-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbayes-classification.cpp
219 lines (174 loc) · 6.42 KB
/
bayes-classification.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#include <string>
#include <vector>
#include <unordered_map>
#include <stdexcept>
#include <iostream>
#include <set>
struct Record
{
std::string classification;
std::vector<bool> categoricalVariables;
};
class Classifier {
virtual void Train(const std::vector<Record>& _records) = 0;
virtual std::unordered_map<std::string, double> Classify(const std::vector<bool>& queryRec) = 0;
};
class ExactBayesClassification : public Classifier {
public:
void Train(const std::vector<Record>& _records) {
for (auto const& record: _records) {
classes.insert(record.classification);
if (matchLookup.find(record.categoricalVariables) == matchLookup.end()) {
matchLookup[record.categoricalVariables] = {};
}
matchLookup[record.categoricalVariables].push_back(record.classification);
}
}
std::unordered_map<std::string, double> Classify(const std::vector<bool>& queryRec) {
if (matchLookup.find(queryRec) == matchLookup.end()) {
return {};
}
std::unordered_map<std::string, double> intermediate;
auto queryExactMatches = matchLookup.at(queryRec);
for (auto const& match : queryExactMatches) {
if (intermediate.find(match) == intermediate.end()) {
intermediate[match] = 0;
}
intermediate[match]++;
}
std::unordered_map<std::string, double> result;
for (auto classification : classes) {
result[classification] = 0;
}
double numMatches = (double) queryExactMatches.size();
for (auto it : intermediate) {
result[it.first] = it.second / numMatches;
}
return result;
}
private:
std::set<std::string> classes;
std::unordered_map< std::vector<bool>, std::vector<std::string>> matchLookup;
};
/* *
* For each classification compute P(Query maps to classification | queryRec vector vals)
* Expand this to:
* P(queryRec[0] | classification) * P(queryRec[1] | classification)....*P(queryRec[i] | classification) / P(vector[0])*...*P(vector[i])
*
* Helpful equations:
* P (A | B) = P ( A & B) / P(B)
* P (x) = number of times x occurs / total occurences
* */
class NaiveBayesClassification : public Classifier {
public:
/**
* For each record we can create lookup data structures.
* We should store the following :
* - probabilities of each classification
* - A vector of the training records for in time access
* - A set of all classifications
* */
void Train(const std::vector<Record>& _records) {
records = _records;
for (auto const& record : records) {
auto classification = record.classification;
classes.insert(classification);
if (classificationProbabilites.find(classification) == classificationProbabilites.end()) {
classificationProbabilites[classification] = 0;
}
classificationProbabilites[classification]++;
}
for (auto it: classificationProbabilites) {
classificationProbabilites[it.first] = it.second / (double) records.size();
}
}
std::unordered_map<std::string, double> Classify(const std::vector<bool>& queryRec) {
std::unordered_map<std::string, double> result;
for (auto classification: classes) {
// find the probability of this classification and add it to our result map
result[classification] = ProbabilityOfClassificationGivenQuery(classification, queryRec);
}
return result;
}
private:
std::set<std::string> classes;
std::vector<Record> records;
std::unordered_map<std::string, double> classificationProbabilites;
/**
* P(classification) * [P(queryRec[0] | classification) *..* P(queryRec[i] | classification)
* ------------------------------------------------------------------
* P(queryRec[0]) *..* P(queryRec[i])
*
* => P(classification) * P(queryyRec[0] && classification) / P(classification) *** P(queryyRec[i] && classification) / P(classification)
* ----------------------------------------------------------------------------------------------------------------
* P(queryRec[0]) *..* P(queryRec[i])
*
* => P(classification) * (#queryRec[0]&&classification / #classification) ** (#queryRec[i]&&classification / #classification)
* -----------------------------------------------------------------------------------------------------
* (#queryRec[0]/#recs) *..* (#queryRec[i]/#recs)
*
* Helper Equation Expansion:
* P(queryRec[i] | classification) = P(classificaton && queryRec[i]) / P (classification)
*
* P(classificaton && queryRec[i]) = ....
* */
double ProbabilityOfClassificationGivenQuery(std::string& classification, const std::vector<bool>& queryRec) {
double denominator = 1;
double numerator = 1;
double classificationProb = classificationProbabilites.at(classification);
for (int i = 0; i < queryRec.size(); i++) {
double queryRecAndClassificationCount = 1;
double classificationCount = 0;
double recQueryCatCount = 1;
for (auto rec: records) {
if (rec.categoricalVariables.at(i)) {
recQueryCatCount++;
}
if (rec.classification == classification && rec.categoricalVariables.at(i) == queryRec.at(i)) {
queryRecAndClassificationCount++;
}
if (rec.classification == classification) {
classificationCount++;
}
}
numerator *= queryRecAndClassificationCount/classificationCount;
denominator *= recQueryCatCount/records.size();
}
return classificationProb * (numerator/denominator);
}
};
int main() {
std::vector<Record> recs = {
{
"A",
{true, false, true, true}
},
{
"B",
{true, false, false, true}
},
{
"C",
{true, false, true, true}
},
{
"A",
{true, false, true, true}
}
};
ExactBayesClassification ebc;
NaiveBayesClassification nbc;
ebc.Train(recs);
nbc.Train(recs);
std::vector<bool> query = {true, false, true, true};
auto ebcProbs = ebc.Classify(query);
std::cout << "####### EXACT BAYES CLASSIFICATION #######" <<std::endl;
for (auto res: ebcProbs) {
std::cout << res.first << ": " << res.second << "\n";
}
std::cout << "####### NAIVE BAYES CLASSIFICATION #######" <<std::endl;
auto nbcProbs = nbc.Classify(query);
for (auto res: nbcProbs) {
std::cout << res.first << ": " << res.second << "\n";
}
}