-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathoperations.py
executable file
·526 lines (398 loc) · 15.9 KB
/
operations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
#!/usr/bin/python3
"Implementations of some composable operations over finite fields."
__all__ = 'Linear', 'Quadratic'
from itertools import product, chain, repeat
from collections import defaultdict
from typing import TypeVar, Iterable
from collections.abc import Sequence
from utils import superscript, cached, array_fallback, table_fallback, sm_range
from vectors import Matrix
Scalar = TypeVar('Scalar')
class Linear:
"Linear function of single argument. `F(x + y) = F(x) + F(y); F(0) = 0`."
@property
@cached
def Field(self):
return self.__f[0].Field
@classmethod
@property
def Linear(cls):
return cls
@property
@cached
def Array(self):
return array_fallback(self.__f.__class__)
def zero_element(self):
return self.Field.zero()
def one_element(self):
return self.Field.one()
@classmethod
def zero(cls, Array, Field):
nArray = array_fallback(Array)
return cls(nArray((Field.zero() for _n in range(Field.field_power)), [None], [Field]))
@classmethod
def one(cls, Array, Field):
nArray = array_fallback(Array)
return cls(nArray(chain([Field.one()], (Field.zero() for _n in range(Field.field_power - 1))), [None], [Field]))
ident = one
@classmethod
def factor(cls, value, Array):
nArray = array_fallback(Array)
Field = value.__class__
return cls(nArray(chain([value], (Field.zero() for _n in range(Field.field_power - 1))), [None], [Field]))
@classmethod
def random(cls, Array, Field, randbelow):
nArray = array_fallback(Array)
return cls(nArray((Field.random(randbelow) for n in range(Field.field_power)), [None], [Field]))
@classmethod
def random_nonzero(cls, Array, Field, randbelow):
nArray = array_fallback(Array)
f = []
nonzero = False
for n in range(Field.field_power - 1):
v = Field.random(randbelow)
if v:
nonzero = True
f.append(v)
if nonzero:
f.append(Field.random(randbelow))
else:
f.append(Field.random_nonzero(randbelow))
return cls(nArray(f, [None], [Field]))
def __init__(self, coefficients:Sequence[Scalar]):
"f[0] * x + f[1] * x**p + f[2] * x**(p ** 2) + ... + f[k] * x**(p ** k)"
try:
self.__f = coefficients.__f
except (AttributeError, TypeError):
self.__f = coefficients
if not len(self.__f) == self.Field.field_power:
raise ValueError(f"Linear function over {self.Field.__name__} needs {self.Field.field_power} parameters. (Got {len(self.__f)})")
if any(_f.Field != self.Field for _f in self.__f):
raise ValueError(f"All elements must belong to field {self.Field}.")
def __getnewargs__(self):
return (self.__f,)
def serialize(self) -> Iterable[int]:
try:
return self.__f.serialize()
except AttributeError:
return iter(self.__f)
@classmethod
def deserialize(cls, Array, Field, data):
nArray = array_fallback(Array)
return cls(nArray((Field.deserialize(data) for n in range(Field.field_power)), [None], [Field]))
def linear_coefficient(self, i:int) -> Scalar:
return self.__f[i]
def __str__(self) -> str:
return " + ".join(f"{self.__f[_n]}·x{superscript(self.Field.field_base ** _n)}" for _n in range(self.Field.field_power))
def __repr__(self) -> str:
try:
return self.__class__.__name__ + '(' + ", ".join([repr(_f) for _f in self.__f]) + ')'
except AttributeError:
return '<' + "Unfinished construction of " + self.__class__.__qualname__ + '>'
def __call__(self, x:Scalar) -> Scalar:
Field = self.Field
p = Field.field_base
n = Field.field_power
f = self.__f
return Field.sum(f[_n] * x**(p ** _n) for _n in sm_range(n))
def inverse(self, Table=dict):
"Find inverse operation to this one, i.e.: `a.inverse()(a(x)) == x`. Argument `Table` is passed to `vectors.Matrix` constructor."
size = self.Field.field_power
mat = Matrix.zero(size, size, Table, self.Array, self.Field)
"Find a matrix that performs the same operation on a vector of trivial field elements as this one would on the full field elements."
for m, n in product(range(size), range(size)):
mat[n, m] = self.__f[(m - n) % size]**(self.Field.field_base ** n)
w = mat.determinant()
"Solve a linear equation for parameters of the inverse operation: `M @ y = x` for each base vector `x`."
result = []
for n in range(size):
for m in range(size):
mat[n, m] = self.Field.one() if m == 0 else self.Field.zero()
result.append(mat.determinant() / w)
for m in range(size):
mat[n, m] = self.__f[(m - n) % size]**(self.Field.field_base ** n)
"Reconstruct a linear operation from the calculated parameters."
return self.__class__(self.Array(result, [size], [self.Field]))
def __add__(self, other):
try:
return self.__class__(self.Array((_a + _b for (_a, _b) in zip(self.__f, other.__f)), [None], [self.Field]))
except AttributeError as error:
return NotImplemented
def __sub__(self, other):
try:
return self.__class__(self.Array((_a - _b for (_a, _b) in zip(self.__f, other.__f)), [None], [self.Field]))
except AttributeError:
return NotImplemented
def __pos__(self):
return self
def __neg__(self):
return self.__class__(self.Array((-_a for _a in self.__f), [None], [self.Field]))
def __mul__(self, other):
"Multiply the linear operation by a scalar (returns linear operation) or by other linear operation (tensor product, returns quadratic operation)."
try:
if other.Field != self.Field:
return NotImplemented
except AttributeError:
return NotImplemented
if hasattr(other, 'field_power') and hasattr(other, 'field_base'):
return self.__class__(self.Array((_a * other for _a in self.__f), [None], [self.Field]))
elif hasattr(other, '_Linear__f'):
return Quadratic(self.Array((self.__class__(self.Array((self.__f[_j] * other.__f[(_j + _i) % self.Field.field_power] for _j in range(self.Field.field_power)), [None], [self.Field])) for _i in range(self.Field.field_power)), [self.Field.field_power, None], [self.Linear, self.Field]))
else:
return NotImplemented
def __rmul__(self, other):
"Right-multiply the linear operation by a scalar."
try:
if other.Field != self.Field:
return NotImplemented
except AttributeError:
return NotImplemented
if hasattr(other, 'field_power') and hasattr(other, 'field_base'):
return self.__class__(self.Array((other * _a for _a in self.__f), [None], [self.Field]))
else:
return NotImplemented
def __matmul__(self, other):
"Compose linear operations."
try:
if other.Field != self.Field:
return NotImplemented
f = [self.Field.zero()] * self.Field.field_power
for m in range(self.Field.field_power):
for n in range(other.Field.field_power):
f[(m + n) % self.Field.field_power] += self.__f[m] * other.__f[n]**(self.Field.field_base ** m)
return self.__class__(self.Array(f, [None], [self.Field]))
except AttributeError:
return NotImplemented
def pow_base(self, n:int):
return self.__class__(self.Array((self.__f[(_m - n) % self.Field.field_power] ** (self.Field.field_base ** n) for _m in range(self.Field.field_power)), [None], [self.Field]))
def __eq__(self, other) -> bool:
try:
return self.__f == other.__f
except AttributeError:
return NotImplemented
def __bool__(self) -> bool:
return any(self.__f)
class Quadratic:
"Class of functions of 2 variables, containing the product `f(x, y) = x * y` and closed over linear transformations. Generalization of bilinear forms."
@property
@cached
def Field(self):
return self.__f[0].Field
@property
@cached
def Linear(self):
return self.__f[0].Linear
@classmethod
@property
def Quadratic(cls):
return cls
@property
@cached
def Array(self):
return array_fallback(self.__f.__class__)
@classmethod
def zero(cls, Array, Linear, Field):
nArray = array_fallback(Array)
return cls(nArray((Linear.zero(Array, Field) for _i in range(Field.field_power)), [Field.field_power, None], [Linear, Field]))
@classmethod
def ident_ident(cls, Array, Linear, Field):
nArray = array_fallback(Array)
return cls(nArray((chain([Linear.ident(Array, Field)], (Linear.zero(Array, Field) for _i in range(Field.field_power)))), [Field.field_power, None], [Linear, Field]))
@classmethod
def random(cls, Array, Linear, Field, randbelow):
nArray = array_fallback(Array)
return cls(nArray((Linear.random(Array, Field, randbelow) for _i in range(Field.field_power)), [Field.field_power, None], [Linear, Field]))
# TODO: ident, random_nonzero
def __init__(self, coefficients:Sequence[Linear]):
"f[0](x * y) + f[1](x * y**p) + f[2](x * y ** (p ** 2)) + f[3](x * y ** (p ** 3)) + ... + f[k](x * y ** (p ** k))"
try:
self.__f = coefficients.__f
return
except AttributeError:
pass
self.__f = coefficients
if not len(self.__f) == self.Field.field_power:
raise ValueError(f"Linear function over {self.Field.__name__} needs {self.Field.field_power} parameters. (Got {len(self.__f)}.)")
def __getnewargs__(self):
return (self.__f,)
def serialize(self) -> Iterable[int]:
try:
return self.__f.serialize()
except AttributeError:
return chain.from_iterable(_v.serialize() for _v in self.__f)
@classmethod
def deserialize(cls, Array, Linear, Field, data):
nArray = array_fallback(Array)
return cls(nArray((Linear.deserialize(Array, Field, data) for _i in range(Field.field_power)), [Field.field_power, None], [Linear, Field]))
def __str__(self) -> str:
return " + ".join(f"{self.quadratic_coefficient(_i, _j)}·x{superscript(self.Field.field_base ** _i)}·y{superscript(self.Field.field_base ** ((_i + _j) % self.Field.field_power))}" for (_i, _j) in product(range(self.Field.field_power), range(self.Field.field_power)))
def __repr__(self) -> str:
return self.__class__.__name__ + '(' + ", ".join([repr(_f) for _f in self.__f]) + ')'
def quadratic_coefficient(self, i:int, j:int) -> Scalar:
return self.__f[i].linear_coefficient(j)
def __call__(self, x:Scalar, y:Scalar) -> Scalar:
Field = self.Field
p = Field.field_base
n = Field.field_power
f = self.__f
return Field.sum(f[_k](x * y**(p ** _k)) for _k in range(n))
def __add__(self, other):
try:
return self.__class__(self.Array((_a + _b for (_a, _b) in zip(self.__f, other.__f)), [self.Field.field_power, None], [self.Linear, self.Field]))
except AttributeError:
return NotImplemented
def __sub__(self, other):
try:
return self.__class__(self.Array((_a - _b for (_a, _b) in zip(self.__f, other.__f)), [self.Field.field_power, None], [self.Linear, self.Field]))
except AttributeError:
return NotImplemented
def __mul__(self, other):
return self.__class__(self.Array((_a * other for _a in self.__f), [self.Field.field_power, None], [self.Linear, self.Field]))
def __rmul__(self, other):
return self.__class__(self.Array((other * _a for _a in self.__f), [self.Field.field_power, None], [self.Linear, self.Field]))
def __matmul__(self, other):
"Composition of quadratic operation with 2 linear operations. `(q @ (l1, l2))(x, y) = q(l1(x), l2(y))`"
try:
b, c = other
except ValueError:
return NotImplemented
m = self.Field.field_power
p = self.Field.field_base
d = defaultdict(lambda: self.Field.zero())
for (i, j, k, l) in product(range(m), repeat=4):
d[(i + l) % m, (j + k - i) % m] += self.quadratic_coefficient(k, l) * b.linear_coefficient(i)**(p**l) * c.linear_coefficient(j)**(p ** ((k + l) % m))
f = []
for j in range(m):
f.append(b.__class__(b.Array((d[i, j] for i in range(m)), [None], [self.Field])))
return self.__class__(self.Array(f, [m, None], [self.Linear, self.Field]))
def __rmatmul__(self, other):
"Composition of linear operation with quadratic operation. `(l @ q)(x, y) = l(q(x, y))`"
return self.__class__(self.Array((other @ _f for _f in self.__f), [self.Field.field_power, None], [self.Linear, self.Field]))
def __eq__(self, other) -> bool:
try:
return self.__f == other.__f
except AttributeError:
return NotImplemented
def __bool__(self) -> bool:
return any(self.__f)
def __pos__(self):
return self
def __neg__(self):
return self.__class__(self.Array((-_a for _a in self.__f), [self.Field.field_power, None], [self.Linear, self.Field]))
if __debug__ and __name__ == '__main__':
from fields import Galois
from random import randrange
fields = Galois('Binary', 2, [1, 1]), Galois('F3', 3, [1, 0, 2, 1]), Galois('Rijndael', 2, [1, 0, 0, 0, 1, 1, 0, 1, 1])
for F in fields:
print("Operations over", F)
_0 = F.zero()
_1 = F.one()
_L0 = Linear.zero(list, F)
_L1 = Linear.one(list, F)
_Lid = Linear.ident(list, F)
assert _L1 == _Lid
print("Linear operations test.")
for n in range(10):
a = Linear.random(list, F, randrange)
b = Linear.random(list, F, randrange)
c = F.random(randrange)
cf = Linear.factor(c, list)
d = F.random(randrange)
df = Linear.factor(d, list)
cdf = Linear.factor(c * d, list)
assert a + b == b + a
assert a - b == -(b - a)
assert a + _L0 == a
assert _L0 + a == a
assert a - _L0 == a
assert _L0 - a == -a
assert a * _0 == _L0
assert _0 * a == _L0
assert a * _1 == a
assert _1 * a == a
assert a * (-_1) == -a
assert (-_1) * a == -a
assert _L0 @ a == _L0
assert a @ _L0 == _L0
assert _Lid @ a == a
assert a @ _Lid == a
for m in range(20):
x = F.random(randrange)
y = F.random(randrange)
assert (-a)(x) == a(-x)
assert (-b)(x) == b(-x)
assert (-a)(x) == -(a(x))
assert (-b)(x) == -(b(x))
assert a(x + y) == a(x) + a(y)
assert b(x + y) == b(x) + b(y)
assert a(x - y) == a(x) - a(y)
assert b(x - y) == b(x) - b(y)
assert (a + b)(x) == a(x) + b(x)
assert (a + b)(y) == a(y) + b(y)
assert (a - b)(x) == a(x) - b(x)
assert (a - b)(y) == a(y) - b(y)
assert cf(x) == c * x
assert cf(y) == c * y
assert df(x) == d * x
assert df(y) == d * y
assert (a @ b)(x) == a(b(x))
assert (a @ b)(y) == a(b(y))
assert (b @ a)(x) == b(a(x))
assert (b @ a)(y) == b(a(y))
assert (a @ cf)(x) == a(cf(x))
assert (a @ cf)(x) == a(c * x)
assert (cf @ a)(x) == cf(a(x))
assert (cf @ a)(x) == c * a(x)
assert (a * c)(x) == c * a(x)
assert (c * a)(x) == c * a(x)
assert (b * c)(x) == c * b(x)
assert (c * b)(x) == c * b(x)
assert cdf(x) == c * d * x
assert a(x) * b(y) == (a * b)(x, y)
assert a.pow_base(n)(x) == a(x) ** F.field_base ** n, f"{n}; {a}; {a.pow_base(n)}, {x}"
assert b.pow_base(n)(y) == b(y) ** F.field_base ** n
try:
ai = a.inverse()
except ArithmeticError:
pass
else:
assert ai(a(x)) == x
assert a(ai(x)) == x
print("Quadratic operations test.")
for n in range(10):
a = Quadratic.random(list, Linear, F, randrange)
b = Quadratic.random(list, Linear, F, randrange)
c = F.random(randrange)
for m in range(20):
x1 = F.random(randrange)
y1 = F.random(randrange)
x2 = F.random(randrange)
y2 = F.random(randrange)
assert (-a)(x1, x2) == -(a(x1, x2))
assert (a + b)(x1, x2) == a(x1, x2) + b(x1, x2)
assert (a - b)(x1, x2) == a(x1, x2) - b(x1, x2)
assert (a * c)(x1, x2) == c * a(x1, x2)
assert (c * a)(x1, x2) == c * a(x1, x2)
assert (b * c)(x1, x2) == c * b(x1, x2)
assert (c * b)(x1, x2) == c * b(x1, x2)
print("Linear vs. quadratic operations test.")
for n in range(20):
a1 = Quadratic.random(list, Linear, F, randrange)
a2 = Quadratic.random(list, Linear, F, randrange)
b = Linear.random(list, F, randrange)
c = Linear.random(list, F, randrange)
d = Linear.random(list, F, randrange)
e = F.random(randrange)
for m in range(20):
x = F.random(randrange)
y = F.random(randrange)
assert (d @ a1 @ (b, c))(x, y) == d(a1(b(x), c(y)))
assert (d @ a2 @ (b, c))(x, y) == d(a2(b(x), c(y)))
assert (a1 + a2)(x, y) == a1(x, y) + a2(x, y)
assert (a1 - a2)(x, y) == a1(x, y) - a2(x, y)
#print(type(a1 * e))
assert isinstance(a1 * e, Quadratic)
assert (a1 * e)(x, y) == e * a1(x, y)
#print(type(e * a2))
assert isinstance(e * a2, Quadratic)
assert (e * a2)(x, y) == e * a2(x, y)