-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathcost_smooth.py
36 lines (29 loc) · 1.5 KB
/
cost_smooth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
"""Using hard-coded dollar amounts x for false positives and y for false negatives, calculate the cost of a model using: `(1 - y_true) * y_pred * fp_cost + y_true * (1 - y_pred) * fn_cost`"""
import typing
import numpy as np
from h2oaicore.metrics import CustomScorer
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import confusion_matrix
class CostBinary_smooth(CustomScorer):
_description = "Calculates cost per row in binary classification: `(1 - y_true) * y_pred * fp_cost + y_true * (1 - y_pred) * fn_cost`"
_binary = True
_maximize = False
_perfect_score = 0
_display_name = "Cost_smooth"
# The cost of false positives and negatives will vary by data set, we use the rules from the below as an example
# https://www.kaggle.com/uciml/aps-failure-at-scania-trucks-data-set
_fp_cost = 75
_fn_cost = 70
def score(self,
actual: np.array,
predicted: np.array,
sample_weight: typing.Optional[np.array] = None,
labels: typing.Optional[np.array] = None,
**kwargs) -> float:
lb = LabelEncoder()
labels = list(lb.fit_transform(labels))
actual = lb.transform(actual)
if sample_weight is None:
sample_weight = np.ones(actual.shape[0])
return np.sum(((1 - actual) * predicted * self.__class__._fp_cost + actual * (
1 - predicted) * self.__class__._fn_cost) * sample_weight) / np.sum(sample_weight)