-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathntz.c.txt
317 lines (260 loc) · 8.97 KB
/
ntz.c.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
// This has the programs for computing the number of trailing zeros
// in a word.
// Max line length is 57, to fit in hacker.book.
#include <stdio.h>
#include <stdlib.h> //To define "exit", req'd by XLC.
int nlz(unsigned x) {
int pop(unsigned x);
x = x | (x >> 1);
x = x | (x >> 2);
x = x | (x >> 4);
x = x | (x >> 8);
x = x | (x >>16);
return pop(~x);
}
int pop(unsigned x) {
x = x - ((x >> 1) & 0x55555555);
x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
x = (x + (x >> 4)) & 0x0F0F0F0F;
x = x + (x << 8);
x = x + (x << 16);
return x >> 24;
}
int ntz1(unsigned x) {
return 32 - nlz(~x & (x-1));
}
int ntz2(unsigned x) {
return pop(~x & (x - 1));
}
int ntz3(unsigned x) {
int n;
if (x == 0) return(32);
n = 1;
if ((x & 0x0000FFFF) == 0) {n = n +16; x = x >>16;}
if ((x & 0x000000FF) == 0) {n = n + 8; x = x >> 8;}
if ((x & 0x0000000F) == 0) {n = n + 4; x = x >> 4;}
if ((x & 0x00000003) == 0) {n = n + 2; x = x >> 2;}
return n - (x & 1);
}
int ntz4(unsigned x) {
unsigned y;
int n;
if (x == 0) return 32;
n = 31;
y = x <<16; if (y != 0) {n = n -16; x = y;}
y = x << 8; if (y != 0) {n = n - 8; x = y;}
y = x << 4; if (y != 0) {n = n - 4; x = y;}
y = x << 2; if (y != 0) {n = n - 2; x = y;}
y = x << 1; if (y != 0) {n = n - 1;}
return n;
}
int ntz4a(unsigned x) {
unsigned y;
int n;
if (x == 0) return 32;
n = 31;
y = x <<16; if (y != 0) {n = n -16; x = y;}
y = x << 8; if (y != 0) {n = n - 8; x = y;}
y = x << 4; if (y != 0) {n = n - 4; x = y;}
y = x << 2; if (y != 0) {n = n - 2; x = y;}
n = n - ((x << 1) >> 31);
return n;
}
int ntz5(char x) {
if (x & 15) {
if (x & 3) {
if (x & 1) return 0;
else return 1;
}
else if (x & 4) return 2;
else return 3;
}
else if (x & 0x30) {
if (x & 0x10) return 4;
else return 5;
}
else if (x & 0x40) return 6;
else if (x) return 7;
else return 8;
}
int ntz6(unsigned x) {
int n;
x = ~x & (x - 1);
n = 0; // n = 32;
while(x != 0) { // while (x != 0) {
n = n + 1; // n = n - 1;
x = x >> 1; // x = x + x;
} // }
return n; // return n;
}
int ntz6a(unsigned x) {
int n;
n = 32;
while (x != 0) {
n = n - 1;
x = x + x;
}
return n;
}
/* Dean Gaudet's algorithm. To be most useful there must be a good way
to evaluate the C "conditional expression" (a?b:c construction) without
branching. The result of a?b:c is b if a is true (nonzero), and c if a
is false (0).
For example, a compare to zero op that sets a target GPR to 1 if the
operand is 0, and to 0 if the operand is nonzero, will do it. With this
instruction, the algorithm is entirely branch-free. But the most
interesting thing about it is the high degree of parallelism. All six
lines with conditional expressions can be executed in parallel (on a
machine with sufficient computational units).
Although the instruction count is 30 measured statically, it could
execute in only 10 cycles on a machine with sufficient parallelism.
The first two uses of y can instead be x, which would increase the
useful parallelism on most machines (the assignments to y, bz, and b4
could then all run in parallel). */
int ntz7(unsigned x) {
unsigned y, bz, b4, b3, b2, b1, b0;
y = x & -x; // Isolate rightmost 1-bit.
bz = y ? 0 : 1; // 1 if y = 0.
b4 = (y & 0x0000FFFF) ? 0 : 16;
b3 = (y & 0x00FF00FF) ? 0 : 8;
b2 = (y & 0x0F0F0F0F) ? 0 : 4;
b1 = (y & 0x33333333) ? 0 : 2;
b0 = (y & 0x55555555) ? 0 : 1;
return bz + b4 + b3 + b2 + b1 + b0;
}
/* Below is David Seal's algorithm, found at
http://www.ciphersbyritter.com/NEWS4/BITCT.HTM Table
entries marked "u" are unused. 6 ops including a
multiply, plus an indexed load. */
#define u 99
int ntz8(unsigned x) {
static char table[64] =
{32, 0, 1,12, 2, 6, u,13, 3, u, 7, u, u, u, u,14,
10, 4, u, u, 8, u, u,25, u, u, u, u, u,21,27,15,
31,11, 5, u, u, u, u, u, 9, u, u,24, u, u,20,26,
30, u, u, u, u,23, u,19, 29, u,22,18,28,17,16, u};
x = (x & -x)*0x0450FBAF;
return table[x >> 26];
}
/* Seal's algorithm with multiply expanded.
9 elementary ops plus an indexed load. */
int ntz8a(unsigned x) {
static char table[64] =
{32, 0, 1,12, 2, 6, u,13, 3, u, 7, u, u, u, u,14,
10, 4, u, u, 8, u, u,25, u, u, u, u, u,21,27,15,
31,11, 5, u, u, u, u, u, 9, u, u,24, u, u,20,26,
30, u, u, u, u,23, u,19, 29, u,22,18,28,17,16, u};
x = (x & -x);
x = (x << 4) + x; // x = x*17.
x = (x << 6) + x; // x = x*65.
x = (x << 16) - x; // x = x*65535.
return table[x >> 26];
}
/* Reiser's algorithm. Three ops including a "remainder,"
plus an indexed load. */
int ntz9(unsigned x) {
static char table[37] = {32, 0, 1, 26, 2, 23, 27,
u, 3, 16, 24, 30, 28, 11, u, 13, 4,
7, 17, u, 25, 22, 31, 15, 29, 10, 12,
6, u, 21, 14, 9, 5, 20, 8, 19, 18};
x = (x & -x)%37;
return table[x];
}
/* Using a de Bruijn sequence. This is a table lookup with a 32-entry
table. The de Bruijn sequence used here is
0000 0100 1101 0111 0110 0101 0001 1111,
obtained from Danny Dube's October 3, 1997, posting in
comp.compression.research. Thanks to Norbert Juffa for this reference. */
int ntz10(unsigned x) {
static char table[32] =
{ 0, 1, 2,24, 3,19, 6,25, 22, 4,20,10,16, 7,12,26,
31,23,18, 5,21, 9,15,11, 30,17, 8,14,29,13,28,27};
if (x == 0) return 32;
x = (x & -x)*0x04D7651F;
return table[x >> 27];
}
/* Norbert Juffa's code, answer to exercise 1 of Chapter 5 (2nd ed). */
#define SLOW_MUL
int ntz11 (unsigned int n) {
static unsigned char tab[32] =
{ 0, 1, 2, 24, 3, 19, 6, 25,
22, 4, 20, 10, 16, 7, 12, 26,
31, 23, 18, 5, 21, 9, 15, 11,
30, 17, 8, 14, 29, 13, 28, 27
};
unsigned int k;
n = n & (-n); /* isolate lsb */
printf("n = %d\n", n);
#if defined(SLOW_MUL)
k = (n << 11) - n;
k = (k << 2) + k;
k = (k << 8) + n;
k = (k << 5) - k;
#else
k = n * 0x4d7651f;
#endif
return n ? tab[k>>27] : 32;
}
int errors;
void error(int x, int y) {
errors = errors + 1;
printf("Error for x = %08x, got %d\n", x, y);
}
/* ------------------------------ main ------------------------------ */
int main() {
int i, m, n;
static unsigned test[] = {0,32, 1,0, 2,1, 3,0, 4,2, 5,0, 6,1, 7,0,
8,3, 9,0, 16,4, 32,5, 64,6, 128,7, 255,0, 256,8, 512,9, 1024,10,
2048,11, 4096,12, 8192,13, 16384,14, 32768,15, 65536,16,
0x20000,17, 0x40000,18, 0x80000,19, 0x100000,20, 0x200000,21,
0x400000,22, 0x800000,23, 0x1000000,24, 0x2000000,25,
0x4000000,26, 0x8000000,27, 0x10000000,28, 0x20000000,29,
0x40000000,30, 0x80000000,31, 0xFFFFFFF0,4, 0x3000FF00,8,
0xC0000000,30, 0x60000000,29, 0x00011000, 12};
n = sizeof(test)/4;
printf("ntz1:\n");
for (i = 0; i < n; i += 2) {
if (ntz1(test[i]) != test[i+1]) error(test[i], ntz1(test[i]));}
printf("ntz2:\n");
for (i = 0; i < n; i += 2) {
if (ntz2(test[i]) != test[i+1]) error(test[i], ntz2(test[i]));}
printf("ntz3:\n");
for (i = 0; i < n; i += 2) {
if (ntz3(test[i]) != test[i+1]) error(test[i], ntz3(test[i]));}
printf("ntz4:\n");
for (i = 0; i < n; i += 2) {
if (ntz4(test[i]) != test[i+1]) error(test[i], ntz4(test[i]));}
printf("ntz4a:\n");
for (i = 0; i < n; i += 2) {
if (ntz4a(test[i]) != test[i+1]) error(test[i], ntz4a(test[i]));}
printf("ntz5:\n");
for (i = 0; i < n; i += 2) {
m = test[i+1]; if (m > 8) m = 8;
if (ntz5(test[i]) != m) error(test[i], ntz5(test[i]));}
printf("ntz6:\n");
for (i = 0; i < n; i += 2) {
if (ntz6(test[i]) != test[i+1]) error(test[i], ntz6(test[i]));}
printf("ntz6a:\n");
for (i = 0; i < n; i += 2) {
if (ntz6a(test[i]) != test[i+1]) error(test[i], ntz6a(test[i]));}
printf("ntz7:\n");
for (i = 0; i < n; i += 2) {
if (ntz7(test[i]) != test[i+1]) error(test[i], ntz7(test[i]));}
printf("ntz8:\n");
for (i = 0; i < n; i += 2) {
if (ntz8(test[i]) != test[i+1]) error(test[i], ntz8(test[i]));}
printf("ntz8a:\n");
for (i = 0; i < n; i += 2) {
if (ntz8a(test[i]) != test[i+1]) error(test[i], ntz8a(test[i]));}
printf("ntz9:\n");
for (i = 0; i < n; i += 2) {
if (ntz9(test[i]) != test[i+1]) error(test[i], ntz9(test[i]));}
printf("ntz10:\n");
for (i = 0; i < n; i += 2) {
if (ntz10(test[i]) != test[i+1]) error(test[i], ntz10(test[i]));}
printf("ntz11:\n");
for (i = 0; i < n; i += 2) {
if (ntz11(test[i]) != test[i+1]) error(test[i], ntz11(test[i]));}
if (errors == 0)
printf("Passed all %d cases.\n", sizeof(test)/8);
}