-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathowid_covid19_cases_deaths_by_countries.py
52 lines (42 loc) · 2.1 KB
/
owid_covid19_cases_deaths_by_countries.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
"""Upload daily COVID-19 cases and deaths by countries
Source: Our World in Data. It is updated daily and includes data on confirmed cases, deaths, and testing.
https://ourworldindata.org/coronavirus-source-data"""
# Contributors: Gregory Kanevsky - [email protected]
# Created: August 29th, 2020
# Last Updated: September 2d, 2020
from typing import Union, List, Dict
from h2oaicore.data import CustomData
import datatable as dt
import numpy as np
import pandas as pd
from h2oaicore.systemutils import user_dir
from datatable import f, g, join, by, sort, update, shift, isna
class OWIDCovid19DailyCasesDeathsByCountriesData(CustomData):
@staticmethod
def create_data(X: dt.Frame = None) -> Union[
str, List[str],
dt.Frame, List[dt.Frame],
np.ndarray, List[np.ndarray],
pd.DataFrame, List[pd.DataFrame],
Dict[str, str], # {data set names : paths}
Dict[str, dt.Frame], # {data set names : dt frames}
Dict[str, np.ndarray], # {data set names : np arrays}
Dict[str, pd.DataFrame], # {data set names : pd frames}
]:
# define date column and forecast horizon
date_col = 'date'
forecast_len = 7
# get COVID19 new cases data from Our World in Data github
X = dt.fread("https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/owid-covid-data.csv")
# remove country aggregates like 'World' and 'International'
X = X[~(dt.f.iso_code == '') & ~(dt.f.continent == ''), :]
# determine threshold to split train and test based on forecast horizon
dates = dt.unique(X[:, date_col])
split_date = dates[-(forecast_len + 1):, :, dt.sort(date_col)][0, 0]
test_date = dates[-1, :, dt.sort(date_col)][0, 0]
# split data to honor forecast horizon in test set
train = X[dt.f[date_col] <= split_date, :]
test = X[dt.f[date_col] > split_date, :]
# return [train, test] and rename dataset names as needed
return {f"covid19_daily_{split_date}_by_countries_train": train,
f"covid19_daily_{test_date}_by_countries_test": test}