}, "df": 3}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.io.HSDS.filter_dataset": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.__init__": {"tf": 1}}, "df": 4, "s": {"docs": {"ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 2}}}}}, "v": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}}, "df": 2}}}}}, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {"ramanchada2.io.experimental.rc1_parser.binary_readers.read_4byte_datablock": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1.4142135623730951}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 2}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.io.experimental.rc1_parser.io.parse": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 3}, "g": {"docs": {"ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}}, "df": 2, "m": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.boundaries": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.fit": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.generate_add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}}, "df": 15}}}, "l": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 2}, "ramanchada2.protocols.calibration.CalibrationModel.calibration_model_factory": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.protocols.calibration.LazerZeroingComponent.__init__": {"tf": 1}}, "df": 1}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.baseline.add_baseline.generate_baseline": {"tf": 1}, "ramanchada2.spectrum.baseline.moving_minimum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.baseline.moving_minimum.subtract_moving_minimum": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.gen_samples": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1}}, "df": 14}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.__init__": {"tf": 1}}, "df": 2}, "l": {"docs": {}, "df": 0, "f": {"docs": {"ramanchada2.misc.plottable.Plottable.plot": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.valuesdict": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.boundaries": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.center_amplitude": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.dumps": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe_peaks": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_csv": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.gen_fake_spectrum": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.serialize": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_baseline": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_errorbar": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.serialize": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.serialize": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.serialize": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel.serialize": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.append": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.extend_left": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.pop": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.clear": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.assign": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.repr": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.cache_path": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.to_list": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.serialize": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.serialize": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.get_all_keys": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.set_model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.convert_units": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.plot": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.fitres2df": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.zero_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.Y": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.load_certificates": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.get_laser_wl": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.get_certificates": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.get": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_divide": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_mask": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_factor": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.set_laser_wavelength": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.clear": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.save": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.apply_calibration_x": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.plot": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.to_dict": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.reset_origin": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.get_deltas": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.get_curve": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.delta": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.limit_3sigma": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.pos_amp_fwhm": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.fit": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.applied_processings_dict": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.write_csv": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.write_cha": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.write_nexus": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.write_cache": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.process": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.apply_processing": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_MAD": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol_DL": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spe_distribution": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.gen_samples": {"tf": 1}}, "df": 80}}, "p": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_csv": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.spectrum.baseline.add_baseline.generate_baseline": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.generate_add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 10}}}, "p": {"docs": {"ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 2, "e": {"docs": {"ramanchada2.misc.utils.argmin2d.match_peaks": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.__init__": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationComponent.convert_units": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationComponent.process": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationComponent.fitres2df": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.__init__": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.XCalibrationComponent.process": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.LazerZeroingComponent.__init__": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.LazerZeroingComponent.process": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.YCalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_divide": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_mask": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_factor": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.YCalibrationComponent.process": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 2}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.apply_calibration_x": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.calibration_model_factory": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_als": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_snip": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.moving_minimum.moving_minimum": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.moving_minimum.subtract_moving_minimum": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calc.central_moments.central_moments": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.fit": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks.peak_boundaries": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_als": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_snip": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_minimum": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_minimum": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.central_moments": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}}, "df": 117, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.extend_left": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.process": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.XCalibrationComponent.process": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.LazerZeroingComponent.process": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.YCalibrationComponent.process": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 2.449489742783178}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationModel.apply_calibration_x": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationModel.calibration_model_factory": {"tf": 2.449489742783178}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 2.449489742783178}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_als": {"tf": 2.449489742783178}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_snip": {"tf": 2.449489742783178}, "ramanchada2.spectrum.baseline.moving_minimum.moving_minimum": {"tf": 2.449489742783178}, "ramanchada2.spectrum.baseline.moving_minimum.subtract_moving_minimum": {"tf": 2.449489742783178}, "ramanchada2.spectrum.calc.central_moments.central_moments": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_filter": {"tf": 2.449489742783178}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"tf": 2.449489742783178}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 2.449489742783178}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 2.449489742783178}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 2.449489742783178}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 2.449489742783178}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 2.449489742783178}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 2.449489742783178}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 2.449489742783178}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 2.449489742783178}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 2.449489742783178}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 2.449489742783178}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 2.449489742783178}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 2.449489742783178}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 2.449489742783178}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 2.449489742783178}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 2.449489742783178}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 2.449489742783178}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 2.449489742783178}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 2.449489742783178}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 2.449489742783178}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 2.449489742783178}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 2.449489742783178}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 2.449489742783178}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 2.449489742783178}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 2.449489742783178}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 2.449489742783178}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 2.449489742783178}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 2.449489742783178}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 2.449489742783178}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 2.449489742783178}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.__init__": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.apply_creator": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.apply_processing": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_als": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_snip": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.moving_minimum": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_minimum": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.central_moments": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_filter": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1.7320508075688772}}, "df": 109}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1.4142135623730951}}, "df": 2, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.extend_left": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.apply_creator": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.apply_processing": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.__init__": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}}}}, "s": {"docs": {"ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 2}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectrum.spectrum.Spectrum.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1.4142135623730951}}, "df": 6}}, "t": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 2}}}, "c": {"docs": {"ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 2}, "a": {"docs": {"ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 2}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.utils.ramanshift_to_wavelength.laser_wl_nm": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.__init__": {"tf": 1}}, "df": 3}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.calibration_model_factory": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1}}, "df": 16}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.protocols.calibration.XCalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}}, "df": 3}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "m": {"2": {"2": {"4": {"1": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.load": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.load": {"tf": 1}}, "df": 2}, "2": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.protocols.calibration.CertificatesDict.get": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"ramanchada2.spectrum.baseline.baseline_rc1.baseline_als": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_als": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_als": {"tf": 1}}, "df": 3}}}}}, "g": {"docs": {"ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}}, "df": 2}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.4142135623730951}}, "df": 3, "a": {"docs": {"ramanchada2.io.experimental.rc1_parser.txt_format_readers.dataFromTxtLines": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.getYDataType": {"tf": 1}, "ramanchada2.io.experimental.read_csv.read_csv": {"tf": 1}, "ramanchada2.io.experimental.read_txt.read_txt": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_dat.lines_from_crystal_dat": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_out.lines_from_crystal_out": {"tf": 1}, "ramanchada2.io.simulated.lines_from_raw_dat.lines_from_raw_dat": {"tf": 1}, "ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"tf": 1}}, "df": 9, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.io.HSDS.write_nexus": {"tf": 1}, "ramanchada2.io.HSDS.write_cha": {"tf": 1}, "ramanchada2.io.HSDS.read_cha": {"tf": 1}, "ramanchada2.io.HSDS.visit_domain": {"tf": 1}, "ramanchada2.spectrum.creators.from_chada.from_chada": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.write_cha": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.write_nexus": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_chada": {"tf": 1}}, "df": 8}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.io.experimental.bw_format.bw_format": {"tf": 1}, "ramanchada2.io.experimental.neegala_format.neegala_format": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_dat.lines_from_crystal_dat": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_out.lines_from_crystal_out": {"tf": 1}, "ramanchada2.io.simulated.lines_from_raw_dat.lines_from_raw_dat": {"tf": 1}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"tf": 1}}, "df": 6}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.io.HSDS.write_nexus": {"tf": 1.4142135623730951}, "ramanchada2.io.HSDS.write_cha": {"tf": 1.4142135623730951}, "ramanchada2.io.HSDS.read_cha": {"tf": 1.4142135623730951}, "ramanchada2.io.experimental.read_csv.read_csv": {"tf": 1.4142135623730951}, "ramanchada2.io.experimental.read_txt.read_txt": {"tf": 1.4142135623730951}, "ramanchada2.io.experimental.rruf_format.rruf_format": {"tf": 1.4142135623730951}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.__init__": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 20}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.io.HSDS.write_nexus": {"tf": 1}, "ramanchada2.io.HSDS.write_cha": {"tf": 1}, "ramanchada2.io.HSDS.read_cha": {"tf": 1}, "ramanchada2.io.experimental.bw_format.bw_format": {"tf": 1}, "ramanchada2.io.experimental.neegala_format.neegala_format": {"tf": 1}, "ramanchada2.io.experimental.read_csv.read_csv": {"tf": 1}, "ramanchada2.io.experimental.read_txt.read_txt": {"tf": 1}, "ramanchada2.io.experimental.rruf_format.rruf_format": {"tf": 1}, "ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.match_peaks": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.from_dict": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.__init__": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.model_from_lines": {"tf": 1}}, "df": 34}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 2}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.io.HSDS.filter_dataset": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.io.output.write_csv.write_csv": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.write_csv": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1_dict": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.__init__": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_filter": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}}, "df": 9}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}}, "df": 2}}}}}, "r": {"2": {"docs": {"ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}}, "df": 2}, "4": {"docs": {"ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "x": {"docs": {"ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 2}, "h": {"docs": {}, "df": 0, "o": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}}, "df": 2}}}}, "x": {"2": {"7": {"docs": {"ramanchada2.io.experimental.read_csv.read_csv": {"tf": 1.4142135623730951}, "ramanchada2.io.experimental.read_txt.read_txt": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"ramanchada2.io.HSDS.write_nexus": {"tf": 1}, "ramanchada2.io.HSDS.write_cha": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.readTXT": {"tf": 1}, "ramanchada2.io.output.write_csv.write_csv": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.find_closest_pairs_idx": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.find_closest_pairs": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.align_shift": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.Y": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical.__init__": {"tf": 1}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.__init__": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}}, "df": 27, "x": {"docs": {"ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.4142135623730951}}, "df": 3}, "y": {"docs": {"ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.4142135623730951}}, "df": 3}, "z": {"docs": {"ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.4142135623730951}}, "df": 3}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.gen_fake_spectrum": {"tf": 1}}, "df": 1}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {"ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}}, "df": 8}}}}, "n": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.boundaries": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.generate_baseline": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.write_csv": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}}, "df": 15, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.io.HSDS.write_nexus": {"tf": 2}, "ramanchada2.io.HSDS.write_cha": {"tf": 2}, "ramanchada2.io.HSDS.read_cha": {"tf": 2}, "ramanchada2.io.experimental.read_csv.read_csv": {"tf": 2}, "ramanchada2.io.experimental.read_txt.read_txt": {"tf": 2}, "ramanchada2.io.experimental.rruf_format.rruf_format": {"tf": 2}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 2}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.__init__": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1.7320508075688772}}, "df": 20}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.io.HSDS.write_nexus": {"tf": 1.4142135623730951}, "ramanchada2.io.HSDS.write_cha": {"tf": 1.4142135623730951}, "ramanchada2.io.HSDS.read_cha": {"tf": 1.4142135623730951}, "ramanchada2.io.experimental.read_csv.read_csv": {"tf": 1.4142135623730951}, "ramanchada2.io.experimental.read_txt.read_txt": {"tf": 1.4142135623730951}, "ramanchada2.io.experimental.rruf_format.rruf_format": {"tf": 1.4142135623730951}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.__init__": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 20}}}}}}, "o": {"docs": {"ramanchada2.io.experimental.rc1_parser.third_party_readers.readOPUS": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.fit": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1}}, "df": 4, "n": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.io.HSDS.write_nexus": {"tf": 1}, "ramanchada2.io.HSDS.write_cha": {"tf": 1}, "ramanchada2.io.HSDS.read_cha": {"tf": 1}, "ramanchada2.io.HSDS.filter_dataset": {"tf": 2.449489742783178}, "ramanchada2.io.HSDS.visit_domain": {"tf": 1.4142135623730951}, "ramanchada2.io.experimental.rc1_parser.io.parse": {"tf": 1}, "ramanchada2.misc.plottable.Plottable.plot": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_csv": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.set_model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.convert_units": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.plot": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.derive_model": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.LazerZeroingComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.plot": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.calibration_model_factory": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.baseline.add_baseline.generate_baseline": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.fit": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_filter": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.creators.from_chada.from_chada": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.generate_add_gaussian_noise_drift": {"tf": 2.449489742783178}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 2.449489742783178}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 3.3166247903554}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 2.23606797749979}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.__init__": {"tf": 2.23606797749979}, "ramanchada2.spectrum.spectrum.Spectrum.apply_creator": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spe_distribution": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.gen_samples": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 3.3166247903554}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 2.23606797749979}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_chada": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1}}, "df": 63, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.__init__": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}}, "df": 5}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.calc.central_moments.central_moments": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.central_moments": {"tf": 1}}, "df": 2}}}}}}}}, "m": {"docs": {"ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.laser_wl_nm": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.convert_units": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.zero_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}}, "df": 20}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.set_model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 9, "s": {"docs": {"ramanchada2.theoretical_lines.model_from_lines.model_from_lines": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_als": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_snip": {"tf": 1}, "ramanchada2.spectrum.baseline.moving_minimum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.baseline.moving_minimum.subtract_moving_minimum": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_als": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_snip": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1}}, "df": 72, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.convert_units": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.spectrum.Spectrum.write_csv": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.protocols.calibration.XCalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 2}, "ramanchada2.protocols.calibration.CalibrationModel.calibration_model_factory": {"tf": 1.4142135623730951}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"5": {"3": {"2": {"docs": {"ramanchada2.protocols.calibration.CertificatesDict.get": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"8": {"5": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.load": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.load": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.spectrum.baseline.baseline_rc1.baseline_als": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.baseline_snip": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_als": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_snip": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_als": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_snip": {"tf": 1}}, "df": 6}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 4}}}}, "g": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 2}}}, "t": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 2, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.io.HSDS.write_nexus": {"tf": 1.4142135623730951}, "ramanchada2.io.HSDS.write_cha": {"tf": 1.4142135623730951}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.align_shift": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.baseline_als": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.baseline_snip": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.generate_add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol_DL": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.gen_samples": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 48}}}, "e": {"docs": {"ramanchada2.io.experimental.rc1_parser.io.parse": {"tf": 1}, "ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 4, "s": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.extend_left": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.__init__": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.apply_creator": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.apply_processing": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}}, "df": 11}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.io.HSDS.read_cha": {"tf": 1}, "ramanchada2.io.experimental.bw_format.bw_format": {"tf": 1}, "ramanchada2.io.experimental.neegala_format.neegala_format": {"tf": 1}, "ramanchada2.io.experimental.read_csv.read_csv": {"tf": 1}, "ramanchada2.io.experimental.read_txt.read_txt": {"tf": 1}, "ramanchada2.io.experimental.rruf_format.rruf_format": {"tf": 1}, "ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spe_distribution": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.model_from_lines": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.model_from_list": {"tf": 1}}, "df": 24}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent.safe_divide": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_mask": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_factor": {"tf": 1}}, "df": 3, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.io.HSDS.filter_dataset": {"tf": 1}, "ramanchada2.io.HSDS.visit_domain": {"tf": 1}}, "df": 2}}}}}}, "o": {"docs": {"ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1.4142135623730951}}, "df": 2}}, "t": {"docs": {"ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.7320508075688772}}, "df": 3}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.read_JCAMP": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.readTXT": {"tf": 1}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.generate_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 9}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}}, "df": 2}}}, "m": {"docs": {"ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spe_distribution": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.gen_samples": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"ramanchada2.io.experimental.read_csv.read_csv": {"tf": 1}, "ramanchada2.io.experimental.read_txt.read_txt": {"tf": 1}}, "df": 2, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.io.simulated.crystal.discrete_lines_dat.lines_from_crystal_dat": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_out.lines_from_crystal_out": {"tf": 1}, "ramanchada2.io.simulated.lines_from_raw_dat.lines_from_raw_dat": {"tf": 1}, "ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 7}}}}}}}}}, "h": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.center_amplitude": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1.4142135623730951}}, "df": 2}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.theoretical_lines.model_from_lines.model_from_list": {"tf": 1}}, "df": 1}}}}}}}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 2, "r": {"docs": {"ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}}, "df": 2}}}}}}, "a": {"docs": {"ramanchada2.misc.utils.argmin2d.argmin2d": {"tf": 1}, "ramanchada2.misc.utils.svd.svd_solve": {"tf": 1}}, "df": 2, "n": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.io.HSDS.write_nexus": {"tf": 1.4142135623730951}, "ramanchada2.io.HSDS.write_cha": {"tf": 1.4142135623730951}, "ramanchada2.io.HSDS.read_cha": {"tf": 1.4142135623730951}, "ramanchada2.io.experimental.read_csv.read_csv": {"tf": 1.4142135623730951}, "ramanchada2.io.experimental.read_txt.read_txt": {"tf": 1.4142135623730951}, "ramanchada2.io.experimental.rruf_format.rruf_format": {"tf": 1.4142135623730951}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.__init__": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 22}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.misc.utils.argmin2d.align": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.align_shift": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.baseline_als": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.baseline_rc1.baseline_snip": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.generate_add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol_DL": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.gen_samples": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.4142135623730951}}, "df": 48}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.baseline.add_baseline.generate_baseline": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "x": {"docs": {"ramanchada2.misc.plottable.Plottable.plot": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.plot": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.plot": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.fit": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 6, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.plottable.Plottable.plot": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationComponent.plot": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationModel.plot": {"tf": 1.7320508075688772}}, "df": 3}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1}}, "df": 2}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.__init__": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.extend_left": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.__init__": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.apply_creator": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.apply_processing": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}}, "df": 7}}}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.append": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.assign": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.__init__": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1}}, "df": 15}}, "e": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}}, "df": 2}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}}, "df": 2}}}}}}}}, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}}, "df": 4}}}}, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2.spectrum.spectrum.Spectrum.process": {"tf": 1}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {"ramanchada2.io.HSDS.write_nexus": {"tf": 1.4142135623730951}, "ramanchada2.io.HSDS.write_cha": {"tf": 1.4142135623730951}, "ramanchada2.io.HSDS.read_cha": {"tf": 1.4142135623730951}, "ramanchada2.io.experimental.read_csv.read_csv": {"tf": 1.4142135623730951}, "ramanchada2.io.experimental.read_txt.read_txt": {"tf": 1.4142135623730951}, "ramanchada2.io.experimental.rruf_format.rruf_format": {"tf": 1.4142135623730951}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.__init__": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}}, "df": 18, "r": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.io.experimental.bw_format.bw_format": {"tf": 1}, "ramanchada2.io.experimental.neegala_format.neegala_format": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_dat.lines_from_crystal_dat": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_out.lines_from_crystal_out": {"tf": 1}, "ramanchada2.io.simulated.lines_from_raw_dat.lines_from_raw_dat": {"tf": 1}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"tf": 1}}, "df": 6}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent.safe_divide": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_mask": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_factor": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {"ramanchada2.io.experimental.rc1_parser.txt_format_readers.readTXT": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}}, "df": 2}}}}}}}}, "n": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.process": {"tf": 1}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_filter": {"tf": 1}}, "df": 4}}}}}}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {"ramanchada2.spectrum.filters.add_gaussian_noise_drift.generate_add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 3, "f": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.calibration_model_factory": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}}, "df": 2, "s": {"docs": {"ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.io.experimental.read_csv.read_csv": {"tf": 1}, "ramanchada2.io.experimental.read_txt.read_txt": {"tf": 1}}, "df": 2}}}, "s": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.loads": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.check_proc": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.pre_validate": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.apply_creator": {"tf": 1}}, "df": 4}}, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "m": {"docs": {"ramanchada2.misc.utils.ramanshift_to_wavelength.laser_wl_nm": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.convert_units": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.zero_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.apply_calibration_x": {"tf": 1}}, "df": 10}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent.__init__": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"tf": 1}}, "df": 2}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}}, "df": 10}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.__init__": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.apply_creator": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}}, "df": 4}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1.4142135623730951}}, "df": 5}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}}, "df": 10}}}}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}}, "df": 6}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 2}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}}, "df": 2}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.spectrum.Spectrum.write_cha": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.write_nexus": {"tf": 1}}, "df": 2}}}}}}, "w": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}}, "df": 2}}}, "y": {"0": {"docs": {"ramanchada2.spectrum.baseline.baseline_rc1.baseline_snip": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2.io.HSDS.write_nexus": {"tf": 1}, "ramanchada2.io.HSDS.write_cha": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.readTXT": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.getYDataType": {"tf": 1}, "ramanchada2.io.output.write_csv.write_csv": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.find_closest_pairs_idx": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.find_closest_pairs": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.align_shift": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical.__init__": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.baseline_als": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.generate_add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.__init__": {"tf": 1}}, "df": 13, "y": {"docs": {"ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.4142135623730951}}, "df": 3}, "z": {"docs": {"ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.4142135623730951}}, "df": 3}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.io.HSDS.write_nexus": {"tf": 1}, "ramanchada2.io.HSDS.write_cha": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.io.cleanMeta": {"tf": 1}}, "df": 3, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.spectrum.baseline.add_baseline.generate_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.__init__": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}}, "df": 4}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.utils.svd.svd_inverse": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"ramanchada2.misc.plottable.Plottable.plot": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.plot": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.plot": {"tf": 1}}, "df": 3}}}}}}}}, "x": {"docs": {"ramanchada2.misc.utils.argmin2d.align": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.align_shift": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 4}, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.extend_left": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.__init__": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.apply_creator": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.apply_processing": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}}, "df": 11}}, "n": {"docs": {"ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}}, "df": 4, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1.4142135623730951}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 2}}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}}, "df": 4}}}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.set_model": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.model_from_lines": {"tf": 1.7320508075688772}, "ramanchada2.theoretical_lines.model_from_lines.model_from_list": {"tf": 1.7320508075688772}}, "df": 4}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.spectrum.calc.central_moments.central_moments": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.central_moments": {"tf": 1}}, "df": 2}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 7}}}}, "v": {"docs": {"ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}}, "df": 2, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 2}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}}, "h": {"5": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.io.HSDS.write_nexus": {"tf": 1}, "ramanchada2.io.HSDS.write_cha": {"tf": 1}, "ramanchada2.io.HSDS.read_cha": {"tf": 1}, "ramanchada2.io.HSDS.filter_dataset": {"tf": 1}, "ramanchada2.io.HSDS.visit_domain": {"tf": 1}, "ramanchada2.spectrum.creators.from_chada.from_chada": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_chada": {"tf": 1}}, "df": 7}}}}}}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}}, "df": 2}}}, "h": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1.4142135623730951}}, "df": 2}}}, "p": {"0": {"docs": {"ramanchada2.misc.utils.argmin2d.align": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.align_shift": {"tf": 1}}, "df": 2}, "docs": {"ramanchada2.spectrum.baseline.baseline_rc1.baseline_als": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_als": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_als": {"tf": 1}}, "df": 3, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.append": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.extend_left": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.io.HSDS.filter_dataset": {"tf": 1}, "ramanchada2.io.HSDS.visit_domain": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.extend_left": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.__init__": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.apply_creator": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.apply_processing": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}}, "df": 6}}}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.io.HSDS.filter_dataset": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent.__init__": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1}}, "df": 4}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.calibration_model_factory": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.peak_boundaries": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}}, "df": 4}}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}}, "df": 2}}}}}}, "n": {"docs": {"ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.io.experimental.bw_format.bw_format": {"tf": 1}, "ramanchada2.io.experimental.neegala_format.neegala_format": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_dat.lines_from_crystal_dat": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_out.lines_from_crystal_out": {"tf": 1}, "ramanchada2.io.simulated.lines_from_raw_dat.lines_from_raw_dat": {"tf": 1}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"tf": 1}}, "df": 6}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"ramanchada2.io.experimental.rc1_parser.io.parse": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_csv": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.load_certificates": {"tf": 1}}, "df": 3}}, "r": {"docs": {"ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.theoretical_lines.model_from_lines.model_from_lines": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.model_from_list": {"tf": 1}}, "df": 2, "s": {"docs": {"ramanchada2.theoretical_lines.model_from_lines.model_from_lines": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.model_from_list": {"tf": 1}}, "df": 2}}}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {"ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.4142135623730951}}, "df": 3}}, "a": {"docs": {}, "df": 0, "k": {"docs": {"ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1}}, "df": 5, "s": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.set_model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.derive_model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.calibration_model_factory": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.__init__": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.model_from_list": {"tf": 1}}, "df": 18}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"4": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 7}, "7": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 7}, "docs": {}, "df": 0}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}}, "df": 2}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.utils.argmin2d.match_peaks": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.zero_nm_to_shift_cm_1": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.theoretical_lines.model_from_lines.model_from_lines": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine": {"tf": 1}}, "df": 2}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "w": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 2}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1.4142135623730951}}, "df": 2}}}}, "v": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 4}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {"ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1.4142135623730951}}, "df": 4}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}}}, "y": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.theoretical_lines.model_from_lines.model_from_list": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.laser_wl_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}}, "df": 13, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"ramanchada2.io.HSDS.filter_dataset": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.load": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.get_certificates": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.get": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict.load": {"tf": 1}}, "df": 5}}}}}}}}}, "l": {"docs": {"ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.convert_units": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.zero_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.set_laser_wavelength": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.calibration_model_factory": {"tf": 1.4142135623730951}}, "df": 10, "e": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.peak_boundaries": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}}, "df": 4}}}, "n": {"docs": {"ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.peak_boundaries": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}}, "df": 6}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"ramanchada2.spectrum.baseline.moving_minimum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.baseline.moving_minimum.subtract_moving_minimum": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 18}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "f": {"docs": {"ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 2}}}, "i": {"docs": {"ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 3.1622776601683795}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 4.358898943540674}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 4.358898943540674}}, "df": 3, "n": {"docs": {"ramanchada2.io.experimental.read_csv.read_csv": {"tf": 1}, "ramanchada2.io.experimental.read_txt.read_txt": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_dat.lines_from_crystal_dat": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_out.lines_from_crystal_out": {"tf": 1}, "ramanchada2.io.simulated.lines_from_raw_dat.lines_from_raw_dat": {"tf": 1}, "ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 13, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.io.HSDS.filter_dataset": {"tf": 1}}, "df": 1}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.io.HSDS.filter_dataset": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "t": {"docs": {"ramanchada2.misc.utils.argmin2d.align": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.align_shift": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.generate_baseline": {"tf": 2}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.baseline_als": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.baseline_rc1.baseline_snip": {"tf": 1}, "ramanchada2.spectrum.baseline.moving_minimum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.baseline.moving_minimum.subtract_moving_minimum": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 2.23606797749979}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.__init__": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol_DL": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.gen_samples": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 2.23606797749979}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 48, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectrum.filters.add_gaussian_noise_drift.generate_add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 5}}}, "p": {"docs": {"ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}}, "df": 4}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.theoretical_lines.model_from_lines.model_from_lines": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {"ramanchada2.spectrum.calc.central_moments.central_moments": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.central_moments": {"tf": 1.4142135623730951}}, "df": 2}, "i": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_filter": {"tf": 1}}, "df": 4}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {"ramanchada2.io.simulated.crystal.discrete_lines_dat.lines_from_crystal_dat": {"tf": 1}, "ramanchada2.io.simulated.crystal.discrete_lines_out.lines_from_crystal_out": {"tf": 1}, "ramanchada2.io.simulated.lines_from_raw_dat.lines_from_raw_dat": {"tf": 1}, "ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 7}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.utils.argmin2d.align": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.align_shift": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 4}}}}, "l": {"1": {"docs": {"ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}}, "df": 2}, "2": {"docs": {"ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.io.experimental.rc1_parser.txt_format_readers.isDataLine": {"tf": 1}}, "df": 1, "s": {"docs": {"ramanchada2.io.experimental.bw_format.bw_format": {"tf": 1}, "ramanchada2.io.experimental.neegala_format.neegala_format": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.dataFromTxtLines": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.startStop": {"tf": 1}, "ramanchada2.io.experimental.rruf_format.rruf_format": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.model_from_list": {"tf": 1.4142135623730951}}, "df": 6, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.io.experimental.bw_format.bw_format": {"tf": 1}, "ramanchada2.io.experimental.neegala_format.neegala_format": {"tf": 1}, "ramanchada2.io.experimental.rruf_format.rruf_format": {"tf": 1}, "ramanchada2.io.output.write_csv.write_csv": {"tf": 1}, "ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.loads": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.extend_left": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.get_all_keys": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.model_from_lines": {"tf": 1.7320508075688772}, "ramanchada2.theoretical_lines.model_from_lines.model_from_list": {"tf": 1.4142135623730951}}, "df": 28, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.baseline_rc1.baseline_als": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.model_from_lines": {"tf": 1}}, "df": 32}}}}}}, "e": {"docs": {"ramanchada2.spectrum.filters.add_gaussian_noise_drift.generate_add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 5, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"ramanchada2.io.experimental.rc1_parser.binary_readers.read_4byte_datablock": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.laser_wl_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}}, "df": 14}}}}}, "t": {"docs": {"ramanchada2.io.experimental.read_csv.read_csv": {"tf": 1}, "ramanchada2.io.experimental.read_txt.read_txt": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.generate_add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 8}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.plottable.Plottable.plot": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.plot": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.plot": {"tf": 1}}, "df": 3}}}, "m": {"docs": {"ramanchada2.spectrum.baseline.baseline_rc1.baseline_als": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_als": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_als": {"tf": 1}}, "df": 3, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.misc.utils.argmin2d.align": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1_dict": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.convert_units": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.set_laser_wavelength": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.calibration_model_factory": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}}, "df": 20}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1.4142135623730951}}, "df": 7}}}}}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 2}}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.theoretical_lines.model_from_lines.model_from_lines": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.model_from_list": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {"ramanchada2.io.experimental.rc1_parser.third_party_readers.readOPUS": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 3}}, "r": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_csv": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol_DL": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine": {"tf": 1}}, "df": 4}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.convert_units": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.apply_calibration_x": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_als": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_snip": {"tf": 1}, "ramanchada2.spectrum.baseline.moving_minimum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.baseline.moving_minimum.subtract_moving_minimum": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_als": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_snip": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1}}, "df": 78}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 2}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.__init__": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.spe_distribution": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}}, "df": 20}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 2}}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.io.experimental.rc1_parser.txt_format_readers.read_JCAMP": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.readTXT": {"tf": 1}}, "df": 2}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {"ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 3}}, "l": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.check_proc": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.pre_validate": {"tf": 1}}, "df": 2, "u": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate.Y": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.model_from_lines": {"tf": 1}}, "df": 8}}}}}, "g": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.io.experimental.read_csv.read_csv": {"tf": 1}, "ramanchada2.io.experimental.read_txt.read_txt": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 2}, "ramanchada2.misc.utils.argmin2d.align_shift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.add_baseline.generate_baseline": {"tf": 2}, "ramanchada2.spectrum.baseline.baseline_rc1.baseline_als": {"tf": 2}, "ramanchada2.spectrum.baseline.baseline_rc1.baseline_snip": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 2}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.generate_add_gaussian_noise_drift": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 2.8284271247461903}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol_DL": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.gen_samples": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 2.8284271247461903}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 2}}, "df": 49}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"2": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 2}}, "docs": {"ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.model_from_lines": {"tf": 1.4142135623730951}}, "df": 17}}}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_filter": {"tf": 1}}, "df": 4}}}}, "e": {"docs": {"ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.generate_add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 2}}, "df": 9, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1.7320508075688772}}, "df": 2}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "w": {"docs": {"ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_chada.from_chada": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_chada": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 5}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.misc.utils.ramanshift_to_wavelength.laser_wl_nm": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"2": {"docs": {"ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.extend_left": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.apply_calibration_x": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.calibration_model_factory": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_als": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_snip": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.moving_minimum.moving_minimum": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.moving_minimum.subtract_moving_minimum": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calc.central_moments.central_moments": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.__init__": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.apply_creator": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.apply_processing": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_als": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_snip": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_minimum": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_minimum": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.central_moments": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.model_from_list": {"tf": 1}}, "df": 116}, "docs": {}, "df": 0}}}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spe_distribution": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.gen_samples": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 12}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {"ramanchada2.misc.utils.argmin2d.match_peaks": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.__init__": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.XCalibrationComponent.__init__": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.LazerZeroingComponent.__init__": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.LazerZeroingComponent.zero_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 2}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}}, "df": 12, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_divide": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_mask": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_factor": {"tf": 1}}, "df": 4}}}}}}}, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent.safe_divide": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_mask": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_factor": {"tf": 1}}, "df": 3}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1}}, "df": 2}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.spectrum.baseline.add_baseline.generate_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}}, "df": 3}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 2}}}}}}}}, "b": {"docs": {}, "df": 0, "f": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator.from_dict": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.spectrum.baseline.add_baseline.generate_baseline": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.generate_add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 10}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "f": {"docs": {"ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 2}}}, "c": {"1": {"docs": {"ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 3}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.misc.utils.argmin2d.align": {"tf": 1}, "ramanchada2.spectrum.baseline.baseline_rc1.baseline_als": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.__init__": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 22}}, "t": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.convert_units": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.__init__": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationComponent.set_model": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.__init__": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.XCalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.__init__": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.LazerZeroingComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 2}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.apply_calibration_x": {"tf": 1}}, "df": 12}, "y": {"docs": {"ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 2}}, "df": 2}}}}}, "z": {"docs": {}, "df": 0, "z": {"docs": {"ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.4142135623730951}}, "df": 3}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"ramanchada2.protocols.calibration.LazerZeroingComponent.zero_nm_to_shift_cm_1": {"tf": 1.4142135623730951}}, "df": 1}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.loads": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "x": {"docs": {"ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 2}}}, "b": {"docs": {"ramanchada2.misc.utils.svd.svd_solve": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "f": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_csv": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"ramanchada2.protocols.calibration.CalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent.process": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent.process": {"tf": 1}}, "df": 4, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}}, "df": 2}}}}}}, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}}, "df": 4, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1}}, "df": 3}}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.spectrum.calc.central_moments.central_moments": {"tf": 1}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.central_moments": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1}}, "df": 4}}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1}}, "df": 12}}, "h": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}}, "df": 2}}}}, "x": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}}, "df": 4}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "k": {"docs": {"ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1}}, "df": 4}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}}, "df": 10}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}}, "df": 2, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}}, "df": 2}}}}}}}}}}}}}, "g": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1.4142135623730951}}, "df": 2}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}}, "df": 2}}}}}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 2}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 4}}}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 2}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}}, "df": 2}}}}}, "bases": {"root": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.io.HSDS.DatasetExistsError": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.io.UnsupportedFileTypeError": {"tf": 1}, "ramanchada2.misc.exceptions.ApplicationException": {"tf": 1}}, "df": 3}}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical": {"tf": 1}, "ramanchada2.spectral_components.spectral_component.SpectralComponent": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection": {"tf": 1}}, "df": 5, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 9}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectral_components.baseline.numerical.BaselineNumerical": {"tf": 1.4142135623730951}}, "df": 1, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.spectral_components.baseline.numerical.BaselineNumerical": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.spectral_components.spectral_component.SpectralComponent": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection": {"tf": 1}}, "df": 2}}}}}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.io.HSDS.DatasetExistsError": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.io.UnsupportedFileTypeError": {"tf": 1}, "ramanchada2.misc.exceptions.ApplicationException": {"tf": 1}}, "df": 3}}}}}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.misc.exceptions.InputParserError": {"tf": 1}, "ramanchada2.misc.exceptions.ChadaReadNotFoundError": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2.misc.plottable.Plottable": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1.4142135623730951}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak": {"tf": 1.4142135623730951}}, "df": 3}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectral_components.baseline.baseline_base.BaseLineBase": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak": {"tf": 1}}, "df": 2, "s": {"docs": {"ramanchada2.spectral_components.baseline.baseline_base.BaseLineBase": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.voigt.VoigtPeak": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak": {"tf": 1}}, "df": 6}}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.XCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.spectral_components.spectral_component.SpectralComponent": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection": {"tf": 1}}, "df": 2}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"2": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel": {"tf": 1}, "ramanchada2.spectral_components.baseline.baseline_base.BaseLineBase": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.voigt.VoigtPeak": {"tf": 1}, "ramanchada2.spectral_components.spectral_component.SpectralComponent": {"tf": 1.4142135623730951}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection": {"tf": 1.4142135623730951}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum": {"tf": 1}}, "df": 15}, "docs": {}, "df": 0}}}}}}}}}, "b": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel": {"tf": 1}, "ramanchada2.spectral_components.spectral_component.SpectralComponent": {"tf": 1.4142135623730951}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum": {"tf": 1}}, "df": 9}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 9}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationComponent": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel": {"tf": 1.4142135623730951}, "ramanchada2.spectral_components.spectral_component.SpectralComponent": {"tf": 1.4142135623730951}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum": {"tf": 1.4142135623730951}}, "df": 8}}}}}}}}, "y": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 11}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}}, "df": 2}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {"ramanchada2.spectral_components.peak_profile.delta.DeltasPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.voigt.VoigtPeak": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 1}}, "df": 5}}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "~": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 1}}, "df": 5}}}}}}}}}}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectral_components.baseline.baseline_base.BaseLineBase": {"tf": 1.4142135623730951}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak": {"tf": 1.4142135623730951}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak": {"tf": 1.4142135623730951}, "ramanchada2.spectral_components.peak_profile.voigt.VoigtPeak": {"tf": 1.4142135623730951}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak": {"tf": 1.4142135623730951}}, "df": 6, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectral_components.baseline.baseline_base.BaseLineBase": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak": {"tf": 1}}, "df": 2}}}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {"ramanchada2.spectral_components.peak_profile.delta.DeltasPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.voigt.VoigtPeak": {"tf": 1}}, "df": 3}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "doc": {"root": {"0": {"0": {"0": {"1": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "1": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}}, "df": 3}, "2": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}}, "df": 1}, "4": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}}, "df": 1}, "8": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2": {"tf": 3.605551275463989}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 3.7416573867739413}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 22, "}": {"docs": {}, "df": 0, "^": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "i": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 3}}}}}, "1": {"0": {"0": {"0": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 2}}, "df": 3}, "docs": {"ramanchada2": {"tf": 2.6457513110645907}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 16}, "docs": {"ramanchada2": {"tf": 2.8284271247461903}, "ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}}, "df": 18}, "1": {"0": {"3": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "b": {"docs": {"ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"tf": 1}}, "df": 1}}}}}}}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "4": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}}, "df": 1}, "5": {"0": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}}, "df": 3}, "5": {"9": {"6": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}}, "df": 1}, "6": {"0": {"2": {"3": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2": {"tf": 3.605551275463989}, "ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 2}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 4.358898943540674}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 21, "}": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 3}}, "+": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "}": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}}}, "]": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}}, "df": 5}}}}}, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}, "2": {"0": {"0": {"0": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}}, "df": 7}, "docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}}, "df": 4}, "docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}}, "df": 1}, "5": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2}}, "df": 2}, "8": {"3": {"2": {"5": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2": {"tf": 2.23606797749979}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.8284271247461903}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 14}, "3": {"5": {"0": {"0": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2}}, "df": 1}, "docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}}, "df": 8}, "4": {"0": {"0": {"0": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}}, "df": 9}, "docs": {}, "df": 0}, "docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}}, "df": 3}, "docs": {"ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}}, "df": 1}, "5": {"0": {"0": {"0": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.23606797749979}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 6}, "3": {"2": {"docs": {"ramanchada2.protocols.calibration.CertificatesDict": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "4": {"docs": {"ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}}, "df": 4}, "6": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}}, "df": 4}, "7": {"1": {"9": {"3": {"7": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"1": {"7": {"1": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"3": {"0": {"docs": {"ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1}}, "df": 4}, "docs": {}, "df": 0}, "docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}, "8": {"6": {"7": {"6": {"2": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}}, "df": 1}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"0": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 3}, "docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 4, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 5, "/": {"docs": {}, "df": 0, "#": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 1}}, "df": 5}}}}}}}}}}}}}}}}}}}}}}}}}}}}, "docs": {"ramanchada2": {"tf": 33.36165463522455}, "ramanchada2.auxiliary": {"tf": 1.7320508075688772}, "ramanchada2.auxiliary.spectra": {"tf": 1.7320508075688772}, "ramanchada2.auxiliary.spectra.datasets2": {"tf": 1.7320508075688772}, "ramanchada2.auxiliary.spectra.datasets2.data": {"tf": 1.7320508075688772}, "ramanchada2.auxiliary.spectra.datasets2.df": {"tf": 1.7320508075688772}, "ramanchada2.auxiliary.spectra.datasets2.loc": {"tf": 1.7320508075688772}, "ramanchada2.auxiliary.spectra.datasets2.filtered_df": {"tf": 1.7320508075688772}, "ramanchada2.auxiliary.spectra.datasets2.get_filters": {"tf": 1.7320508075688772}, "ramanchada2.auxiliary.spectra.datasets2.get_filenames": {"tf": 1.7320508075688772}, "ramanchada2.auxiliary.spectra.datasets2.prepend_prefix": {"tf": 1.7320508075688772}, "ramanchada2.auxiliary.spectra.simulated": {"tf": 1.7320508075688772}, "ramanchada2.auxiliary.spectra.simulated.loc": {"tf": 1.7320508075688772}, "ramanchada2.auxiliary.spectra.simulated.FILES": {"tf": 1.7320508075688772}, "ramanchada2.io": {"tf": 1.7320508075688772}, "ramanchada2.io.HSDS": {"tf": 1.7320508075688772}, "ramanchada2.io.HSDS.logger": {"tf": 1.7320508075688772}, "ramanchada2.io.HSDS.write_nexus": {"tf": 1.7320508075688772}, "ramanchada2.io.HSDS.DatasetExistsError": {"tf": 1.7320508075688772}, "ramanchada2.io.HSDS.write_cha": {"tf": 1.7320508075688772}, "ramanchada2.io.HSDS.read_cha": {"tf": 1.7320508075688772}, "ramanchada2.io.HSDS.filter_dataset": {"tf": 1.7320508075688772}, "ramanchada2.io.HSDS.visit_domain": {"tf": 1.7320508075688772}, "ramanchada2.io.experimental": {"tf": 1.7320508075688772}, "ramanchada2.io.experimental.bw_format": {"tf": 1.7320508075688772}, "ramanchada2.io.experimental.bw_format.bw_format": {"tf": 1.7320508075688772}, "ramanchada2.io.experimental.neegala_format": {"tf": 1.7320508075688772}, "ramanchada2.io.experimental.neegala_format.neegala_format": {"tf": 1.7320508075688772}, "ramanchada2.io.experimental.rc1_parser": {"tf": 1.7320508075688772}, "ramanchada2.io.experimental.rc1_parser.binary_readers": {"tf": 1.7320508075688772}, "ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 5.196152422706632}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs": {"tf": 1.7320508075688772}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_4byte_datablock": {"tf": 1.7320508075688772}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_bytestring": {"tf": 1.7320508075688772}, "ramanchada2.io.experimental.rc1_parser.binary_readers.read_ngs_meta": {"tf": 1.7320508075688772}, "ramanchada2.io.experimental.rc1_parser.io": {"tf": 1.7320508075688772}, "ramanchada2.io.experimental.rc1_parser.io.UnsupportedFileTypeError": {"tf": 1.7320508075688772}, "ramanchada2.io.experimental.rc1_parser.io.parse": {"tf": 1.7320508075688772}, "ramanchada2.io.experimental.rc1_parser.io.cleanMeta": {"tf": 1.7320508075688772}, "ramanchada2.io.experimental.rc1_parser.third_party_readers": {"tf": 1.7320508075688772}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readWDF": {"tf": 1.7320508075688772}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readSPC": {"tf": 1.7320508075688772}, "ramanchada2.io.experimental.rc1_parser.third_party_readers.readOPUS": {"tf": 1.7320508075688772}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers": {"tf": 1.7320508075688772}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.logger": {"tf": 1.7320508075688772}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.read_JCAMP": {"tf": 1.7320508075688772}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.readTXT": {"tf": 1.7320508075688772}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.dataFromTxtLines": {"tf": 1.7320508075688772}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.isDataLine": {"tf": 1.7320508075688772}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.startStop": {"tf": 1.7320508075688772}, "ramanchada2.io.experimental.rc1_parser.txt_format_readers.getYDataType": {"tf": 1.7320508075688772}, "ramanchada2.io.experimental.read_csv": {"tf": 1.7320508075688772}, "ramanchada2.io.experimental.read_csv.read_csv": {"tf": 1.7320508075688772}, "ramanchada2.io.experimental.read_txt": {"tf": 1.7320508075688772}, "ramanchada2.io.experimental.read_txt.read_txt": {"tf": 1.7320508075688772}, "ramanchada2.io.experimental.rruf_format": {"tf": 1.7320508075688772}, "ramanchada2.io.experimental.rruf_format.rruf_format": {"tf": 1.7320508075688772}, "ramanchada2.io.output": {"tf": 1.7320508075688772}, "ramanchada2.io.output.write_csv": {"tf": 1.7320508075688772}, "ramanchada2.io.output.write_csv.write_csv": {"tf": 1.7320508075688772}, "ramanchada2.io.simulated": {"tf": 1.7320508075688772}, "ramanchada2.io.simulated.crystal": {"tf": 1.7320508075688772}, "ramanchada2.io.simulated.crystal.discrete_lines_dat": {"tf": 1.7320508075688772}, "ramanchada2.io.simulated.crystal.discrete_lines_dat.lines_from_crystal_dat": {"tf": 1.7320508075688772}, "ramanchada2.io.simulated.crystal.discrete_lines_out": {"tf": 1.7320508075688772}, "ramanchada2.io.simulated.crystal.discrete_lines_out.lines_from_crystal_out": {"tf": 1.7320508075688772}, "ramanchada2.io.simulated.lines_from_raw_dat": {"tf": 1.7320508075688772}, "ramanchada2.io.simulated.lines_from_raw_dat.lines_from_raw_dat": {"tf": 1.7320508075688772}, "ramanchada2.io.simulated.read_simulated_lines": {"tf": 1.7320508075688772}, "ramanchada2.io.simulated.read_simulated_lines.read_simulated_lines": {"tf": 1.7320508075688772}, "ramanchada2.io.simulated.vasp": {"tf": 1.7320508075688772}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat": {"tf": 1.7320508075688772}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"tf": 2}, "ramanchada2.misc": {"tf": 1.7320508075688772}, "ramanchada2.misc.base_class": {"tf": 1.7320508075688772}, "ramanchada2.misc.base_class.BaseClass": {"tf": 1.7320508075688772}, "ramanchada2.misc.base_class.BaseClass.origin": {"tf": 1.7320508075688772}, "ramanchada2.misc.base_class.BaseClass.origin_list_str": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.PST_RS_dict": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_nist_wl_nm": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.polystyrene_rs": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_rs_dict": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_wl_dict": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_rs_spe": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_wl_spe": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_wl_785_nist_dict": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_wl_633_nist_dict": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_wl_532_nist_dict": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_rs_532_nist_dict": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_rs_633_nist_dict": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_rs_785_nist_dict": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_wl_D3_3": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.neon_wl_D3_3_dict": {"tf": 1.7320508075688772}, "ramanchada2.misc.constants.NEON_WL": {"tf": 1.7320508075688772}, "ramanchada2.misc.exceptions": {"tf": 1.7320508075688772}, "ramanchada2.misc.exceptions.ApplicationException": {"tf": 1.7320508075688772}, "ramanchada2.misc.exceptions.InputParserError": {"tf": 1.7320508075688772}, "ramanchada2.misc.exceptions.ChadaReadNotFoundError": {"tf": 1.7320508075688772}, "ramanchada2.misc.plottable": {"tf": 1.7320508075688772}, "ramanchada2.misc.plottable.Plottable": {"tf": 1.7320508075688772}, "ramanchada2.misc.plottable.Plottable.plot": {"tf": 1.7320508075688772}, "ramanchada2.misc.spectrum_deco": {"tf": 1.7320508075688772}, "ramanchada2.misc.spectrum_deco.dynamically_added": {"tf": 1.7320508075688772}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_filters": {"tf": 1.7320508075688772}, "ramanchada2.misc.spectrum_deco.dynamically_added.dynamically_added_constructors": {"tf": 1.7320508075688772}, "ramanchada2.misc.spectrum_deco.spectrum_constructor": {"tf": 1.7320508075688772}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor": {"tf": 1.7320508075688772}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.__init__": {"tf": 1.7320508075688772}, "ramanchada2.misc.spectrum_deco.spectrum_constructor.add_spectrum_constructor.set_proc": {"tf": 1.7320508075688772}, "ramanchada2.misc.spectrum_deco.spectrum_filter": {"tf": 1.7320508075688772}, "ramanchada2.misc.spectrum_deco.spectrum_filter.logger": {"tf": 1.7320508075688772}, "ramanchada2.misc.spectrum_deco.spectrum_filter.add_spectrum_filter": {"tf": 1.7320508075688772}, "ramanchada2.misc.spectrum_deco.spectrum_method": {"tf": 1.7320508075688772}, "ramanchada2.misc.spectrum_deco.spectrum_method.add_spectrum_method": {"tf": 1.7320508075688772}, "ramanchada2.misc.types": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.fit_peaks_result": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.valuesdict": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.locations": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.centers": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.fwhm": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.boundaries": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.center_amplitude": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.centers_err": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.fwhms": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.amplitudes": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.dumps": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.loads": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_dataframe_peaks": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.to_csv": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult.gen_fake_spectrum": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 12.409673645990857}, "ramanchada2.misc.types.peak_candidates.PeakModel.amplitude": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakModel.position": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakModel.sigma": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakModel.skew": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakModel.fwhm": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakModel.lwhm": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakModel.rwhm": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakModel.serialize": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_config": {"tf": 2}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 3.1622776601683795}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_computed_fields": {"tf": 2.23606797749979}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 12.409673645990857}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.peaks": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.base_slope": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.base_intercept": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.boundaries": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_baseline": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.plot_params_errorbar": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.positions": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.sigmas": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.fwhms": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.lwhms": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.rwhms": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.skews": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.amplitudes": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.bases": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.peak_bases": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.serialize": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_config": {"tf": 2}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 3.1622776601683795}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_computed_fields": {"tf": 2.23606797749979}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 6.4031242374328485}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.root": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_ampl_pos_fwhm": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.get_pos_ampl_dict": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel.serialize": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.positive_not_multiple": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.positive_not_multiple.PositiveOddInt": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.pydantic_base_model": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 12.409673645990857}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_config": {"tf": 2}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.serialize": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 3.1622776601683795}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_computed_fields": {"tf": 2.23606797749979}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 6.4031242374328485}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel.serialize": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.applied_processings": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 12.409673645990857}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.proc": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.args": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.kwargs": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.is_constructor": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.check_proc": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_config": {"tf": 2}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 3.1622776601683795}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields": {"tf": 2.23606797749979}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 6.4031242374328485}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.root": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.append": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.extend_left": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.pop": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.clear": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.assign": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.repr": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.cache_path": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel.to_list": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.metadata": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldTyping": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 6.4031242374328485}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.root": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.pre_validate": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel.serialize": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 6.4031242374328485}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.root": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.serialize": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.get_all_keys": {"tf": 1.7320508075688772}, "ramanchada2.misc.utils": {"tf": 1.7320508075688772}, "ramanchada2.misc.utils.argmin2d": {"tf": 1.7320508075688772}, "ramanchada2.misc.utils.argmin2d.argmin2d": {"tf": 1.7320508075688772}, "ramanchada2.misc.utils.argmin2d.find_closest_pairs_idx": {"tf": 1.7320508075688772}, "ramanchada2.misc.utils.argmin2d.find_closest_pairs": {"tf": 1.7320508075688772}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 2.23606797749979}, "ramanchada2.misc.utils.argmin2d.align_shift": {"tf": 1.7320508075688772}, "ramanchada2.misc.utils.argmin2d.match_peaks": {"tf": 1.7320508075688772}, "ramanchada2.misc.utils.ramanshift_to_wavelength": {"tf": 1.7320508075688772}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm_dict": {"tf": 1.7320508075688772}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1_dict": {"tf": 1.7320508075688772}, "ramanchada2.misc.utils.ramanshift_to_wavelength.abs_nm_to_shift_cm_1": {"tf": 1.7320508075688772}, "ramanchada2.misc.utils.ramanshift_to_wavelength.shift_cm_1_to_abs_nm": {"tf": 1.7320508075688772}, "ramanchada2.misc.utils.ramanshift_to_wavelength.laser_wl_nm": {"tf": 1.7320508075688772}, "ramanchada2.misc.utils.svd": {"tf": 1.7320508075688772}, "ramanchada2.misc.utils.svd.svd_solve": {"tf": 1.4142135623730951}, "ramanchada2.misc.utils.svd.svd_inverse": {"tf": 1.7320508075688772}, "ramanchada2.protocols": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.logger": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.ProcessingModel": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationComponent": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationComponent.__init__": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationComponent.laser_wl": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationComponent.spe": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationComponent.spe_units": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationComponent.ref": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationComponent.ref_units": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationComponent.name": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationComponent.model": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationComponent.model_units": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationComponent.peaks": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationComponent.sample": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationComponent.enabled": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationComponent.fit_res": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationComponent.set_model": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationComponent.convert_units": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationComponent.process": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationComponent.derive_model": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationComponent.plot": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationComponent.fitres2df": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.XCalibrationComponent": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.XCalibrationComponent.__init__": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.XCalibrationComponent.spe_pos_dict": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.XCalibrationComponent.process": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.XCalibrationComponent.derive_model": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.LazerZeroingComponent": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.LazerZeroingComponent.__init__": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.LazerZeroingComponent.profile": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.LazerZeroingComponent.derive_model": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.LazerZeroingComponent.zero_nm_to_shift_cm_1": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.LazerZeroingComponent.process": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 14.352700094407323}, "ramanchada2.protocols.calibration.YCalibrationCertificate.id": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.YCalibrationCertificate.description": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.YCalibrationCertificate.url": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.YCalibrationCertificate.wavelength": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.YCalibrationCertificate.params": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.YCalibrationCertificate.equation": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.YCalibrationCertificate.temperature_c": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.YCalibrationCertificate.raman_shift": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.YCalibrationCertificate.response_function": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.YCalibrationCertificate.Y": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.YCalibrationCertificate.load": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_config": {"tf": 2}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 3.1622776601683795}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_computed_fields": {"tf": 2.23606797749979}, "ramanchada2.protocols.calibration.CertificatesDict": {"tf": 13.784048752090222}, "ramanchada2.protocols.calibration.CertificatesDict.load_certificates": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CertificatesDict.get_laser_wl": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CertificatesDict.get_certificates": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CertificatesDict.get": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CertificatesDict.load": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 16.0312195418814}, "ramanchada2.protocols.calibration.YCalibrationComponent.__init__": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.YCalibrationComponent.laser_wl": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.YCalibrationComponent.spe": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.YCalibrationComponent.ref": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.YCalibrationComponent.name": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.YCalibrationComponent.model": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.YCalibrationComponent.model_units": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.YCalibrationComponent.derive_model": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_divide": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_mask": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.YCalibrationComponent.safe_factor": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.YCalibrationComponent.process": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationModel": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 14.212670403551895}, "ramanchada2.protocols.calibration.CalibrationModel.prominence_coeff": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationModel.set_laser_wavelength": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationModel.clear": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationModel.save": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationModel.from_file": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_curve": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_zero": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationModel.apply_calibration_x": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationModel.plot": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationModel.calibration_model_factory": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 26.49528259898354}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.__init__": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.from_dict": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CustomRBFInterpolator.to_dict": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.baseline": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.baseline.analytical": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.baseline.baseline_base": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.baseline.baseline_base.BaseLineBase": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.baseline.numerical": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical.__init__": {"tf": 4}, "ramanchada2.spectral_components.peak_profile": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.peak_profile.delta": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.__init__": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.a": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.x0": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.delta": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.pos_amp_fwhm": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak.limit_3sigma": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.peak_profile.gauss": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.__init__": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.a": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.x0": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.w": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.delta": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.pos_amp_fwhm": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak.limit_3sigma": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.peak_profile.voigt": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.peak_profile.voigt.VoigtPeak": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.spectral_component": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.spectral_component.SpectralComponent": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.spectral_component_collection": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.__init__": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.kwargs": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.reset_origin": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.get_deltas": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.get_curve": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection.limit_3sigma": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.spectral_peak": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.delta": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.limit_3sigma": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak.pos_amp_fwhm": {"tf": 1.7320508075688772}, "ramanchada2.spectrum": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.arithmetics": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.arithmetics.add": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.arithmetics.mul": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.arithmetics.sub": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.arithmetics.truediv": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.baseline": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.baseline.add_baseline": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.baseline.add_baseline.generate_baseline": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 6.782329983125268}, "ramanchada2.spectrum.baseline.baseline_rc1": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.baseline.baseline_rc1.baseline_als": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.baseline.baseline_rc1.baseline_snip": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_als": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.baseline.baseline_rc1.subtract_baseline_rc1_snip": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.baseline.moving_minimum": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.baseline.moving_minimum.moving_minimum": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.baseline.moving_minimum.subtract_moving_minimum": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calc": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calc.central_moments": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calc.central_moments.central_moments": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.by_deltas": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.__init__": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.params": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.minx": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.maxx": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.model": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.by_deltas.DeltaSpeModel.fit": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 3.605551275463989}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_filter": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 2.6457513110645907}, "ramanchada2.spectrum.calibration.change_x_units": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 4.242640687119285}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 4.242640687119285}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 4.242640687119285}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 4.242640687119285}, "ramanchada2.spectrum.calibration.normalize": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 6}, "ramanchada2.spectrum.calibration.scale_xaxis": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 5.656854249492381}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 6.164414002968976}, "ramanchada2.spectrum.calibration.scale_yaxis": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 4.898979485566356}, "ramanchada2.spectrum.calibration.set_new_xaxis": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 5.744562646538029}, "ramanchada2.spectrum.creators": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_cache_or_calc": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_cache_or_calc.logger": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 5}, "ramanchada2.spectrum.creators.from_chada": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_chada.from_chada": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_delta_lines": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 9.055385138137417}, "ramanchada2.spectrum.creators.from_local_file": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 8.774964387392123}, "ramanchada2.spectrum.creators.from_simulation": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 9.055385138137417}, "ramanchada2.spectrum.creators.from_spectral_component_collection": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 4.795831523312719}, "ramanchada2.spectrum.creators.from_test_spe": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 5.385164807134504}, "ramanchada2.spectrum.creators.from_theoretical_lines": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 5.5677643628300215}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 2.449489742783178}, "ramanchada2.spectrum.filters": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.add_gaussian_noise": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 5.830951894845301}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.generate_add_gaussian_noise_drift": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 7.416198487095663}, "ramanchada2.spectrum.filters.add_poisson_noise": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 6.164414002968976}, "ramanchada2.spectrum.filters.convolve": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 7.211102550927978}, "ramanchada2.spectrum.filters.drop_spikes": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 4.898979485566356}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 5.5677643628300215}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 5.5677643628300215}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 5.5677643628300215}, "ramanchada2.spectrum.filters.moving_average": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 5.291502622129181}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 5.291502622129181}, "ramanchada2.spectrum.filters.moving_median": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 5.5677643628300215}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 5.5677643628300215}, "ramanchada2.spectrum.filters.pad_zeros": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 4.795831523312719}, "ramanchada2.spectrum.filters.resampling": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 6.928203230275509}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 6.6332495807108}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 6.708203932499369}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 6.4031242374328485}, "ramanchada2.spectrum.filters.sharpen_lines": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 6.324555320336759}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 5}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 5.196152422706632}, "ramanchada2.spectrum.filters.smoothing": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 5.477225575051661}, "ramanchada2.spectrum.filters.trim_axes": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 5.385164807134504}, "ramanchada2.spectrum.peaks": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.peaks.find_peaks": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.peaks.find_peaks.peak_boundaries": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 7.810249675906654}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 5.196152422706632}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 6.928203230275509}, "ramanchada2.spectrum.peaks.fit_peaks": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.peaks.fit_peaks.logger": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.peaks.fit_peaks.available_models": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.peaks.fit_peaks.available_models_type": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.peaks.fit_peaks.build_multipeak_model_params": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peak_multimodel": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 5.5677643628300215}, "ramanchada2.spectrum.peaks.get_fitted_peaks": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.peaks.get_fitted_peaks.logger": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 7.416198487095663}, "ramanchada2.spectrum.spectrum": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.logger": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.__init__": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.applied_processings_dict": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.write_csv": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.write_cha": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.write_nexus": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.write_cache": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.process": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.apply_creator": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.apply_processing": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.x": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.x_bin_boundaries": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.y": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_MAD": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol_DL": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.y_noise_savgol": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.x_err": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.y_err": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.meta": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.result": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.spe_distribution": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.gen_samples": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 6.782329983125268}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_als": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_baseline_rc1_snip": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.moving_minimum": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_minimum": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.central_moments": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 4.242640687119285}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 4.242640687119285}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 4.242640687119285}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 4.242640687119285}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 3.605551275463989}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_filter": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 2.6457513110645907}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 4.898979485566356}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 5.744562646538029}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 5.656854249492381}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 6.164414002968976}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 6}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 5.5677643628300215}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 5.5677643628300215}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 6.164414002968976}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 5.385164807134504}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 4.795831523312719}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 5.830951894845301}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 5.477225575051661}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 6.324555320336759}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 5}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 5.196152422706632}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 7.211102550927978}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 5.291502622129181}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 5.291502622129181}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 6.928203230275509}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 6.6332495807108}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 6.708203932499369}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 6.4031242374328485}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 7.416198487095663}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 4.898979485566356}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 5.5677643628300215}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 5.5677643628300215}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 5.5677643628300215}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 7.416198487095663}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 6.928203230275509}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 7.810249675906654}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 5.196152422706632}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_multimodel": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 5.5677643628300215}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 5}, "ramanchada2.spectrum.spectrum.Spectrum.from_chada": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 8.774964387392123}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 9.055385138137417}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 9.055385138137417}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 5.5677643628300215}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 4.795831523312719}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 5.385164807134504}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 2.449489742783178}, "ramanchada2.theoretical_lines": {"tf": 1.7320508075688772}, "ramanchada2.theoretical_lines.model_from_lines": {"tf": 1.7320508075688772}, "ramanchada2.theoretical_lines.model_from_lines.model_from_lines": {"tf": 1.7320508075688772}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 12.409673645990857}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model": {"tf": 1.7320508075688772}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.position": {"tf": 1.7320508075688772}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.inensity": {"tf": 1.7320508075688772}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.sigma": {"tf": 1.7320508075688772}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.name": {"tf": 1.7320508075688772}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_config": {"tf": 2}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 3.1622776601683795}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_computed_fields": {"tf": 2.23606797749979}, "ramanchada2.theoretical_lines.model_from_lines.model_from_list": {"tf": 1.7320508075688772}}, "df": 575, "p": {"docs": {"ramanchada2.misc.utils.argmin2d.align": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 3}}, "df": 2, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 6}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "r": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.7320508075688772}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.8284271247461903}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}}, "df": 4, "s": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 12}}}}}, "s": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 4}}}, "t": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}}, "df": 3}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1.4142135623730951}}, "df": 6, "s": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}}, "df": 5, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 9}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 9}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 6}}, "d": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}}, "df": 1, "d": {"docs": {"ramanchada2": {"tf": 2.6457513110645907}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 11}, "s": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.misc.plottable.Plottable": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent": {"tf": 1}, "ramanchada2.spectral_components.baseline.baseline_base.BaseLineBase": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.voigt.VoigtPeak": {"tf": 1}, "ramanchada2.spectral_components.spectral_component.SpectralComponent": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1}}, "df": 16}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 2, "s": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 2}}}}}, "c": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1, "s": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1.4142135623730951}}, "df": 5}}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}}, "df": 3}}}}}}}, "o": {"docs": {}, "df": 0, "f": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}}, "df": 3}}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}}, "df": 3}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}}, "df": 3}}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}}, "df": 3}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}}, "df": 3}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}}, "df": 3, "s": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 3}}}}}}}, "n": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 3}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 2}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 2}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 2}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 2}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 2}}, "df": 10}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.7320508075688772}}, "df": 3, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 3}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1.4142135623730951}}, "df": 5}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}}, "df": 5}}}}}}, "a": {"docs": {}, "df": 0, "k": {"docs": {"ramanchada2": {"tf": 3.4641016151377544}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1}}, "df": 11, "s": {"docs": {"ramanchada2": {"tf": 3.7416573867739413}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 2}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 2.23606797749979}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 2.23606797749979}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1.4142135623730951}}, "df": 9}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}}, "df": 3}}}}}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"4": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.23606797749979}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1.4142135623730951}}, "df": 4, "s": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}}, "df": 3}}, "s": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}}, "df": 5}}}}}}, "t": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1.4142135623730951}}, "df": 5}, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.23606797749979}}, "df": 2, "s": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.449489742783178}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 3}}}}}}}}}, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 4.47213595499958}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 4.47213595499958}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 2.23606797749979}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 4.47213595499958}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_config": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 2.23606797749979}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 4.47213595499958}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_config": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 2.23606797749979}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 2.23606797749979}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 2.23606797749979}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_config": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 4.47213595499958}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_config": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1.4142135623730951}}, "df": 22}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 7}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.23606797749979}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1.7320508075688772}}, "df": 3}}, "t": {"docs": {"ramanchada2.protocols.calibration.CertificatesDict": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.7320508075688772}}, "df": 3}, "u": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 3}}}}}}}}}, "v": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}}, "df": 3}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}}, "df": 5}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "f": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}}, "df": 1}}}, "r": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.7320508075688772}}, "df": 1, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel": {"tf": 1}}, "df": 3, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"1": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}}, "df": 3}, "2": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}}, "df": 9}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2": {"tf": 3.7416573867739413}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 2}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1}}, "df": 14}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 3.4641016151377544}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}}, "df": 15}}, "k": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.7320508075688772}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 7}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}}, "df": 4}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 4}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}}, "df": 3}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1.4142135623730951}}, "df": 8}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 3.605551275463989}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}}, "df": 23, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 3}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 2.6457513110645907}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}}, "df": 15}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 3}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 11, "d": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 3}}}}}}, "t": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1}}, "df": 3}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 5.744562646538029}, "ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.get_all_keys": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}}, "df": 69}, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 9}}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}}, "df": 5}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}}, "df": 3, "s": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}}, "df": 3}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}}, "df": 7}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1.4142135623730951}}, "df": 3}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.baseline.moving_minimum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_minimum": {"tf": 1}}, "df": 3}}}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}}, "df": 11}, "d": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 5}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel": {"tf": 1}}, "df": 1}}}}}}}}}}, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 5}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 2}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}}, "df": 1, "s": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 2.6457513110645907}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1.4142135623730951}}, "df": 10}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.misc.types.peak_candidates.PeakModel.rwhm": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}}, "df": 10}}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "f": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 3}}}, "c": {"1": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.baseline.moving_minimum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_minimum": {"tf": 1}}, "df": 3}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 2.23606797749979}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 2.23606797749979}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 2.23606797749979}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 2.23606797749979}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 2.23606797749979}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1.7320508075688772}}, "df": 10, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1.4142135623730951}}, "df": 10}}}}}}}}, "b": {"docs": {}, "df": 0, "f": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 3.1622776601683795}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}}, "df": 4}}}}}}}}}}}}, "s": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.23606797749979}}, "df": 1}}}, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.23606797749979}}, "df": 1}, "3": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}, "5": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "s": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1, "o": {"docs": {"ramanchada2": {"tf": 2}}, "df": 1, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 2.449489742783178}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 2, "s": {"docs": {"ramanchada2.misc.utils.svd.svd_solve": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 3}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}}, "df": 2}}}, "p": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 3, "e": {"docs": {"ramanchada2": {"tf": 8.06225774829855}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 2.6457513110645907}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 2.449489742783178}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}}, "df": 75, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {"ramanchada2": {"tf": 3.1622776601683795}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1.4142135623730951}}, "df": 8, "l": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}}, "df": 3, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2": {"tf": 9.695359714832659}, "ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_local_file": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_simulation": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 2.23606797749979}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 2}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 2}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 2.23606797749979}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 2}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 2.23606797749979}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 2.23606797749979}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 2.23606797749979}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 2.23606797749979}}, "df": 93}}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.449489742783178}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 10}}, "c": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}}, "df": 1}}, "y": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 3}}}}, "*": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}}, "df": 3, "s": {"docs": {"ramanchada2": {"tf": 3.3166247903554}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1.4142135623730951}}, "df": 9}}}}, "c": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 3}, "a": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 4, "c": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}, "n": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 3.1622776601683795}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.23606797749979}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 2}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 2}}, "df": 6}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 3}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 2.6457513110645907}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 9}, "s": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 2.6457513110645907}, "ramanchada2.misc.plottable.Plottable": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent": {"tf": 1}, "ramanchada2.spectral_components.baseline.baseline_base.BaseLineBase": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.voigt.VoigtPeak": {"tf": 1}, "ramanchada2.spectral_components.spectral_component.SpectralComponent": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}}, "df": 22, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 3}}}}}, "t": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 8}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1}}, "df": 3, "s": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1.7320508075688772}}, "df": 3}}}, "r": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}}, "df": 6, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}}, "df": 5}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}}, "df": 3}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}}, "df": 3}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1}}, "df": 1, "d": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1}}, "df": 5}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 3, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 2.23606797749979}, "ramanchada2.spectrum.creators.from_simulation": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 2}}, "df": 4, "s": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 5}}}}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2": {"tf": 3.7416573867739413}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1.4142135623730951}}, "df": 13}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1.4142135623730951}}, "df": 5}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1.7320508075688772}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1.7320508075688772}}, "df": 5}}}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 2.449489742783178}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 13, "s": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}}, "df": 5}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 2.23606797749979}, "ramanchada2.protocols.calibration.CertificatesDict": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}}, "df": 12}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 2}}, "df": 1, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 2.8284271247461903}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1.7320508075688772}}, "df": 10}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 9, "s": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 5}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.save": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1.4142135623730951}}, "df": 3}}}}, "t": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 2}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 2}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 2}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 2}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 2}}, "df": 9, "s": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.set_laser_wavelength": {"tf": 1}}, "df": 1}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}}, "df": 5}}}}}}, "e": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1, "d": {"docs": {"ramanchada2": {"tf": 3}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 12}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 3}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}}, "df": 3}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}}, "df": 3}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 5}}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 2.23606797749979}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1.4142135623730951}}, "df": 7}}}, "e": {"docs": {"ramanchada2": {"tf": 2.8284271247461903}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1.4142135623730951}}, "df": 10, "d": {"docs": {"ramanchada2.misc.utils.argmin2d.align": {"tf": 1}}, "df": 1}, "s": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1.4142135623730951}}, "df": 4}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1.4142135623730951}}, "df": 5, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 5}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 5}}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 3}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}}, "df": 3}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 2.8284271247461903}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1.4142135623730951}}, "df": 7, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 7}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}}, "df": 5}}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 2.23606797749979}, "ramanchada2.spectrum.baseline.moving_minimum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}}, "df": 11, "l": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 3}}}}}}}}}}, "m": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}}, "df": 6}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 2.23606797749979}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_config": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_config": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_config": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_config": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_config": {"tf": 1}}, "df": 16}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 3}}, "w": {"docs": {"ramanchada2.protocols.calibration.CertificatesDict": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 3.3166247903554}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1.7320508075688772}}, "df": 9}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 6, "s": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 2}}, "df": 3}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1, "{": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}}, "df": 3}}}}}}}}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.449489742783178}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}}, "df": 3}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 5}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "m": {"2": {"2": {"4": {"1": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1.4142135623730951}}, "df": 2}}}, "i": {"docs": {"ramanchada2": {"tf": 5.385164807134504}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 4.47213595499958}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 4.47213595499958}}, "df": 14, "s": {"docs": {"ramanchada2": {"tf": 8.602325267042627}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 4.69041575982343}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 2.23606797749979}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 2.6457513110645907}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 2}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 2}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 2.23606797749979}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 2.6457513110645907}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1.7320508075688772}}, "df": 66}, "n": {"docs": {"ramanchada2": {"tf": 7.0710678118654755}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.get_all_keys": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.23606797749979}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 74, "t": {"docs": {"ramanchada2": {"tf": 3.4641016151377544}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1.4142135623730951}}, "df": 24, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 7.745966692414834}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1.4142135623730951}}, "df": 71}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1, "d": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 2.8284271247461903}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}}, "df": 12}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.6457513110645907}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"tf": 1}}, "df": 2}}}, "y": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1.4142135623730951}}, "df": 5}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 2.449489742783178}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 3}}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 2.23606797749979}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 2.23606797749979}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 2.23606797749979}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 2.23606797749979}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 2.23606797749979}}, "df": 6, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 6, "s": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1.4142135623730951}}, "df": 6}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 5}}}}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 5}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}}, "df": 8}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1.4142135623730951}}, "df": 3}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}}, "df": 5}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1.4142135623730951}}, "df": 6}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}}, "df": 3}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.plottable.Plottable": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent": {"tf": 1}, "ramanchada2.spectral_components.baseline.baseline_base.BaseLineBase": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.voigt.VoigtPeak": {"tf": 1}, "ramanchada2.spectral_components.spectral_component.SpectralComponent": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum": {"tf": 1}}, "df": 13}}}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {"ramanchada2": {"tf": 2.8284271247461903}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 10, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.misc.utils.argmin2d.align": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 5}}}}, "e": {"docs": {"ramanchada2.protocols.calibration.CertificatesDict": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}}, "df": 1}}, "d": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 3}}}}}}}}, "f": {"docs": {"ramanchada2": {"tf": 6.708203932499369}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.8284271247461903}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 2.449489742783178}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 2}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 2.23606797749979}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 2.23606797749979}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1.7320508075688772}}, "df": 43}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 3, "d": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}, "*": {"docs": {}, "df": 0, "\u03b4": {"docs": {}, "df": 0, "x": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}}, "df": 3}}}, "}": {"docs": {}, "df": 0, "*": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}, "s": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 3}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 2.449489742783178}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 2}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 12, "s": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 2}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 2}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 2}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 2}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.get_all_keys": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 2}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}}, "df": 19}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1.4142135623730951}}, "df": 3}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1}}, "df": 5}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "i": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}}, "df": 3}, "y": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}}, "df": 3}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {"ramanchada2": {"tf": 3.1622776601683795}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1.7320508075688772}}, "df": 7}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.449489742783178}}, "df": 1}}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.449489742783178}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}}, "df": 3}}}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 2.23606797749979}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 4.123105625617661}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 4.123105625617661}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 2.449489742783178}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 4.123105625617661}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_config": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 2.449489742783178}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 4.123105625617661}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_config": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 2.449489742783178}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 2.449489742783178}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 2.449489742783178}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.get_all_keys": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_config": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.clear": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.save": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.from_file": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1.7320508075688772}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 4.123105625617661}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_config": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1.4142135623730951}}, "df": 31, "s": {"docs": {"ramanchada2": {"tf": 2.449489742783178}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1.7320508075688772}}, "df": 7}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 4.358898943540674}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}}, "df": 39}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 5}}}}, "v": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 4.58257569495584}, "ramanchada2.spectrum.baseline.moving_minimum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}}, "df": 21}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}}, "df": 5}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}}, "df": 3}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 1}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}}, "df": 6, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {"ramanchada2.misc.utils.argmin2d.align": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2": {"tf": 3.605551275463989}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2}, "ramanchada2.spectrum.baseline.moving_minimum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}}, "df": 18}}, "a": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.moving_minimum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 5}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}}, "df": 3}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 3}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}}, "df": 5}}}}}, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 5}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1}}, "df": 3}}}}}, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 3, "s": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "y": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}, "d": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}}, "df": 3, "e": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 3}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}}, "df": 4}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}}}, "x": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 3}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.lwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.rwhm": {"tf": 1}}, "df": 2}}}}}, "y": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 6}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}}, "df": 6}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.7320508075688772}}, "df": 1, "o": {"docs": {"ramanchada2": {"tf": 10.63014581273465}, "ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1.7320508075688772}, "ramanchada2.misc.plottable.Plottable": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 2}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 2}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 2}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_config": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 2}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_config": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_config": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.save": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 3.4641016151377544}, "ramanchada2.spectral_components.baseline.baseline_base.BaseLineBase": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.voigt.VoigtPeak": {"tf": 1}, "ramanchada2.spectral_components.spectral_component.SpectralComponent": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 2.6457513110645907}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 2}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 2}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 2.23606797749979}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 2.23606797749979}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 2.23606797749979}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 2.23606797749979}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 2.449489742783178}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 2.8284271247461903}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 2.6457513110645907}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 2.23606797749979}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 2.23606797749979}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 2.23606797749979}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 2.23606797749979}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 2.8284271247461903}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1.7320508075688772}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 2}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_config": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}}, "df": 94, "o": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}}, "df": 3}}, "t": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.4142135623730951}}, "df": 3}}, "h": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1.7320508075688772}}, "df": 3, "e": {"docs": {"ramanchada2": {"tf": 13.74772708486752}, "ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 4.795831523312719}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 4.795831523312719}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 2.6457513110645907}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 4.795831523312719}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_config": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 2.6457513110645907}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 4.795831523312719}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_config": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 2.6457513110645907}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 2.6457513110645907}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 2.6457513110645907}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.get_all_keys": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_config": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.set_laser_wavelength": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.clear": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.save": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 6.6332495807108}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 2.8284271247461903}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 3.3166247903554}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 2.6457513110645907}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 2.6457513110645907}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 2.23606797749979}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 2.8284271247461903}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 2.23606797749979}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 2.23606797749979}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 3}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 3}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 3}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 3}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 3}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 2.23606797749979}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 2}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 2.8284271247461903}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 3.3166247903554}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 2.23606797749979}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 3}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 2.23606797749979}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 3}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 3}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 3}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 3}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 2.8284271247461903}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 2.23606797749979}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 2.6457513110645907}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 2.6457513110645907}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 2.23606797749979}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1.7320508075688772}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 4.795831523312719}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_config": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1.4142135623730951}}, "df": 111, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 2.449489742783178}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 6}}, "m": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}, "y": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 6}}, "i": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_computed_fields": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_computed_fields": {"tf": 1}}, "df": 7}}, "n": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 3.3166247903554}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.449489742783178}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}}, "df": 29}, "n": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.23606797749979}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.misc.plottable.Plottable": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.baseline.baseline_base.BaseLineBase": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.voigt.VoigtPeak": {"tf": 1}, "ramanchada2.spectral_components.spectral_component.SpectralComponent": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum": {"tf": 1}}, "df": 16}, "n": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}}, "df": 4}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 3.3166247903554}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1.7320508075688772}}, "df": 11}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1}}, "df": 3}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 5}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}}, "df": 3}}}}}, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 3}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 2.23606797749979}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}}, "df": 11, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}}, "df": 5, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}}, "df": 3}}}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}}, "df": 5, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 5}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1.7320508075688772}}, "df": 5, "s": {"docs": {"ramanchada2": {"tf": 2.23606797749979}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}}, "df": 11}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 3, "r": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 3}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 6, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 1}}, "df": 5}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 5}}}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "x": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2": {"tf": 4.358898943540674}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1}}, "df": 21, "s": {"docs": {"ramanchada2": {"tf": 2}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}}, "df": 3}}}}}}}, "e": {"docs": {"ramanchada2": {"tf": 4.123105625617661}, "ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.save": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.from_file": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 2.23606797749979}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 2.6457513110645907}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 2.23606797749979}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 2.6457513110645907}}, "df": 10, "s": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_local_file": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe": {"tf": 1}}, "df": 4}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}}, "df": 4}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1.7320508075688772}}, "df": 3}}}}}}, "t": {"docs": {"ramanchada2": {"tf": 3.3166247903554}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1.7320508075688772}}, "df": 8, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 3}}}, "s": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}}, "df": 4}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 3.605551275463989}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1.4142135623730951}}, "df": 11, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}}, "df": 3}}}, "s": {"docs": {"ramanchada2.misc.utils.argmin2d.align": {"tf": 1.4142135623730951}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}}, "df": 1}}, "e": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}}, "df": 1}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_computed_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_computed_fields": {"tf": 1}}, "df": 12, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1.7320508075688772}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1.7320508075688772}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1.7320508075688772}}, "df": 16}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1.4142135623730951}}, "df": 6}}}}}}}, "g": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}}, "df": 2, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CertificatesDict": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}}, "df": 3}}}}}}, "w": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 3}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2": {"tf": 6}, "ramanchada2.io.HSDS.DatasetExistsError": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.io.UnsupportedFileTypeError": {"tf": 1}, "ramanchada2.misc.exceptions.ApplicationException": {"tf": 1}, "ramanchada2.misc.exceptions.InputParserError": {"tf": 1}, "ramanchada2.misc.exceptions.ChadaReadNotFoundError": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 2.23606797749979}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 2.23606797749979}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 2.23606797749979}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_config": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 2.23606797749979}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_config": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_config": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.set_laser_wavelength": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 3}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 2}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 2}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 2.23606797749979}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_config": {"tf": 1}}, "df": 65, "m": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 2}}, "df": 1, "s": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1.4142135623730951}}, "df": 3}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}}, "df": 5}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2": {"tf": 3.1622776601683795}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 9}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 2.23606797749979}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}}, "df": 11}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}}, "df": 3, "c": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1.7320508075688772}}, "df": 3, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 8.717797887081348}, "ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 22, "s": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}}, "df": 5}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.7320508075688772}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2": {"tf": 5.196152422706632}, "ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.from_file": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 2}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1.7320508075688772}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}}, "df": 43}}, "e": {"docs": {}, "df": 0, "q": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1.4142135623730951}}, "df": 3, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 5}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}}, "df": 3}}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}}, "df": 3}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}}, "df": 10}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 3}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}}, "df": 5}}}, "g": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1.4142135623730951}}, "df": 6, "a": {"docs": {}, "df": 0, "p": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 3.7416573867739413}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 2}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}}, "df": 12, "s": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 3}}}}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 7, "d": {"docs": {"ramanchada2": {"tf": 2.23606797749979}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 3}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2": {"tf": 2.449489742783178}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 11}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1.4142135623730951}}, "df": 5, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 5}}}}}}, "t": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CertificatesDict": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1.4142135623730951}}, "df": 4}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1.4142135623730951}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 2.449489742783178}, "ramanchada2.protocols.calibration.CertificatesDict": {"tf": 3.4641016151377544}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 4.898979485566356}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 6.928203230275509}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}}, "df": 7}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 3}}, "v": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"2": {"2": {"4": {"1": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {"ramanchada2.misc.utils.svd.svd_solve": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.7320508075688772}}, "df": 2, "e": {"docs": {"ramanchada2": {"tf": 7.810249675906654}, "ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_config": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_config": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_config": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_config": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 3.4641016151377544}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 2}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 2}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 2}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 2}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 2}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_config": {"tf": 1}}, "df": 60, "t": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 1.4142135623730951}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1.4142135623730951}}, "df": 3}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 4}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}}, "df": 3}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 4}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "y": {"docs": {"ramanchada2": {"tf": 3.872983346207417}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 15}, "u": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1}}, "df": 5}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1, "s": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 3}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 5}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1}}, "df": 3}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.io.HSDS.DatasetExistsError": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.io.UnsupportedFileTypeError": {"tf": 1}, "ramanchada2.misc.exceptions.ApplicationException": {"tf": 1}, "ramanchada2.misc.exceptions.InputParserError": {"tf": 1}, "ramanchada2.misc.exceptions.ChadaReadNotFoundError": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 10, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 3.3166247903554}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical.__init__": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 2.449489742783178}, "ramanchada2.spectrum.baseline.moving_minimum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.moving_minimum": {"tf": 1}}, "df": 6}}}}, "d": {"docs": {"ramanchada2": {"tf": 3.1622776601683795}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}}, "df": 17}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 1}}, "df": 5}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}}, "df": 4}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}}, "df": 3}}}}}}}, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}}, "df": 5, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 3}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 7}}, "h": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}}, "df": 3}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1}}, "df": 5}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1.7320508075688772}}, "df": 3}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 2.23606797749979}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}}, "df": 11, "s": {"docs": {"ramanchada2": {"tf": 3.605551275463989}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1.4142135623730951}}, "df": 15}}, "g": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 3}}, "g": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}}, "df": 5}}}}}}}}}}}}}}, "a": {"0": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1.4142135623730951}}, "df": 1}, "1": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1.4142135623730951}}, "df": 1}, "3": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1.4142135623730951}}, "df": 1}, "4": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1.4142135623730951}}, "df": 1}, "5": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"ramanchada2": {"tf": 5.385164807134504}, "ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1}, "ramanchada2.misc.plottable.Plottable": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 2.23606797749979}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 2.23606797749979}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 2.23606797749979}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_config": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 2.23606797749979}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_config": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.get_all_keys": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_config": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_computed_fields": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.save": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.from_file": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 3.872983346207417}, "ramanchada2.spectral_components.baseline.baseline_base.BaseLineBase": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.voigt.VoigtPeak": {"tf": 1}, "ramanchada2.spectral_components.spectral_component.SpectralComponent": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 2.23606797749979}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_config": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_computed_fields": {"tf": 1}}, "df": 68, "n": {"docs": {"ramanchada2": {"tf": 2.6457513110645907}, "ramanchada2.misc.plottable.Plottable": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.23606797749979}, "ramanchada2.spectral_components.baseline.baseline_base.BaseLineBase": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.voigt.VoigtPeak": {"tf": 1}, "ramanchada2.spectral_components.spectral_component.SpectralComponent": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 22, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}}, "df": 9}}}}}, "d": {"docs": {"ramanchada2": {"tf": 6.48074069840786}, "ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1.4142135623730951}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 1}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_computed_fields": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.23606797749979}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_computed_fields": {"tf": 1}}, "df": 58}, "y": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 5}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}}, "df": 13}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}}, "df": 1}}}, "s": {"docs": {"ramanchada2": {"tf": 2}}, "df": 1}, "c": {"docs": {"ramanchada2.misc.plottable.Plottable": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent": {"tf": 1}, "ramanchada2.spectral_components.baseline.baseline_base.BaseLineBase": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.voigt.VoigtPeak": {"tf": 1}, "ramanchada2.spectral_components.spectral_component.SpectralComponent": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum": {"tf": 1}}, "df": 13}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 5}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.6457513110645907}, "ramanchada2.spectrum.baseline.moving_minimum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 28, "a": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}}, "df": 3}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}}, "df": 3, "l": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}}, "df": 7}}}}}}}, "g": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 6.928203230275509}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 14}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}}, "df": 4, "s": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical.__init__": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1}}, "df": 92}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.23606797749979}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical.__init__": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}}, "df": 10, "s": {"docs": {"ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}}, "df": 3}}}}}}}, "l": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.io.HSDS.DatasetExistsError": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.io.UnsupportedFileTypeError": {"tf": 1}, "ramanchada2.misc.exceptions.ApplicationException": {"tf": 1}, "ramanchada2.misc.exceptions.InputParserError": {"tf": 1}, "ramanchada2.misc.exceptions.ChadaReadNotFoundError": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.get_all_keys": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}}, "df": 11, "o": {"docs": {}, "df": 0, "w": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 5, "s": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 3}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 4}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1}}, "df": 4}}}}, "s": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1, "o": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakModel.lwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.rwhm": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.6457513110645907}}, "df": 4, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 2}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 2}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 2}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 2}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 2}}, "df": 10}}}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {"ramanchada2": {"tf": 3.4641016151377544}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1.4142135623730951}}, "df": 11, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 2.8284271247461903}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}}, "df": 12}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}}, "df": 5, "l": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}, "y": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}}, "df": 3}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 5}}}}}}}, "s": {"docs": {"ramanchada2": {"tf": 5.0990195135927845}, "ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.moving_minimum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 29}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 2.449489742783178}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 7}}}, "y": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}}, "df": 4}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "x": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 3}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}}, "df": 4}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}}}}, "x": {"docs": {"ramanchada2.misc.utils.svd.svd_solve": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict": {"tf": 2}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 2.6457513110645907}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.7320508075688772}}, "df": 4, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 4.358898943540674}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}}, "df": 30}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 4.69041575982343}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.4142135623730951}}, "df": 5}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 2.23606797749979}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 7}}}}}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 3}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}}, "df": 5, "s": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}}, "df": 7}}}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 3}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 5}}}}}}}}}, "e": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}}, "df": 4, "x": {"docs": {}, "df": 0, "p": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}}, "df": 4, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 2.8284271247461903}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 5}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 3}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 3}}}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1.7320508075688772}}, "df": 3, "s": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 3}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 5}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 8, "s": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 3}}}}, "d": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1}}, "df": 3}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 2}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 2}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 2}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 2}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 2}}, "df": 10}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.io.HSDS.DatasetExistsError": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.io.UnsupportedFileTypeError": {"tf": 1}, "ramanchada2.misc.exceptions.ApplicationException": {"tf": 1}, "ramanchada2.misc.exceptions.InputParserError": {"tf": 1}, "ramanchada2.misc.exceptions.ChadaReadNotFoundError": {"tf": 1}}, "df": 5}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.io.HSDS.DatasetExistsError": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.io.UnsupportedFileTypeError": {"tf": 1}, "ramanchada2.misc.exceptions.ApplicationException": {"tf": 1}, "ramanchada2.misc.exceptions.InputParserError": {"tf": 1}, "ramanchada2.misc.exceptions.ChadaReadNotFoundError": {"tf": 1}}, "df": 5}}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 10}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}}, "df": 3}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}}, "df": 3}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 5}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.utils.argmin2d.align": {"tf": 1}}, "df": 1}, "d": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}}, "df": 3}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.baseline.moving_minimum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_minimum": {"tf": 1}}, "df": 3}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}}, "df": 1, "s": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}, "c": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}, "c": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.7320508075688772}}, "df": 2, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}}, "df": 3}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}}, "df": 3, "s": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}}, "df": 5}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 6, "d": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 5}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1, "d": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_computed_fields": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_computed_fields": {"tf": 1}}, "df": 7, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_computed_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_computed_fields": {"tf": 1}}, "df": 6}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.io.HSDS.DatasetExistsError": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.io.UnsupportedFileTypeError": {"tf": 1}, "ramanchada2.misc.exceptions.ApplicationException": {"tf": 1}, "ramanchada2.misc.exceptions.InputParserError": {"tf": 1}, "ramanchada2.misc.exceptions.ChadaReadNotFoundError": {"tf": 1}}, "df": 5}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1, "s": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 6}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1.4142135623730951}}, "df": 8}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}}, "df": 9}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}}, "df": 1, "d": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 3}}}, "e": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}}, "df": 3}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_config": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_config": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_config": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_config": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_config": {"tf": 1}}, "df": 11, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_config": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_config": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_config": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_config": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_config": {"tf": 1}}, "df": 6}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_config": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_config": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_config": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_config": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_config": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_config": {"tf": 1.4142135623730951}}, "df": 11}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_config": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_config": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_config": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_config": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_config": {"tf": 1}}, "df": 6}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}}, "df": 3}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}}, "df": 1}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}}, "df": 3}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 2.8284271247461903}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}}, "df": 17}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 2.449489742783178}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_computed_fields": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_computed_fields": {"tf": 1}}, "df": 20}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 3}}, "e": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 2}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 2}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 2}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 2}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 2}}, "df": 5, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1}}, "df": 3}}}}}}}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1.4142135623730951}}, "df": 3, "*": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 3}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 3, "s": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}}, "df": 3}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}}, "df": 1, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.7320508075688772}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 2.8284271247461903}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 2.449489742783178}}, "df": 3, "s": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.misc.plottable.Plottable": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1}, "ramanchada2.spectral_components.baseline.baseline_base.BaseLineBase": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.voigt.VoigtPeak": {"tf": 1}, "ramanchada2.spectral_components.spectral_component.SpectralComponent": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 22}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 5}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}}, "df": 5, "d": {"docs": {"ramanchada2": {"tf": 2.8284271247461903}, "ramanchada2.spectrum.baseline.moving_minimum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}}, "df": 15}, "s": {"docs": {"ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 3}, "ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.set_laser_wavelength": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.clear": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.save": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.from_file": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}}, "df": 19, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 2}}, "df": 1}}}}}}}}, "e": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1}}, "df": 2, "d": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}}, "df": 7}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 3}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 2.23606797749979}}, "df": 1}}}}}}, "n": {"docs": {"ramanchada2": {"tf": 3.3166247903554}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.23606797749979}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 14, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 2.8284271247461903}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 2.23606797749979}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 2.23606797749979}}, "df": 3, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}}, "df": 3}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}}, "df": 3}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"2": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "docs": {}, "df": 0}}}}}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.io.HSDS.DatasetExistsError": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.io.UnsupportedFileTypeError": {"tf": 1}, "ramanchada2.misc.exceptions.ApplicationException": {"tf": 1}, "ramanchada2.misc.exceptions.InputParserError": {"tf": 1}, "ramanchada2.misc.exceptions.ChadaReadNotFoundError": {"tf": 1}, "ramanchada2.misc.plottable.Plottable": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel": {"tf": 1}, "ramanchada2.spectral_components.baseline.baseline_base.BaseLineBase": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.voigt.VoigtPeak": {"tf": 1}, "ramanchada2.spectral_components.spectral_component.SpectralComponent": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1.7320508075688772}}, "df": 28}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.clear": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1.4142135623730951}}, "df": 11}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 3}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 11}}}}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2": {"tf": 2}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 2.23606797749979}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1.4142135623730951}}, "df": 5}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 4}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 2}}, "df": 2}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}}, "df": 4, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}, "s": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CertificatesDict": {"tf": 1.7320508075688772}}, "df": 2, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CertificatesDict": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}}, "df": 2, "s": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict": {"tf": 2.23606797749979}}, "df": 2, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.CertificatesDict": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}, "s": {"docs": {"ramanchada2.protocols.calibration.CertificatesDict": {"tf": 1.4142135623730951}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 3}}, "d": {"docs": {}, "df": 0, "f": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}}, "df": 9}}}, "d": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.6457513110645907}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}}, "df": 4, "a": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.7320508075688772}}, "df": 3, "a": {"docs": {"ramanchada2": {"tf": 3.605551275463989}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 3.7416573867739413}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 11, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 3}}}}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 5}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}}, "df": 9}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1, "s": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 3}}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.utils.argmin2d.align": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}}, "df": 5}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 3, "[": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}}, "df": 3}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_config": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_config": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_config": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_config": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_computed_fields": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_config": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_computed_fields": {"tf": 1}}, "df": 20}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.4142135623730951}}, "df": 5}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 3}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}}, "df": 11}}}}}}, "/": {"2": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 10}, "docs": {}, "df": 0}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}}, "df": 5, "d": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1.7320508075688772}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}}, "df": 16}, "s": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}}, "df": 3}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 3.7416573867739413}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.23606797749979}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1}}, "df": 30, "s": {"docs": {"ramanchada2": {"tf": 5.744562646538029}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 2}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 2}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 2}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 2}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 2.23606797749979}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 2.449489742783178}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 2.23606797749979}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}}, "df": 22}}}, "t": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}}, "df": 3}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1.4142135623730951}}, "df": 5}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}}, "df": 3}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}}, "df": 7, "s": {"docs": {"ramanchada2": {"tf": 2.23606797749979}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1.7320508075688772}}, "df": 3}}}}, "r": {"2": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}}, "df": 3}, "4": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 2.449489742783178}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 2.23606797749979}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 2.23606797749979}}, "df": 3}}}}}, "e": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}}, "df": 3}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 3}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 3}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}}, "df": 1}}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 3.3166247903554}}, "df": 1, "s": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}}}}}, "o": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 3, "c": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 10, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 9.16515138991168}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1.7320508075688772}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}}, "df": 3}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}, "x": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 3}, "l": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 5}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 5}}}}}}, "o": {"docs": {}, "df": 0, "f": {"docs": {"ramanchada2": {"tf": 8.660254037844387}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 3.3166247903554}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 3.3166247903554}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 3.3166247903554}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 3.3166247903554}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.get_all_keys": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_computed_fields": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.set_laser_wavelength": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 4}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.moving_minimum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 2.449489742783178}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 2.23606797749979}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 2}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 2}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 2}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 2.23606797749979}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 2.23606797749979}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 2.23606797749979}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 2.23606797749979}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 2.23606797749979}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 3.3166247903554}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_computed_fields": {"tf": 1}}, "df": 85}, "r": {"docs": {"ramanchada2": {"tf": 4.69041575982343}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.6457513110645907}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 32, "i": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1.4142135623730951}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 6, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 2.23606797749979}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1.7320508075688772}}, "df": 4}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}}, "/": {"1": {"0": {"docs": {"ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2": {"tf": 2.23606797749979}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 2}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}}, "df": 5}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 8, "s": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_computed_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_computed_fields": {"tf": 1}}, "df": 13}}}}}}, "n": {"docs": {"ramanchada2": {"tf": 2.6457513110645907}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1.7320508075688772}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}}, "df": 18, "l": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2": {"tf": 8.12403840463596}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.4142135623730951}}, "df": 76}}, "e": {"docs": {"ramanchada2": {"tf": 2.449489742783178}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.7320508075688772}}, "df": 10, "s": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}}, "df": 3}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}}, "df": 3}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 7.211102550927978}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.23606797749979}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 2}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 2}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 2}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 2}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 2.23606797749979}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 2.449489742783178}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 2.23606797749979}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1}}, "df": 54}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}}, "df": 3}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 5}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1}}, "df": 51}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.4142135623730951}}, "df": 3, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.spectrum.creators.from_simulation": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}}, "df": 3}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}}}, "v": {"1": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}}, "df": 11}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {"ramanchada2": {"tf": 2.23606797749979}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.7320508075688772}}, "df": 3}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 5}}}}}}, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 5}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 2.23606797749979}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 2}}, "df": 6, "s": {"docs": {"ramanchada2": {"tf": 5.5677643628300215}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2}, "ramanchada2.spectrum.baseline.moving_minimum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1.4142135623730951}}, "df": 47}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 7}}}}}, "d": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 5, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1.4142135623730951}}, "df": 5}}}, "e": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 5}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 3}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}}, "df": 1}}, "a": {"docs": {}, "df": 0, "x": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}}, "df": 1}}}}, "l": {"1": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1.4142135623730951}}, "df": 3}, "2": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 1}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1.4142135623730951}}, "df": 4}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2": {"tf": 3}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CalibrationModel.set_laser_wavelength": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1.4142135623730951}}, "df": 12}}}, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"ramanchada2": {"tf": 2.23606797749979}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}}, "df": 13}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 3, "s": {"docs": {"ramanchada2": {"tf": 2.23606797749979}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}}, "df": 5, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 2}}, "df": 3, ":": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2": {"tf": 2.23606797749979}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.449489742783178}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}}, "df": 6, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 3}}}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical.__init__": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1}}, "df": 9}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 2.23606797749979}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.get_all_keys": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1}}, "df": 13, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}}}}}}}}, "[": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 3}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"ramanchada2": {"tf": 3}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1}}, "df": 12}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.misc.types.peak_candidates.PeakModel.lwhm": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}}, "df": 10}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}}, "df": 4}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 2.23606797749979}, "ramanchada2.spectrum.creators.from_local_file": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 7}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}}, "df": 5}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}}, "df": 4, "s": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "w": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 9, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}}, "df": 3}}, "r": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1.7320508075688772}}, "df": 6}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}}, "df": 5}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}}, "df": 3}}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}}, "df": 6, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2.protocols.calibration.CertificatesDict": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}}, "df": 1}}, "s": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.from_file": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1.4142135623730951}}, "df": 3}}, "g": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 8}, "ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.4142135623730951}}, "df": 74, "r": {"docs": {"ramanchada2": {"tf": 2.6457513110645907}, "ramanchada2.misc.types.fit_peaks_result.FitPeaksResult": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 6}, "d": {"docs": {"ramanchada2": {"tf": 4.58257569495584}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 2}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 2}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 2}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 2}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.set_laser_wavelength": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 2}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 2}}, "df": 33}, "s": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}}, "df": 2}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 3.605551275463989}, "ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"tf": 1}, "ramanchada2.misc.plottable.Plottable": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.7320508075688772}, "ramanchada2.spectral_components.baseline.baseline_base.BaseLineBase": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.voigt.VoigtPeak": {"tf": 1}, "ramanchada2.spectral_components.spectral_component.SpectralComponent": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}}, "df": 41}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 13}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}}, "df": 3}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2": {"tf": 3.3166247903554}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.4142135623730951}}, "df": 15}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2": {"tf": 2.449489742783178}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 2.449489742783178}}, "df": 3}, "s": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 2.23606797749979}}, "df": 1}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 3}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 5}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2": {"tf": 2.23606797749979}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1.7320508075688772}}, "df": 7}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 7}}}}}}, "r": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}}, "df": 1}}}, "n": {"docs": {"ramanchada2": {"tf": 3.605551275463989}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.23606797749979}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}}, "df": 16, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1.4142135623730951}}, "df": 3}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 12, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel.model_computed_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_fields": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel.model_computed_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_fields": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate.model_computed_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_fields": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel.model_computed_fields": {"tf": 1}}, "df": 17, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1.4142135623730951}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1.4142135623730951}}, "df": 5}}}}}}}}, "o": {"docs": {"ramanchada2": {"tf": 4.795831523312719}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}}, "df": 12, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 4.242640687119285}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 2.449489742783178}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}}, "df": 9}}}, "n": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.io.HSDS.DatasetExistsError": {"tf": 1}, "ramanchada2.io.experimental.rc1_parser.io.UnsupportedFileTypeError": {"tf": 1}, "ramanchada2.misc.exceptions.ApplicationException": {"tf": 1}, "ramanchada2.misc.exceptions.InputParserError": {"tf": 1}, "ramanchada2.misc.exceptions.ChadaReadNotFoundError": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}}, "df": 11, "e": {"docs": {"ramanchada2": {"tf": 5.291502622129181}, "ramanchada2.protocols.calibration.CertificatesDict": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 2}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 3.1622776601683795}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 2.23606797749979}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 2.23606797749979}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 3.1622776601683795}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1.7320508075688772}}, "df": 17}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}}, "df": 3}}, "t": {"docs": {"ramanchada2": {"tf": 2.449489742783178}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 12, "e": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 2.23606797749979}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 2}}, "df": 3, "d": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}}, "df": 9}}}}}}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"ramanchada2": {"tf": 6.557438524302}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.filters.add_poisson_noise.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_poisson_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1}}, "df": 59, "l": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1.4142135623730951}}, "df": 3}}, "s": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 3}}}, "t": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 2}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}}, "df": 1, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2": {"tf": 3.3166247903554}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 20, "s": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.spectral_components.baseline.numerical.BaselineNumerical.__init__": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}}, "df": 5}}}}, "m": {"docs": {"ramanchada2": {"tf": 2.8284271247461903}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}}, "df": 10}, "p": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.449489742783178}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1}}, "df": 7, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1.4142135623730951}}, "df": 3}}}}, "g": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"7": {"8": {"5": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 2.8284271247461903}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1.4142135623730951}}, "df": 9, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"ramanchada2": {"tf": 2.23606797749979}, "ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.set_laser_wavelength": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}}, "df": 16}}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}}, "df": 9}}}}}}}}, "y": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.misc.plottable.Plottable": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent": {"tf": 1}, "ramanchada2.spectral_components.baseline.baseline_base.BaseLineBase": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.voigt.VoigtPeak": {"tf": 1}, "ramanchada2.spectral_components.spectral_component.SpectralComponent": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 16}, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"ramanchada2": {"tf": 5.744562646538029}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.23606797749979}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 2.23606797749979}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 2.23606797749979}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 36, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1}}, "df": 3}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"ramanchada2": {"tf": 4.123105625617661}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.baseline.moving_minimum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average": {"tf": 1}, "ramanchada2.spectrum.filters.moving_average.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.moving_median.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_minimum": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.subtract_moving_median": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.moving_average_convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1}}, "df": 27}}}}, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"ramanchada2": {"tf": 2.23606797749979}, "ramanchada2.misc.types.peak_candidates.PeakModel.lwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.rwhm": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.derivative_sharpening": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1.7320508075688772}}, "df": 7, "s": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 3}}}, "e": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 3, "r": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 5.5677643628300215}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 2}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1.7320508075688772}}, "df": 32}}}, "e": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 4, "l": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}}, "df": 2}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 3}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.types.fit_peaks_result.FitPeaksResult": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 3}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.spike_indices": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.spike_indices": {"tf": 1}}, "df": 6}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.6457513110645907}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 4}, "r": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 4}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1.7320508075688772}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1.7320508075688772}}, "df": 10}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1.4142135623730951}}, "df": 2, "e": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1.7320508075688772}}, "df": 3}}}, "d": {"docs": {}, "df": 0, "f": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 3}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 3}}}}, "x": {"docs": {"ramanchada2": {"tf": 8}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 2}, "ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CalibrationModel.derive_model_x": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 3}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical.__init__": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.change_x_units.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 2}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_fun": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 2}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.creators.from_spectral_component_collection.from_spectral_component_collection": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_theoretical_lines.from_theoretical_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 3.1622776601683795}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 2.449489742783178}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 2.23606797749979}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 2}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.trim_axes.trim_axes": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.peaks.find_peaks_BayesianGaussianMixture.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.abs_nm_to_shift_cm_1_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.shift_cm_1_to_abs_nm_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_fun": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.trim_axes": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 3.1622776601683795}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 2.23606797749979}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.bayesian_gaussian_mixture": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 2}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_theoretical_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_spectral_component_collection": {"tf": 1.4142135623730951}}, "df": 55, "*": {"docs": {}, "df": 0, "*": {"2": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}}, "df": 4}, "3": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}}, "df": 1}, "4": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}}, "df": 1}, "5": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "/": {"5": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0, "y": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 3}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1.4142135623730951}}, "df": 3, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}}, "df": 1}}}}}}}}}}, "x": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.4142135623730951}}, "df": 3}, "y": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.4142135623730951}}, "df": 3}, "z": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.4142135623730951}}, "df": 3}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}}, "df": 9}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.spectrum.calibration.set_new_xaxis.set_new_xaxis": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.set_new_xaxis": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2.23606797749979}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.7320508075688772}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "y": {"docs": {"ramanchada2": {"tf": 4.898979485566356}, "ramanchada2.misc.utils.argmin2d.align": {"tf": 1.7320508075688772}, "ramanchada2.protocols.calibration.CertificatesDict": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 3.872983346207417}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical.__init__": {"tf": 1}, "ramanchada2.spectrum.calibration.normalize.normalize": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_xaxis.scale_xaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.calibration.scale_yaxis.scale_yaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.drop_spikes.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.drop_spikes.get_spikes": {"tf": 1}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.filters.resampling.resample_spline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.resampling.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_yaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.scale_xaxis_linear": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.normalize": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_NUDFT_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.resample_spline_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.drop_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.recover_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.get_spikes": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1.4142135623730951}}, "df": 30, "y": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.4142135623730951}}, "df": 3}, "z": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.4142135623730951}}, "df": 3}, "a": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}}, "df": 2}}}}}}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.7320508075688772}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "h": {"5": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1, "d": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 9}, "v": {"docs": {}, "df": 0, "e": {"docs": {"ramanchada2": {"tf": 2}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1.4142135623730951}}, "df": 6}}, "l": {"docs": {}, "df": 0, "f": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel.lwhm": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakModel.rwhm": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "h": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.calibration.by_deltas.calibrate_by_deltas_model": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.calibrate_by_deltas_model": {"tf": 1}}, "df": 3}}}}, "l": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1.4142135623730951}}, "df": 5}}}}}}, "d": {"docs": {}, "df": 0, "f": {"5": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1}, "docs": {"ramanchada2": {"tf": 1}}, "df": 1}, "r": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.hdr_from_multi_exposure.hdr_from_multi_exposure": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hdr_from_multi_exposure": {"tf": 1}}, "df": 3}}, "h": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2": {"tf": 3}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 2.449489742783178}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 2.449489742783178}}, "df": 5}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1.4142135623730951}}, "df": 5}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}, "ramanchada2.spectrum.filters.sharpen_lines.hht_sharpening_chain": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.hht_sharpening_chain": {"tf": 1}}, "df": 4}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {"ramanchada2.io.simulated.vasp.vasp_simulation_dat.lines_from_vasp_dat": {"tf": 1}}, "df": 1}, "c": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.misc.types.peak_candidates.PeakModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.PeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.peak_candidates.ListPeakCandidateMultiModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydBaseModel": {"tf": 1}, "ramanchada2.misc.types.pydantic_base_model.PydRootModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.applied_processings.SpeProcessingListModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataFieldModel": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel": {"tf": 1}, "ramanchada2.theoretical_lines.model_from_lines.PydPeakModel": {"tf": 1}}, "df": 10}}}}, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"ramanchada2.misc.plottable.Plottable": {"tf": 1}, "ramanchada2.protocols.calibration.CalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.XCalibrationComponent": {"tf": 1}, "ramanchada2.protocols.calibration.LazerZeroingComponent": {"tf": 1}, "ramanchada2.spectral_components.baseline.baseline_base.BaseLineBase": {"tf": 1}, "ramanchada2.spectral_components.baseline.numerical.BaselineNumerical": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.delta.DeltasPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.gauss.GaussPeak": {"tf": 1}, "ramanchada2.spectral_components.peak_profile.voigt.VoigtPeak": {"tf": 1}, "ramanchada2.spectral_components.spectral_component.SpectralComponent": {"tf": 1}, "ramanchada2.spectral_components.spectral_component_collection.SpectralComponentCollection": {"tf": 1}, "ramanchada2.spectral_components.spectral_peak.SpectralPeak": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum": {"tf": 1}}, "df": 13}}}}}}, "k": {"docs": {"ramanchada2.io.experimental.rc1_parser.binary_readers.readSPA": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2}}, "df": 2, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"ramanchada2": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1}}, "df": 3}}}}}, "y": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.protocols.calibration.CertificatesDict": {"tf": 1}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1}}, "df": 5, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"ramanchada2": {"tf": 1.7320508075688772}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1.4142135623730951}}, "df": 5}}}}, "s": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.misc.types.spectrum.metadata.SpeMetadataModel.get_all_keys": {"tf": 1}, "ramanchada2.spectrum.creators.from_delta_lines.from_delta_lines": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_delta_lines": {"tf": 1}}, "df": 4}}, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2}}, "df": 1}}}}}, "w": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.get_fitted_peaks.fit_peak_positions": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peak_positions": {"tf": 1.4142135623730951}}, "df": 3, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"ramanchada2": {"tf": 3.1622776601683795}, "ramanchada2.spectrum.calibration.by_deltas.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.creators.from_cache_or_calc.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.creators.from_test_spe.from_test_spe": {"tf": 1}, "ramanchada2.spectrum.filters.convolve.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.smoothing.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.peaks.find_peaks.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.peaks.fit_peaks.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.xcal_fine_RBF": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.smoothing_RC1": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.convolve": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.find_peak_multipeak_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.fit_peaks_filter": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_cache_or_calc": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_test_spe": {"tf": 1}}, "df": 17}}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.baseline.add_baseline.add_baseline": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.add_baseline": {"tf": 1}}, "df": 3, "s": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.pad_zeros.pad_zeros": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.pad_zeros": {"tf": 1}}, "df": 3}}}}, "z": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.creators.from_simulation.from_simulation": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.from_simulation": {"tf": 1.4142135623730951}}, "df": 3}}, "j": {"docs": {"ramanchada2": {"tf": 1.4142135623730951}, "ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.filters.add_gaussian_noise_drift.add_gaussian_noise_drift": {"tf": 1.4142135623730951}, "ramanchada2.spectrum.spectrum.Spectrum.add_gaussian_noise_drift": {"tf": 1.4142135623730951}}, "df": 4, "d": {"docs": {}, "df": 0, "x": {"docs": {"ramanchada2": {"tf": 1}, "ramanchada2.spectrum.creators.from_local_file.from_local_file": {"tf": 1}, "ramanchada2.spectrum.spectrum.Spectrum.from_local_file": {"tf": 1}}, "df": 3}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"ramanchada2.protocols.calibration.YCalibrationCertificate": {"tf": 3.1622776601683795}, "ramanchada2.protocols.calibration.CertificatesDict": {"tf": 2}, "ramanchada2.protocols.calibration.YCalibrationComponent": {"tf": 2.449489742783178}, "ramanchada2.protocols.calibration.CalibrationModel.__init__": {"tf": 3.1622776601683795}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 2}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "c": {"docs": {"ramanchada2.protocols.calibration.CustomRBFInterpolator": {"tf": 1}}, "df": 1}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true}; + + // mirrored in build-search-index.js (part 1) + // Also split on html tags. this is a cheap heuristic, but good enough. + elasticlunr.tokenizer.setSeperator(/[\s\-.;&_'"=,()]+|<[^>]*>/); + + let searchIndex; + if (docs._isPrebuiltIndex) { + console.info("using precompiled search index"); + searchIndex = elasticlunr.Index.load(docs); + } else { + console.time("building search index"); + // mirrored in build-search-index.js (part 2) + searchIndex = elasticlunr(function () { + this.pipeline.remove(elasticlunr.stemmer); + this.pipeline.remove(elasticlunr.stopWordFilter); + this.addField("qualname"); + this.addField("fullname"); + this.addField("annotation"); + this.addField("default_value"); + this.addField("signature"); + this.addField("bases"); + this.addField("doc"); + this.setRef("fullname"); + }); + for (let doc of docs) { + searchIndex.addDoc(doc); + } + console.timeEnd("building search index"); + } + + return (term) => searchIndex.search(term, { + fields: { + qualname: {boost: 4}, + fullname: {boost: 2}, + annotation: {boost: 2}, + default_value: {boost: 2}, + signature: {boost: 2}, + bases: {boost: 2}, + doc: {boost: 1}, + }, + expand: true + }); +})(); \ No newline at end of file