-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathGRAABD_WS.txt
454 lines (388 loc) · 15.2 KB
/
GRAABD_WS.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
/*
*This package is used to Group Role Assignment with Agents' Busyness Degrees problem.
*Adapted from the implementation of the classic hungarian algorithm for the assignment problem.
* by Gary Baker (GPL v3), 2007
* @author Haibin Zhu, 2016
*Please cite:
[1] H. Zhu, and Y. D. Zhu, "Group Role Assignment with Agents' Busyness Degrees", The IEEE Int'l Conf. on Systems, Man and Cybernetics (SMC'17), Banff, Canada, Oct. 5-8, 2017, pp. 3201-3206.
[2] H. Zhu, E-CARGO and Role-Based Collaboration: Modeling and Solving Problems in the Complex World, Wiley-IEEE Press, NJ, USA, Dec. 2021.
[3] H. Zhu, M.C. Zhou, and R. Alkins, “Group Role Assignment via a Kuhn-Munkres Algorithm-based Solution”, IEEE Trans. on Systems, Man, and Cybernetics, Part A: Systems and Humans, vol. 42, no. 3, May 2012, pp. 739-750.
[4] H. Zhu, and M. Zhou, “Role-Based Collaboration and its Kernel Mechanisms,” IEEE Trans. on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 36, no. 4, July. 2006, pp. 578-589.
*/
import java.text.DecimalFormat;
import java.util.*;
class TestResult
{
public double v;
public double b;
public TestResult()
{
v=0; b=0;
}
}
public class GRAABDWS {
static public int[][] computeAssignments(double[][] matrix) {
// subtract minumum value from rows and columns to create lots of zeroes
reduceMatrix(matrix);
// non negative values are the index of the starred or primed zero in the row or column
int[] starsByRow = new int[matrix.length]; Arrays.fill(starsByRow,-1);
int[] starsByCol = new int[matrix[0].length]; Arrays.fill(starsByCol,-1);
int[] primesByRow = new int[matrix.length]; Arrays.fill(primesByRow,-1);
// 1s mean covered, 0s mean not covered
int[] coveredRows = new int[matrix.length];
int[] coveredCols = new int[matrix[0].length];
// star any zero that has no other starred zero in the same row or column
initStars(matrix, starsByRow, starsByCol);
coverColumnsOfStarredZeroes(starsByCol,coveredCols);
while (!allAreCovered(coveredCols)) {
int[] primedZero = primeSomeUncoveredZero(matrix, primesByRow, coveredRows, coveredCols);
while (primedZero == null) {
// keep making more zeroes until we find something that we can prime (i.e. a zero that is uncovered)
makeMoreZeroes(matrix,coveredRows,coveredCols);
primedZero = primeSomeUncoveredZero(matrix, primesByRow, coveredRows, coveredCols);
}
// check if there is a starred zero in the primed zero's row
int columnIndex = starsByRow[primedZero[0]];
if (-1 == columnIndex){
// if not, then we need to increment the zeroes and start over
incrementSetOfStarredZeroes(primedZero, starsByRow, starsByCol, primesByRow);
Arrays.fill(primesByRow,-1);
Arrays.fill(coveredRows,0);
Arrays.fill(coveredCols,0);
coverColumnsOfStarredZeroes(starsByCol,coveredCols);
} else {
// cover the row of the primed zero and uncover the column of the starred zero in the same row
coveredRows[primedZero[0]] = 1;
coveredCols[columnIndex] = 0;
}
}
// ok now we should have assigned everything
// take the starred zeroes in each column as the correct assignments
int[][] retval = new int[matrix.length][];
for (int i = 0; i < starsByCol.length; i++) {
retval[i] = new int[]{starsByCol[i],i};
}
return retval;
}
static private boolean allAreCovered(int[] coveredCols) {
for (int covered : coveredCols) {
if (0 == covered) return false;
}
return true;
}
/**
* the first step of the hungarian algorithm
* is to find the smallest element in each row
* and subtract it's values from all elements
* in that row
*
* @return the next step to perform
*/
static private void reduceMatrix(double[][] matrix) {
for (int i = 0; i < matrix.length; i++) {
// find the min value in the row
double minValInRow = Double.MAX_VALUE;
for (int j = 0; j < matrix[i].length; j++) {
if (minValInRow > matrix[i][j]) {
minValInRow = matrix[i][j];
}
}
// subtract it from all values in the row
for (int j = 0; j < matrix[i].length; j++) {
matrix[i][j] -= minValInRow;
}
}
for (int i = 0; i < matrix[0].length; i++) {
double minValInCol = Double.MAX_VALUE;
for (int j = 0; j < matrix.length; j++) {
if (minValInCol > matrix[j][i]) {
minValInCol = matrix[j][i];
}
}
for (int j = 0; j < matrix.length; j++) {
matrix[j][i] -= minValInCol;
}
}
}
/**
* init starred zeroes
*
* for each column find the first zero
* if there is no other starred zero in that row
* then star the zero, cover the column and row and
* go onto the next column
*
* @param costMatrix
* @param starredZeroes
* @param coveredRows
* @param coveredCols
* @return the next step to perform
*/
static private void initStars(double costMatrix[][], int[] starsByRow, int[] starsByCol) {
int [] rowHasStarredZero = new int[costMatrix.length];
int [] colHasStarredZero = new int[costMatrix[0].length];
for (int i = 0; i < costMatrix.length; i++) {
for (int j = 0; j < costMatrix[i].length; j++) {
if (0 == costMatrix[i][j] && 0 == rowHasStarredZero[i] && 0 == colHasStarredZero[j]) {
starsByRow[i] = j;
starsByCol[j] = i;
rowHasStarredZero[i] = 1;
colHasStarredZero[j] = 1;
break; // move onto the next row
}
}
}
}
/**
* just marke the columns covered for any coluimn containing a starred zero
* @param starsByCol
* @param coveredCols
*/
static private void coverColumnsOfStarredZeroes(int[] starsByCol, int[] coveredCols) {
for (int i = 0; i < starsByCol.length; i++) {
coveredCols[i] = -1 == starsByCol[i] ? 0 : 1;
}
}
/**
* finds some uncovered zero and primes it
* @param matrix
* @param primesByRow
* @param coveredRows
* @param coveredCols
* @return
*/
static private int[] primeSomeUncoveredZero(double matrix[][], int[] primesByRow,
int[] coveredRows, int[] coveredCols) {
// find an uncovered zero and prime it
for (int i = 0; i < matrix.length; i++) {
if (1 == coveredRows[i]) continue;
for (int j = 0; j < matrix[i].length; j++) {
// if it's a zero and the column is not covered
if (0 == matrix[i][j] && 0 == coveredCols[j]) {
// ok this is an unstarred zero
// prime it
primesByRow[i] = j;
return new int[]{i,j};
}
}
}
return null;
}
/**
*
* @param unpairedZeroPrime
* @param starsByRow
* @param starsByCol
* @param primesByRow
*/
static private void incrementSetOfStarredZeroes(int[] unpairedZeroPrime, int[] starsByRow, int[] starsByCol, int[] primesByRow) {
// build the alternating zero sequence (prime, star, prime, star, etc)
int i, j = unpairedZeroPrime[1];
Set<int[]> zeroSequence = new LinkedHashSet<int[]>();
zeroSequence.add(unpairedZeroPrime);
boolean paired = false;
do {
i = starsByCol[j];
paired = -1 != i && zeroSequence.add(new int[]{i,j});
if (!paired) break;
j = primesByRow[i];
paired = -1 != j && zeroSequence.add(new int[]{ i, j });
} while (paired);
// unstar each starred zero of the sequence
// and star each primed zero of the sequence
for (int[] zero : zeroSequence) {
if (starsByCol[zero[1]] == zero[0]) {
starsByCol[zero[1]] = -1;
starsByRow[zero[0]] = -1;
}
if (primesByRow[zero[0]] == zero[1]) {
starsByRow[zero[0]] = zero[1];
starsByCol[zero[1]] = zero[0];
}
}
}
static private void makeMoreZeroes(double[][] matrix, int[] coveredRows, int[] coveredCols) {
// find the minimum uncovered value
double minUncoveredValue = Double.MAX_VALUE;
for (int i = 0; i < matrix.length; i++) {
if (0 == coveredRows[i]) {
for (int j = 0; j < matrix[i].length; j++) {
if (0 == coveredCols[j] && matrix[i][j] < minUncoveredValue) {
minUncoveredValue = matrix[i][j];
}
}
}
}
// add the min value to all covered rows
for (int i = 0; i < coveredRows.length; i++) {
if (1 == coveredRows[i]) {
for (int j = 0; j < matrix[i].length; j++) {
matrix[i][j] += minUncoveredValue;
}
}
}
// subtract the min value from all uncovered columns
for (int i = 0; i < coveredCols.length; i++) {
if (0 == coveredCols[i]) {
for (int j = 0; j < matrix.length; j++) {
matrix[j][i] -= minUncoveredValue;
}
}
}
}
public static double RatedAssign(int [] L, double [][] Q, int [][] T, int m, int n, double th) {
double v=0.0f;
int cnt=0, LL[]=new int [m];
double Q1[][]= new double [m][n];
//Check if it can be a square matrix.
for (int i = 0; i<n; i++) cnt +=L[i];
if (cnt > m) return 0.0f;//Not enough agents.
//Adjust Q with the threshold.
for (int i = 0; i < m; i++)
for (int j =0; j< n; j++)
if (Q[i][j]<=th) Q1[i][j]=-m*m;
else Q1[i][j]=Q[i][j];
double CC[]= new double [n]; // CC[] is the numbers of qualified agents for roles.
int D[]= new int [n]; //D is a vector for the difference between the number required current agents and the number of actual current agents for each role.
for (int j =0; j< n; j++)
{ for (int i = 0; i < m; i++) { if (Q1[i][j]>th) CC[j]=CC[j]+1; }
D[j]=(int)( L[j]-CC[j]); if (D[j]>0) return 0.0f;//One role has not enough agents..
}
//Create the index vector.
int index=0;
for (int j = 0; j<n; j++)
for (int k = 0; k<L[j]; k++) LL[index++] =j;
for (int k = index; k < m; k++)//fill the left columns (roles).
LL[k]=n;
// System.out.println("Q1:"); for (int i = 0; i<m; i++) { for (int j = 0; j<n; j++) System.out.print(Q1[i][j]+" "); System.out.println(); } System.out.println();
double [][] M = new double [m][m];
for (int i = 0; i<m; i++)
{ index =0;
for (int j = 0; j<n; j++)
{
for (int k = 0; k<L[j]; k++)
M[i][index++]=1-Q1[i][j];
}
//for (int k = index; k < m; k++)//fill the left columns (roles).
//M[i][k]=1;
}
// for (int i = 0; i < m; i++) {System.out.print (LL[i]);System.out.print (" "); } System.out.println ();
// for (int i = 0; i < m; i++) { for (int j =0; j< m; j++) { System.out.print (M[i][j]); System.out.print (" "); }System.out.println (); }
int [][] N = computeAssignments(M);
//Obtaing the matrix T.
for (int i = 0; i<m; i++)
{ for (int j = 0; j<n; j++)
{ T[i][j]=0;
}
}
for (int i = 0; i < N.length; i++)
if (LL[N[i][1]]< n)
{
if (Q1[N[i][0]][LL[N[i][1]]]>0.0f) T[N[i][0]][LL[N[i][1]]]=1;
else return -1.0f;
}
for (int i = 0; i<m; i++)
for (int j = 0; j<n; j++)
v += Q[i][j]*T[i][j];
return v;
}
public static void printDMatrix (double [][]x, int m, int n){
DecimalFormat tw = new DecimalFormat("0.00");
for (int i = 0; i < m; i++){ for (int j =0; j< n; j++){
System.out.print (tw.format(x[i][j])); System.out.print (" ");
}
System.out.println ();
}
System.out.println ();
}
public static void printIMatrix (int [][]x, int m, int n){
DecimalFormat tw = new DecimalFormat("0");
for (int i = 0; i < m; i++)
{ for (int j =0; j< n; j++)
{
System.out.print (tw.format(x[i][j])); System.out.print (" ");
}
System.out.println ();
}
System.out.println ();
}
private static double GRABDWS(int []L, double [][]Q, int [][]T, double VB[], double w, int m, int n){
double [][]Q1 = new double [m][n];
double min = 1000, max = -1000;
for (int i=0; i<m; i++)
for (int j=0; j<n; j++)
{
Q1[i][j]=w*Q[i][j]-(1-w)*VB[i];
if (Q1[i][j]< min) min =Q1[i][j];
if (Q1[i][j]> max) max =Q1[i][j];
}
for (int i=0; i<m; i++)
for (int j=0; j<n; j++)
Q1[i][j]=(Q1[i][j]-min)/(max-min);
double omegaws=RatedAssign(L, Q1, T, m, n, -1);
return omegaws;
}
private static double GRAIAB(int []L, double [][]Q, int [][]T, double VB[], int m, int n){
double [][]Q1 = new double [m][n];
for (int i=0; i<m; i++)
for (int j=0; j<n; j++)
Q1[i][j]=Q[i][j]*(1-VB[i]);
double omegaws=RatedAssign(L, Q1, T, m, n, 0);
return omegaws;
}
private static TestResult randamtest(int m, int n, double done) {
DecimalFormat df = new DecimalFormat("0.00");
TestResult tr = new TestResult();
int L[]={1,2,4,2};
double [][]Q={
{0.18,0.82,0.29,0.01},
{0.35,0.80,0.58,0.35},
{0.84,0.85,0.86,0.36},
{0.96,0.51,0.45,0.64},
{0.22,0.33,0.68,0.33},
{0.96,0.50,0.10,0.73},
{0.25,0.18,0.23,0.39},
{0.56,0.35,0.80,0.62},
{0.49,0.09,0.33,0.58},
{0.38,0.54,0.72,0.20},
{0.91,0.31,0.34,0.15},
{0.85,0.34,0.43,0.18},
{0.44,0.06,0.66,0.37}};
double []VB={
0.95,
0.75,
0.75,
0.75,
0.25,
0.05,
0.25,
0.5,
0.5,
0.5,
0.75,
0.5,
0.25};
double B [] = new double [m];
for (double w =0.0; w<=1.0; w+=0.1){
// long t1 = System.nanoTime();
int T1[][]=new int [m][n];
int T2[][]=new int [m][n];
double vv1 = GRABDWS(L, Q, T1, VB, w, m, n);
double vv2 = RatedAssign(L, Q, T2, m, n,0);
double v1=0, v2=0, vb1=0, vb2=0;
for (int i=0; i<m; i++) for (int j=0; j<n; j++){
v1 +=Q[i][j]*T1[i][j];
v2 +=Q[i][j]*T2[i][j];
vb1+=VB[i]*T1[i][j];
vb2+=VB[i]*T2[i][j];
}
System.out.println (""+ df.format(v1)+" "+df.format(v2)+" "+df.format(vb1)+" "+df.format(vb2));
}
return tr;
}
public static void main(String[] args)
{
DecimalFormat df = new DecimalFormat("0.00");
randamtest(13, 4, 0.90);
}
}