-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdemo_culane.py
63 lines (49 loc) · 2.02 KB
/
demo_culane.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import time, csv
import argparse
import torch
from torchvision import transforms
from torch.utils.data import DataLoader
from model.tu_model import *
from eval_util.eval_utils import *
from eval_util.eval_process import *
def parameters_parser():
parser = argparse.ArgumentParser(description='evaluate')
parser.add_argument('-device', default=torch.device("cuda:0" if torch.cuda.is_available() else "cpu"))
parser.add_argument('-pth_name', default='./result/tu-pth0827/ShareNet-inTuData-out0-4-20220827ep11.pth')
parser.add_argument('-output_size', default=7)
parser.add_argument('-img_dir', default='dataset/TuSimple/lane_data/test_data/')
parser.add_argument('-p_thread',default=[0.5, 0.7, 0.8]) # soft, medium, strict
args = parser.parse_args()
return args
def main(args): # CNN eval scene
net = create_cnn(args)
eval_multi_imgs(net, args.img_dir, preprocess)
torch.cuda.empty_cache()
def create_cnn(args):
net = ShareResNet_Out2(3, args.output_size)
net.load_state_dict(torch.load(args.pth_name, map_location='cpu'))
return net
def eval_multi_imgs(net, img_dir, preprocess):
net.eval()
for img_sequence in os.listdir(img_dir):
for img_stamp in os.listdir(img_dir + '/' + img_sequence):
img_file = img_dir + img_sequence + '/' + img_stamp + '/1.png'
if not ('png' in img_file or 'jpg' in img_file):
print('error, the input data is not image file')
continue
img = cv2.imread(img_file)
x = preprocess(img)
with torch.no_grad():
out1, out2 = net(x)
save_one_img(out1, out2, img, img_dir, img_file)
def preprocess(img):
img = cv2.resize(img, (480, 270), interpolation=cv2.INTER_AREA)
x = img[100:270, 0:480, 0:3]
x = cv2.cvtColor(x, cv2.COLOR_BGR2RGB)
x = transforms.ToTensor()(x)
x = x.unsqueeze(0)
return x
if __name__ == "__main__":
main(parameters_parser())