-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpolynomials.py
executable file
·561 lines (431 loc) · 15.9 KB
/
polynomials.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
#!/usr/bin/python3
__all__ = 'UnivariatePolynomial', 'BivariatePolynomial'
from itertools import zip_longest, product, chain, repeat
from math import sqrt, ceil, comb as newton_binomial
from collections import defaultdict
from functools import reduce
from operator import __mul__
from utils import superscript, cached, array_fallback, table_fallback
def karatsuba(z, a, b):
"Karatsuba's „divide and conquer” polynomial multiplication algorithm."
if len(a) != len(b):
raise ValueError("Input sequences must be of equal length.")
if len(a) == 0:
raise ValueError("Sequences must not be empty.")
if len(a) == 1:
return [a[0] * b[0], z]
if len(a) % 2 != 0:
raise ValueError("Sequences' length must be a power of 2.")
n = len(a) // 2
al = a[:n]
ar = a[n:]
if len(al) < len(ar):
al.append(z)
bl = b[:n]
br = b[n:]
if len(bl) < len(br):
bl.append(z)
aa = [_x + _y for _x, _y in zip(al, ar)]
bb = [_x + _y for _x, _y in zip(bl, br)]
ll = karatsuba(z, al, bl)
mm = karatsuba(z, aa, bb)
rr = karatsuba(z, ar, br)
if len(ll) < len(a):
ll.append(z)
if len(rr) < len(a):
rr.append(z)
result = ll + rr
for i, (l, m, r) in enumerate(zip(ll, mm, rr)):
result[i + n] -= l - m + r
assert len(result) == 2 * len(a)
return result
class UnivariatePolynomial:
@property
@cached
def Field(self):
return self.__values[0].Field
@property
@cached
def Array(self):
return array_fallback(self.__values.__class__)
@classmethod
def zero(cls, Array, Field):
nArray = array_fallback(Array)
return cls(nArray((Field.zero() for _n in range(Field.field_size - 1)), [None], [Field]))
@classmethod
def one(cls, Array, Field):
nArray = array_fallback(Array)
return cls(nArray((Field.one() if _n == 0 else Field.zero() for _n in range(Field.field_size - 1)), [None], [Field]))
@classmethod
def ident(cls, Array, Field):
nArray = array_fallback(Array)
return cls(nArray((Field.one() if _n == (0 if Field.field_size == 2 else 1) else Field.zero() for _n in range(Field.field_size - 1)), [None], [Field]))
@classmethod
def random(cls, Array, Field, randbelow):
nArray = array_fallback(Array)
return cls(nArray((Field.random(randbelow) for _n in range(Field.field_size - 1)), [None], [Field]))
def __init__(self, values):
try:
self.__values = values.__values
except AttributeError:
self.__values = values
if __debug__:
if len(self.__values) != self.Field.field_size - 1:
raise ValueError("Number of polynomial coefficients must be field size less one.")
def serialize(self):
try:
return self.__values.serialize()
except AttributeError:
return self.__values
def __getitem__(self, n):
return self.__values[n]
@cached
def __str__(self) -> str:
if self:
return " + ".join(f"{str(self[_n])}·x{superscript(_n if _n else (self.Field.field_size - 1))}" for _n in range(self.Field.field_size - 1))
else:
return f"{self.Field.zero()}·x{superscript(self.Field.field_size - 1)}"
@cached
def __repr__(self) -> str:
return f'{self.__class__.__name__}({repr(self.__values)})'
def __bool__(self) -> bool:
return any(self.__values)
def __call__(self, x):
return self.Field.sum(self[_n] * (x ** (_n if _n else (self.Field.field_size - 1))) for _n in range(self.Field.field_size - 1))
def __eq__(self, other):
try:
return self.Field == other.Field and all(self[_n] == other[_n] for _n in range(self.Field.field_size - 1))
except (AttributeError, TypeError):
return NotImplemented
def __pos__(self):
return self
def __neg__(self):
return self.__class__(self.Array((-self[_n] for _n in range(self.Field.field_size - 1)), [None], [self.Field]))
def __add__(self, other):
try:
if other.Field != self.Field:
return NotImplemented
return self.__class__(self.Array((self[_n] + other[_n] for _n in range(self.Field.field_size - 1)), [None], [self.Field]))
except AttributeError:
return NotImplemented
except TypeError:
return self.__class__(self.Array((self[_n] + other if _n == 0 else self[_n] for _n in range(self.Field.field_size - 1)), [None], [self.Field]))
def __radd__(self, other):
try:
if other.Field != self.Field:
return NotImplemented
return self.__class__(self.Array((other[_n] + self[_n] for _n in range(self.Field.field_size - 1)), [None], [self.Field]))
except AttributeError:
return NotImplemented
except TypeError:
return self.__class__(self.Array((other + self[_n] if _n == 0 else self[_n] for _n in range(self.Field.field_size - 1)), [None], [self.Field]))
def __sub__(self, other):
try:
if other.Field != self.Field:
return NotImplemented
return self.__class__(self.Array((self[_n] - other[_n] for _n in range(self.Field.field_size - 1)), [None], [self.Field]))
except AttributeError:
return NotImplemented
except TypeError:
return self.__class__(self.Array((self[_n] - other if _n == 0 else self[_n] for _n in range(self.Field.field_size - 1)), [None], [self.Field]))
def __rsub__(self, other):
try:
if other.Field != self.Field:
return NotImplemented
return self.__class__(self.Array((other[_n] - self[_n] for _n in range(self.Field.field_size - 1)), [None], [self.Field]))
except AttributeError:
return NotImplemented
except TypeError:
return self.__class__(self.Array((other - self[_n] if _n == 0 else -self[_n] for _n in range(self.Field.field_size - 1)), [None], [self.Field]))
def __mul__(self, other):
try:
if other.Field != self.Field:
return NotImplemented
if self.Field.field_base != 2:
return self.__class__(self.Array((self.Field.sum(self[_n] * other[(_m - _n) % (self.Field.field_size - 1)] for _n in range(self.Field.field_size - 1)) for _m in range(self.Field.field_size - 1)), [None], [self.Field]))
z = self.Field.zero()
a = [z] + self.__values[1:] + [self.__values[0]]
b = [z] + other.__values[1:] + [other.__values[0]]
r = karatsuba(z, a, b)
assert len(r) == 2 * self.Field.field_size
assert r[0] == z
assert r[1] == z
assert r[2 * self.Field.field_size - 1] == z
r[0] = r[-2]
r[1] = r[-1]
f = [r[_n] + r[_n + self.Field.field_size - 1] for _n in range(self.Field.field_size - 1)]
#print(len(f), f)
#raise NotImplementedError
return self.__class__(self.Array(f, [None], [self.Field]))
except (AttributeError, TypeError):
try:
return self.__class__(self.Array((self[_n] * other for _n in range(self.Field.field_size - 1)), [None], [self.Field]))
except TypeError:
return NotImplemented
def __rmul__(self, other):
return self.__class__(self.Array((other * self[_n] for _n in range(self.Field.field_size - 1)), [None], [self.Field]))
@cached
def __pow__(self, exponent:int):
if exponent < 0: # negative power
raise ArithmeticError
if exponent == 0:
"Zero exponent. Return 1 if base is nonzero, else raise exception."
if self:
return self.one(self.Array, self.Field)
else:
raise ArithmeticError
if exponent % (self.Field.field_size - 1) == 0:
"Exponent divisible by field size less 1. Return 1 if base is nonzero, else 0."
return self.one(self.Array, self.Field) if self else self
if exponent % (self.Field.field_size - 1) == 1:
"Exponent greater by 1 than multiplicity of field size less 1. Return base."
return self
if not self:
"Base is 0, return 0."
return self
if 0 < exponent < self.Field.field_base:
#"Exponent between 0 and field base (non inclusive). Calculate result through repeated multiplication."
#return reduce(__mul__, repeat(self, exponent))
a = exponent // 2
b = exponent - a
return self**a * self**b
if exponent > self.Field.field_size - 1:
"Exponent greater than field size minus 1. Crop exponent using identity: self**exponent = self**(exponent % (field_size - 1))."
return self ** (exponent % (self.Field.field_size - 1))
"Check if the exponent is divisible by a power of field base."
n = 0
while exponent % (self.Field.field_base ** (n + 1)) == 0:
n += 1
if n:
"Exponent divisible by a power of field base. Use identity: self**exponent = self**(field_base ** n) * self**rest; exponent = (field_base ** n) * rest"
f = [None] * (self.Field.field_size - 1)
for k in range(self.Field.field_size - 1):
f[(self.Field.field_base ** n * k) % (self.Field.field_size - 1)] = self[k] ** self.Field.field_base ** n
a = self.__class__(self.Array(f, [None], [self.Field]))
b = a ** (exponent // (self.Field.field_base ** n))
return b
else:
"Exponent not divisible by a power of field base."
"Find the greatest power of field base smaller than the exponent."
n = 0
while self.Field.field_base ** (n + 1) < exponent:
n += 1
a = self ** (exponent - exponent % (self.Field.field_base ** n))
b = self ** (exponent % (self.Field.field_base ** n))
return a * b
def __matmul__(self, other): # FIXME: bug for field_base != 2 when other(x) == 0
try:
if other.Field != self.Field:
return NotImplemented
size_less_1 = self.Field.field_size - 1
r = self.zero(self.Array, self.Field)
for n in range(size_less_1):
r += self[n] * (other ** (n if n else size_less_1))
return r
except AttributeError:
return NotImplemented
class BivariatePolynomial:
@classmethod
def zero(cls, Array, UnivariatePolynomial, Field):
nArray = array_fallback(Array)
return cls(nArray((UnivariatePolynomial.zero(Array, Field) for _n in range(Field.field_size)), [Field.field_size, None], [UnivariatePolynomial, Field]))
@classmethod
def random(cls, Array, UnivariatePolynomial, Field, randbelow):
nArray = array_fallback(Array)
return cls(nArray((UnivariatePolynomial.random(Array, Field, randbelow) for _n in range(Field.field_size)), [Field.field_size, None], [UnivariatePolynomial, Field]))
def __init__(self):
raise NotImplementedError
def __call__(self, x, y):
_0 = self.Field.zero()
return self.Field.sum(self[_n](x) * ((y ** _n) if y else _0) for _n in range(self.Field.field_size))
def __getitem__(self, n):
try:
i, j = n
except TypeError:
return self.__values[n]
else:
return self.__values[i][j]
@cached
def __str__(self):
if self:
return " + ".join(f"{str(self[_m, _n])}·x{superscript(_m)}·y{superscript(_n)}" for (_m, _n) in product(range(self.Field.field_size), range(self.Field.field_size)))
else:
return f"0{subscript(self.Field.field_base)}·x⁰"
class NonUniform:
def __init__(self, free, poly):
raise NotImplementedError
self.free = free
self.poly = poly
def __call__(self, *args):
return self.poly(*args) + self.free
def __add__(self, other):
try:
return self.__class__(self.free + other.free, self.poly + other.poly)
except AttributeError:
pass
try:
return self.__class__(self.free, self.poly + other)
except TypeError:
pass
try:
return self.__class__(self.free + other, self.poly)
except TypeError:
pass
return NotImplemented
def __radd__(self, other):
try:
return self.__class__(other.free + self.free, other.poly + self.poly)
except AttributeError:
pass
try:
return self.__class__(self.free, other + self.poly)
except TypeError:
pass
try:
return self.__class__(other + self.free, self.poly)
except TypeError:
pass
return NotImplemented
def __sub__(self, other):
try:
return self.__class__(self.free - other.free, self.poly - other.poly)
except AttributeError:
pass
try:
return self.__class__(self.free, self.poly - other)
except TypeError:
pass
try:
return self.__class__(self.free - other, self.poly)
except TypeError:
pass
return NotImplemented
def __rsub__(self, other):
try:
return self.__class__(other.free - self.free, other.poly - self.poly)
except AttributeError:
pass
try:
return self.__class__(-self.free, other - self.poly)
except TypeError:
pass
try:
return self.__class__(other - self.free, -self.poly)
except TypeError:
pass
return NotImplemented
def __mul__(self, other):
try:
return self.__class__(self.free * other.free, self.free * other.poly + self.poly * other.free + self.poly * other.poly)
except AttributeError:
pass
try:
return self.__class__(self.free.zero(), self.free * other + self.poly * other)
except TypeError:
pass
try:
return self.__class__(self.free * other, self.poly * other)
except TypeError:
pass
return NotImplemented
def __rmul__(self, other):
try:
return self.__class__(other.free * self.free, other.poly * self.free + other.free * self.poly + other.poly * self.poly)
except AttributeError:
pass
try:
return self.__class__(self.free.zero(), other * self.free + other * self.poly)
except TypeError:
pass
try:
return self.__class__(other * self.free, other * self.poly)
except TypeError:
pass
return NotImplemented
if __debug__ and __name__ == '__main__':
from fields import Galois
from random import randrange
from pycallgraph2 import PyCallGraph
from pycallgraph2.output.graphviz import GraphvizOutput
'''
Rijndael = Galois('Rijndael', 2, [1, 0, 0, 0, 1, 1, 0, 1, 1])
a = UnivariatePolynomial.random(list, Rijndael, randrange)
b = UnivariatePolynomial.random(list, Rijndael, randrange)
with PyCallGraph(output=GraphvizOutput(output_file=f'polynomial_multiplication.png')):
c = a * b
with PyCallGraph(output=GraphvizOutput(output_file=f'polynomial_exponentiation.png')):
c = a ** 10
quit()
'''
#fields = Galois('Binary', 2, [1, 1]), Galois('F3', 3, [1, 0, 2, 1]), Galois('Rijndael', 2, [1, 0, 0, 0, 1, 1, 0, 1, 1])
fields = Galois('Binary', 2, [1, 1]), Galois('Rijndael', 2, [1, 0, 0, 0, 1, 1, 0, 1, 1])
for F in fields:
print("Polynomials over", F)
_0 = F.zero()
_1 = F.one()
_P0 = UnivariatePolynomial.zero(list, F)
_P1 = UnivariatePolynomial.one(list, F)
_Pid = UnivariatePolynomial.ident(list, F)
for x in F.domain():
assert _P0(x) == _0
assert _P1(x) == (_1 if x else _0)
assert _Pid(x) == x
for n in range(2):
a = UnivariatePolynomial.random(list, F, randrange)
b = UnivariatePolynomial.random(list, F, randrange)
c = F.random(randrange)
d = F.random(randrange)
assert a(_0) == _0
assert a * _0 == _P0
assert _0 * a == _P0
assert a * _1 == a
assert _1 * a == a
assert a + b == b + a
assert a - b == -(b - a)
assert a + _P0 == a
assert _P0 + a == a
assert a - _P0 == a
assert _P0 - a == -a
assert a * b == b * a
assert a * _P0 == _P0
assert _P0 * a == _P0
assert a * _P1 == a
assert _P1 * a == a
assert a @ _P0 == _P0
assert _P0 @ a == _P0
assert a @ _Pid == a
assert _Pid @ a == a
if a:
assert a ** 0 == _P1
assert a ** 1 == a
ab = a @ b
ba = b @ a
assert ab(_0) == _0
assert ba(_0) == _0
for m in range(5):
#print("test")
x = F.random(randrange)
y = F.random(randrange)
e = randrange(0, 1000)
f = randrange(1, 20)
assert (a + b)(x) == a(x) + b(x)
assert (b + a)(y) == b(y) + a(y)
assert (a - b)(x) == a(x) - b(x)
assert (b - a)(y) == b(y) - a(y)
assert (a * b)(x) == a(x) * b(x), f"{x}: ({a}) * ({b}) = ({a * b}) ::: {a(x)} * {b(x)} = {a(x) * b(x)} = {(a * b)(x)}"
assert (b * a)(y) == b(y) * a(y), f"{y}: ({b}) * ({a}) = ({b * a}) ::: {b(y)} * {a(y)} = {b(y) * a(y)} = {(b * a)(y)}"
assert (a * c)(x) == a(x) * c
assert (c * a)(x) == c * a(x)
assert (b * d)(y) == b(y) * d
assert (d * b)(y) == d * b(y)
if e:
assert a ** e == reduce(__mul__, [a] * e), f"{a} ** {e}"
if e and f:
assert a ** (e + f) == a**e * a**f, f"a ** ({e} + {f}) == a**{e} * a**{f}"
assert a ** (e * f) == (a**e)**f
if a and e:
assert (a ** e)(x) == a(x) ** e
assert ab(x) == a(b(x)), f"{x}, {b(x)}, {a(b(x))}, {ab(x)}"
assert ab(y) == a(b(y)), f"{y}, {b(y)}, {a(b(y))}, {ab(y)}" # FIXME: Sometimes fails for y=0. Then (a @ b)(0) should be 0 but it's not.
assert ba(x) == b(a(x)), f"{x}, {a(x)}, {b(a(x))}, {ba(x)}"
assert ba(y) == b(a(y)), f"{y}, {a(y)}, {b(a(y))}, {ba(y)}"