-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathmodel_gam.py
executable file
·305 lines (249 loc) · 12.3 KB
/
model_gam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
"""Generalized Additive Model"""
import uuid
import os
import datatable as dt
import numpy as np
from h2oaicore.models import CustomModel
from sklearn.preprocessing import LabelEncoder
from h2oaicore.systemutils import physical_cores_count
from h2oaicore.systemutils import user_dir, remove, config, IgnoreError
from h2oaicore.systemutils import make_experiment_logger, loggerinfo, loggerwarning, loggerdebug
class GAM(CustomModel):
_regression = True
_binary = True
_multiclass = False
_display_name = "GAM"
_description = "Generalized Additive Model"
_modules_needed_by_name = ['pygam==0.9.1']
_testing_can_skip_failure = False # ensure tested as if shouldn't fail
@staticmethod
def do_acceptance_test():
return True
@staticmethod
def can_use(accuracy, interpretability, train_shape=None, test_shape=None, valid_shape=None, n_gpus=0,
num_classes=None, **kwargs):
if config.hard_asserts:
# for bigger data, too slow to test even with 1 iteration
use = True
use &= train_shape is not None and train_shape[0] * train_shape[1] < 1024 * 1024 or train_shape is None
use &= valid_shape is not None and valid_shape[0] * valid_shape[1] < 1024 * 1024 or valid_shape is None
use &= test_shape is not None and test_shape[0] * test_shape[1] < 1024 * 1024 or test_shape is None
# too slow for mercedes even with only 750 rows
use &= train_shape is not None and train_shape[1] < 50 or train_shape is None
return use
else:
return True
def set_default_params(self, accuracy=None, time_tolerance=None,
interpretability=None, **kwargs):
# Fill up parameters we care about
# override if CI testing, too slow otherwise
max_iter = 100 if not config.hard_asserts else 1
n_estimators = 10 if not config.hard_asserts else 1
self.params = dict(random_state=kwargs.get("random_state", 1234),
max_depth_duplication=None, n_estimators=n_estimators,
lam=0.1, max_iter=max_iter)
def mutate_params(self, accuracy=10, **kwargs):
if accuracy > 8:
lam = [0, 0.001, 0.01, 0.1, 1.0, 3.0, 5.0, 10.0]
max_iter = [100, 1000]
elif accuracy >= 5:
lam = [0, 0.01, 0.1, 1.0, 10.0]
max_iter = [100]
else:
lam = [0, 0.01, 0.1, 1.0, 10.0]
max_iter = [100]
self.params["lam"] = np.random.choice(lam)
if config.hard_asserts: # override if CI testing, too slow otherwise
max_iter = [1]
self.params["max_iter"] = np.random.choice(max_iter)
def _create_tmp_folder(self, logger):
# Create a temp folder to store files
# Set the default value without context available (required to pass acceptance test)
tmp_folder = os.path.join(user_dir(), "%s_GAM_model_folder" % uuid.uuid4())
# Make a real tmp folder when experiment is available
if self.context and self.context.experiment_id:
tmp_folder = os.path.join(self.context.experiment_tmp_dir, "%s_GAM_model_folder" % uuid.uuid4())
# Now let's try to create that folder
try:
os.mkdir(tmp_folder)
except PermissionError:
# This not occur so log a warning
loggerwarning(logger, "GAM was denied temp folder creation rights")
tmp_folder = os.path.join(user_dir(), "%s_GAM_model_folder" % uuid.uuid4())
os.mkdir(tmp_folder)
except FileExistsError:
# We should never be here since temp dir name is expected to be unique
loggerwarning(logger, "GAM temp folder already exists")
tmp_folder = os.path.join(self.context.experiment_tmp_dir, "%s_GAM_model_folder" % uuid.uuid4())
os.mkdir(tmp_folder)
except:
# Revert to temporary file path
tmp_folder = os.path.join(user_dir(), "%s_GAM_model_folder" % uuid.uuid4())
os.mkdir(tmp_folder)
loggerinfo(logger, "GAM temp folder {}".format(tmp_folder))
return tmp_folder
def fit(self, X, y, sample_weight=None, eval_set=None, sample_weight_eval_set=None, **kwargs):
orig_cols = list(X.names)
import pandas as pd
import numpy as np
from sklearn.preprocessing import OneHotEncoder
from collections import Counter
import pygam
from pygam import LinearGAM, LogisticGAM
import matplotlib.pyplot as plt
# Get the logger if it exists
logger = None
if self.context and self.context.experiment_id:
logger = make_experiment_logger(experiment_id=self.context.experiment_id,
tmp_dir=self.context.tmp_dir,
experiment_tmp_dir=self.context.experiment_tmp_dir)
# Set up temp folder
tmp_folder = self._create_tmp_folder(logger)
# Set up model
if self.num_classes >= 2:
lb = LabelEncoder()
lb.fit(self.labels)
y = lb.transform(y)
clf = LogisticGAM(terms="auto", lam=self.params["lam"], max_iter=self.params["max_iter"])
self.is_classifier = True
else:
clf = LinearGAM(terms="auto", lam=self.params["lam"], max_iter=self.params["max_iter"])
self.is_classifier = False
X = self.basic_impute(X)
# Find the datatypes
X = X.to_pandas()
X.columns = orig_cols
# Change continuous features to categorical
X_datatypes = [str(item) for item in list(X.dtypes)]
# Change all float32 values to float64
for ii in range(len(X_datatypes)):
if X_datatypes[ii] == 'float32':
X = X.astype({orig_cols[ii]: np.float64})
X_datatypes = [str(item) for item in list(X.dtypes)]
# List the categorical and numerical features
self.X_categorical = [orig_cols[col_count] for col_count in range(len(orig_cols)) if
(X_datatypes[col_count] == 'category') or (X_datatypes[col_count] == 'object')]
self.X_numeric = [item for item in orig_cols if item not in self.X_categorical]
# Find the levels and mode for each categorical feature
# for use in the test set
self.train_levels = {}
for item in self.X_categorical:
self.train_levels[item] = list(set(X[item]))
self.train_mode[item] = Counter(X[item]).most_common(1)[0][0]
# One hot encode the categorical features
# And replace missing values with a Missing category
if len(self.X_categorical) > 0:
X.loc[:, self.X_categorical] = X[self.X_categorical].fillna("Missing").copy()
self.enc = OneHotEncoder(handle_unknown='ignore')
self.enc.fit(X[self.X_categorical])
self.encoded_categories = list(self.enc.get_feature_names(input_features=self.X_categorical))
X_enc = self.enc.transform(X[self.X_categorical]).toarray()
X = pd.concat([X[self.X_numeric], pd.DataFrame(X_enc, columns=self.encoded_categories)], axis=1)
# Replace missing values with a missing value code
self.median_train = {}
if len(self.X_numeric) > 0:
for colname in self.X_numeric:
self.median_train[colname] = X[colname].quantile(0.5)
X.loc[:, colname] = X[colname].fillna(self.median_train[colname]).copy()
try:
clf.fit(X, y)
except np.linalg.LinAlgError as e:
raise IgnoreError("np.linalg.LinAlgError") from e
except pygam.utils.OptimizationError as e:
raise IgnoreError("pygam.utils.OptimizationError") from e
except ValueError as e:
if 'On entry to DLASCL parameter number' in str(e):
raise IgnoreError('On entry to DLASCL parameter number') from e
raise
except:
import traceback
import sys
t, v, tb = sys.exc_info()
ex = ''.join(traceback.format_exception(t, v, tb))
print(ex)
if 'SVD did not converge' in str(ex):
raise IgnoreError(str(ex))
else:
raise
p_values = np.array(clf.statistics_['p_values'])
# Plot the partial dependence plots for each feature
for ii in range(X.shape[1]):
XX = clf.generate_X_grid(term=ii)
plt.figure();
plt.plot(XX[:, ii], clf.partial_dependence(term=ii, X=XX))
plt.plot(XX[:, ii], clf.partial_dependence(term=ii, X=XX, width=.95)[1], c='r', ls='--')
plt.title("Partial Dependence " + str(ii), fontdict={'fontsize': 10})
plt.show()
plt.savefig(os.path.join(tmp_folder, 'Feature_partial_dependence_' + str(ii) + '.png'),
bbox_inches="tight")
if max(p_values[0:(len(p_values) - 1)]) > 0:
importances = -np.log(p_values[0:(len(p_values) - 1)] + 10 ** (-16))
importances = list(importances / max(importances))
else:
importances = [1] * (len(p_values) - 1)
self.mean_target = np.array(sum(y) / len(y))
self.set_model_properties(model=clf,
features=list(X.columns),
importances=importances,
iterations=self.params['n_estimators'])
def basic_impute(self, X):
# scikit extra trees internally converts to np.float32 during all operations,
# so if float64 datatable, need to cast first, in case will be nan for float32
from h2oaicore.systemutils import update_precision
X = update_precision(X, data_type=np.float32, override_with_data_type=True, fixup_almost_numeric=True)
# Replace missing values with a value smaller than all observed values
if not hasattr(self, 'min'):
self.min = dict()
for col in X.names:
XX = X[:, col]
if col not in self.min:
self.min[col] = XX.min1()
if self.min[col] is None or np.isnan(self.min[col]) or np.isinf(self.min[col]):
self.min[col] = -1e10
else:
self.min[col] -= 1
XX.replace([None, np.inf, -np.inf], self.min[col])
X[:, col] = XX
assert X[dt.isna(dt.f[col]), col].nrows == 0
return X
def predict(self, X, **kwargs):
orig_cols = list(X.names)
import pandas as pd
X = dt.Frame(X)
X = self.basic_impute(X)
# Find datatypes
X = X.to_pandas()
X_datatypes = [str(item) for item in list(X.dtypes)]
# Change float 32 values to float 64
for ii in range(len(X_datatypes)):
if X_datatypes[ii] == 'float32':
X = X.astype({orig_cols[ii]: np.float64})
# Replace missing values with a missing category
# Replace categories that weren't in the training set with the mode
if len(self.X_categorical) > 0:
X.loc[:, self.X_categorical] = X[self.X_categorical].fillna("Missing").copy()
for label in self.X_categorical:
# Replace anything not in the test set
train_categories = self.train_levels[label]
X_label = np.array(X[label])
mmode = self.train_mode[label]
X_label[~np.isin(X_label, train_categories)] = mmode
X[label] = X_label
# Replace missing values with a missing value code
if len(self.X_numeric) > 0:
for colname in self.X_numeric:
self.median_train[colname] = X[colname].quantile(0.5)
X.loc[:, colname] = X[colname].fillna(self.median_train[colname]).copy()
# Get model
model, _, _, _ = self.get_model_properties()
# One hot encode categorical features
if len(self.X_categorical) > 0:
X_enc = self.enc.transform(X[self.X_categorical]).toarray()
X = pd.concat([X[self.X_numeric], pd.DataFrame(X_enc, columns=self.encoded_categories)], axis=1)
# Make predictions on the test set
if self.is_classifier:
p = model.predict_proba(X)
else:
p = model.predict(X)
p[np.isnan(p)] = self.mean_target
return p