-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathleaky_mean_target_encoder.py
41 lines (34 loc) · 1.63 KB
/
leaky_mean_target_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
"""Example implementation of a out-of-fold target encoder (leaky, not recommended)"""
from h2oaicore.transformer_utils import CustomTransformer
import datatable as dt
import numpy as np
from sklearn.preprocessing import LabelEncoder
class MyLeakyCategoricalGroupMeanTargetEncoder(CustomTransformer):
_testing_can_skip_failure = False # ensure tested as if shouldn't fail
_multiclass = False
_unsupervised = False # uses target
_uses_target = True # uses target
_target_encoding_based = True
def __init__(self, **kwargs):
super().__init__(**kwargs)
self._group_means = None
@staticmethod
def get_default_properties():
return dict(col_type="categorical", min_cols=1, max_cols=8, relative_importance=1)
@property
def display_name(self):
return "MyLeakyMeanTargetGroupedBy%s" % ":".join(self.input_feature_names)
def fit_transform(self, X: dt.Frame, y: np.array = None):
target = '__internal_target__'
X[:, target] = dt.Frame(y)
target_is_numeric = X[:, target][:, [bool, int, float]].shape[1] > 0
if target_is_numeric:
self._group_means = X[:, dt.mean(dt.f[target]), dt.by(*self.input_feature_names)]
else:
X[:, target] = dt.Frame(LabelEncoder().fit_transform(X[:, target].to_pandas().iloc[:, 0].values).ravel())
self._group_means = X[:, dt.median(dt.f[target]), dt.by(*self.input_feature_names)]
del X[:, target]
self._group_means.key = self.input_feature_names
return self.transform(X)
def transform(self, X: dt.Frame):
return X[:, :, dt.join(self._group_means)][:, -1]