-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathreverse.c.txt
601 lines (512 loc) · 20.8 KB
/
reverse.c.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
// Programs for reversing bits.
// Max line length is 57, to fit in hacker.book.
#include <stdio.h>
#include <stdlib.h> // To define "exit", req'd by XLC.
// Rotate shift left.
unsigned shlr(unsigned x, int n) {
return (x << n) | (x >> (32 - n));
}
// Reversing bits in a word, basic interchange scheme.
unsigned rev1(unsigned x) {
x = (x & 0x55555555) << 1 | (x & 0xAAAAAAAA) >> 1;
x = (x & 0x33333333) << 2 | (x & 0xCCCCCCCC) >> 2;
x = (x & 0x0F0F0F0F) << 4 | (x & 0xF0F0F0F0) >> 4;
x = (x & 0x00FF00FF) << 8 | (x & 0xFF00FF00) >> 8;
x = (x & 0x0000FFFF) << 16 | (x & 0xFFFF0000) >> 16;
return x;
}
// Reversing bits in a word, refined basic scheme.
// 24 operations + 6 for loading constants = 30 insns.
// This is Figure 7-1 in HD.
unsigned rev2(unsigned x) {
x = (x & 0x55555555) << 1 | (x >> 1) & 0x55555555;
x = (x & 0x33333333) << 2 | (x >> 2) & 0x33333333;
x = (x & 0x0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F;
x = (x << 24) | ((x & 0xFF00) << 8) |
((x >> 8) & 0xFF00) | (x >> 24);
return x;
}
// Reversing the rightmost 6 bits in a word.
unsigned rev3(unsigned x) {
return (x*0x00082082 & 0x01122408) % 255;
}
// Reversing the rightmost 6 bits in a word.
unsigned rev4(unsigned x) {
unsigned t;
t = x*0x00082082 & 0x01122408;
return (t*0x01010101) >> 24;
}
// Reversing the rightmost 8 bits in a word.
// Problem: can't change divide by 1023 to a 32x32 ==> 32 multiply.
unsigned rev5(unsigned x) {
unsigned s, t;
s = x*0x02020202 & 0x84422010;
t = x*8 & 0x00000420;
return (s + t) % 1023;
}
// Reversing the rightmost 8 bits in a word.
unsigned rev6(unsigned x) {
unsigned s, t;
s = x*0x00020202 & 0x00422010;
t = x*0x00008008 & 0x00210420;
return (s + t) % 1023;
}
// Reversing the rightmost 8 bits in a word.
unsigned rev7(unsigned x) {
unsigned s, t;
s = x*0x00020202 & 0x01044010;
t = x*0x00080808 & 0x02088020;
return (s + t) % 4095;
}
// Reversing the rightmost 8 bits in a word.
// Same as above but made more efficient, 15 Brisc ops.
unsigned rev8(unsigned x) {
unsigned u, m, s, t;
u = x*0x00020202;
m = 0x01044010;
s = u & m;
t = (u << 2) & (m << 1);
return 0x01001001*(s + t) >> 24;
// return (s + t) % 4095; // Alternative, equivalent to above.
}
// Reversing the rightmost 9 bits in a word.
// Can't change the remainder to a multiply.
unsigned rev9(unsigned x) {
unsigned s, t;
s = x*0x01001001 & 0x84108010;
// t = x*0x00040040 & 0x00841080;
t = ((x*0x01001001) >> 6) & (0x84108010 >> 8); // Alternative,
// better after commoning.
return (s + t) % 1023;
}
// Reversing the rightmost 9 bits in a word.
// Can't change the remainder to a multiply.
// Probably rev9 is a little better --- smaller numbers.
unsigned rev10(unsigned x) {
unsigned s, t;
s = x*0x40100401 & 0x84108010;
t = x*0x04010040 & 0x21042000;
return (s + t) % 4095;
}
// Same as above but made more efficient.
unsigned rev10a(unsigned x) {
unsigned u, m, s, t;
u = x*0x40100401;
m = 0x84108010;
s = u & m;
t = (u << 6) & (m >> 2);
return (s + t) % 4095;
}
/* The following routines are new (not in HD first edition).
The routine below reverses the rightmost 16 bits of a word, assuming
the leftmost 16 bits are clear at the start. It is an old algorithm by
Christopher Strachey (Bitwise Operations. Communications of the ACM 4, 3
(March 1961), 146).
The way it works is to build up the reversed halfword in the left
half of the register x. It does this by noting how many positions each
bit must move to the left, to be placed in its proper position in the
left half of the word. Then, each bit that must move 16 or more
positions is moved left 16. Then each bit that must move 8 or more
positions (after the first move of 16 positions) is moved left 8. Then
4, and 2. Lastly a shift left of 1 is required to put the result in the
left half of the register (as in Strachey), or a shift right of 15 is
done to put the result in the rightmost 16 bits (as is done here).
Here is how far to the left the bits in postions 0 to 15 must move:
31 30 ... 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
0000 0000 0000 0000 abcd efgh ijkl mnop Given
0000 0000 ijkl mnop abcd efgh ijkl mnop After shl 16
0000 mnop ijkl efgh abcd mnop ijkl mnop After shl 8
00op mnkl ijgh efcd abop mnkl ijop mnop After shl 4
0pon mlkj ihgf edcb apon mlkj ipon mpop After shl 2
0000 0000 0000 0000 ponm lkji hgfe dcba After shr 15
16 operations.
*/
unsigned rev11(unsigned x) {
x = x | ((x & 0x000000FF) << 16);
x = (x & 0xF0F0F0F0) | ((x & 0x0F0F0F0F) << 8);
x = (x & 0xCCCCCCCC) | ((x & 0x33333333) << 4);
x = (x & 0xAAAAAAAA) | ((x & 0x55555555) << 2);
x = x >> 15;
return x;
}
/* By using different (and more irregular) masks, the code for
Strachey's method can be made to preserve the right half of the register
and to put the reversed halfword in the left half. It can be made to use
fewer masks at no loss of efficiency in ways that will be discussed with
rev12 below.
Here is the more efficient version (still 16 operations): */
unsigned rev11a(unsigned x) {
unsigned t;
x = x | ((x & 0x000000FF) << 16);
t = x & 0x0F0F0F0F; x = (t << 8) | (t ^ x);
t = x & 0x33333333; x = (t << 4) | (t ^ x);
t = x & 0x55555555; x = (t << 2) | (t ^ x);
x = x >> 15;
return x;
}
/* Reversing bits in a word using rotate shifts and the "and not"
instruction. 17 operations (25 full RISC instructions).
15 cycles on a machine with sufficient parallelism.
Don't know why I didn't put this in HD. Maybe next time. */
unsigned rev12(unsigned x) {
x = shlr(x & 0x00FF00FF, 16) | x & ~0x00FF00FF;
x = shlr(x & 0x0F0F0F0F, 8) | x & ~0x0F0F0F0F;
x = shlr(x & 0x33333333, 4) | x & ~0x33333333;
x = shlr(x & 0x55555555, 2) | x & ~0x55555555;
x = shlr(x, 1);
return x;
}
/* The "and not" operation can be avoided by using the
3-instruction method of doing the MUX operation, i.e.,
(x & m) | (y & ~m) = ((x ^ y) & m) ^ y.
Rewriting the first line above as
x = shlr(x, 16) & 0x00FF00FF | x & ~0x00FF00FF;
it can be changed to
x = ((shlr(x, 16) ^ x) & 0x00FF00FF) ^ x;
This gives the function below (17 operations, 25 full RISC
instructions). */
unsigned rev12a(unsigned x) {
x = ((shlr(x, 16) ^ x) & 0x00FF00FF) ^ x;
x = ((shlr(x, 8) ^ x) & 0x0F0F0F0F) ^ x;
x = ((shlr(x, 4) ^ x) & 0x33333333) ^ x;
x = ((shlr(x, 2) ^ x) & 0x55555555) ^ x;
x = shlr(x, 1);
return x;
}
/* The "and not" can also be avoided by using the identity
x & ~m = (x & m) ^ x
to change
x = shlr(x & 0x00FF00FF, 16) | x & ~0x00FF00FF;
to the first executable line in the function below. By Vesa Karvonen,
found in The Assembly Gems Page,
http://www.df.lth.se/~john_e/fr_gems.html.
17 operations (25 full RISC instructions). This is slightly
preferable to rev12a for many machines because it has a little
instruction-level parallelism in each of the four steps, whereas rev12a
has none. 15 cycles on a machine with sufficient parallelism. */
unsigned rev12b(unsigned x) {
unsigned t;
t = x & 0x00FF00FF; x = shlr(t, 16) | (t ^ x);
t = x & 0x0F0F0F0F; x = shlr(t, 8) | (t ^ x);
t = x & 0x33333333; x = shlr(t, 4) | (t ^ x);
t = x & 0x55555555; x = shlr(t, 2) | (t ^ x);
x = shlr(x, 1);
return x;
}
/* Basic ternary method, applied to a 27-bit word. I.e., this works "in
place" on the 27 bits, and hence would work on a machine with 27-bit
registers. The scheme:
012345678 9abcdefgh ijklmnopq The given 27-bit word
ijklmnopq 9abcdefgh 012345678 First ternary swap
opqlmnijk fghcde9ab 678345012 Second ternary swap
qponmlkji hgfedcba9 876543210 Third ternary swap
This is coded below. It is 21 operations. Counting loading of the 5
masks (the 1FF mask need not be loaded), it is 31 basic RISC
instructions. */
unsigned rev13(unsigned x) {
x = (x & 0x000001FF) << 18 | (x & 0x0003FE00) |
(x >> 18) & 0x000001FF;
x = (x & 0x001C0E07) << 6 | (x & 0x00E07038) |
(x >> 6) & 0x001C0E07;
x = (x & 0x01249249) << 2 | (x & 0x02492492) |
(x >> 2) & 0x01249249;
return x;
}
/* If operating in a 32-bit register, we could have used the binary
method (rev2) followed by a right shift of 5. This would be 25
operations, or 31 basic RISC instructions. */
/* The next routine, by Donald E. Knuth, reverses a 32-bit word in only
four steps. It uses "ternary" swapping of some fields, and a rotate
shift for one step (nice, especially if you have that instruction,
because it doesn't need masks). It operates as follows (c.f. a note
from DEK):
01234567 89abcdef ghijklmn opqrstuv (given)
fghijklm nopqrstu v0123456 789abcde (rotate left 15)
pqrstuvm nofghijk labcde56 78901234 (10-swap)
tuvspqrm nojklifg hebcda96 78541230 (4-swap)
vutsrqpo mnlkjihg fedcba98 76543210 (2-swap)
If you have the rotate shift, this is 22 operations, or 34 instructions,
counting loading the six distinct masks. Beats rev2 by 2 operations
or 2 instructions. But it doesn't beat rev12a or rev12b (17 ops, 25 insns). */
unsigned rev14(unsigned x) {
x = shlr(x, 15); // Rotate left 15.
// x = (x << 15) | (x >> 17); // Alternative.
x = (x & 0x003F801F) << 10 | (x & 0x01C003E0) |
(x >> 10) & 0x003F801F;
x = (x & 0x0E038421) << 4 | (x & 0x11C439CE) |
(x >> 4) & 0x0E038421;
x = (x & 0x22488842) << 2 | (x & 0x549556B5) |
(x >> 2) & 0x22488842;
return x;
}
/* Next is a variation of rev14 that replaces assignments of the form
x = (x & M1) << s | (x & M2) | (x >> s) & M1;
where M2 is ~(M1 | (M1 << s)), with:
t = (x ^ (x >> s)) & M1; x = (t | (t << s)) ^ x;
which saves one operation (three instructions) on each of the ternary
swap steps. Thus, it takes 19 operations or 25 instructions. */
unsigned rev14a(unsigned x) {
unsigned t;
x = shlr(x, 15); // Rotate left 15.
// x = (x << 15) | (x >> 17); // Alternative.
t = (x ^ (x>>10)) & 0x003F801F; x = (t | (t<<10)) ^ x;
t = (x ^ (x>> 4)) & 0x0E038421; x = (t | (t<< 4)) ^ x;
t = (x ^ (x>> 2)) & 0x22488842; x = (t | (t<< 2)) ^ x;
return x;
}
/* How would you extend Knuth's algorithm to rotating a 64-bit quantity
on a 64-bit machine?
A simple method is to first swap the two halves of the 64-bit word,
which takes one instruction if you have the rotate shift. Then, rotate
left 15 positions the two halves of the 64-bit word. This takes five
operations:
x = (x & 0x0001FFFF0001FFFF) << 15 | (x & 0xFFFE0000FFFE0000) >> 17;
Then do the 10-swap, 4-swap, and 2-swap as in Knuth's code but with each
mask m doubled to the form mm. Thus this method adds five operations to
Knuth's code, making it 24 operations for the "exclusive or" version
(rev14a), if you have the rotate shift, or "swap register halves."
Another way is to develop code similar to Knuth's that first rotates
left 31 positions, and then does a 20-swap, an 8-swap, a 4-swap, and a
2-swap. This adds one stage of swapping, which takes seven operations as
in rev14, or 6 operations as in rev14a. Thus the simple method seems to
be best, in terms of operation count (but not if parallelism in rev14
can be used to advantage).
First, the simple method. 24 operations if the swap (rotate 32)
counts as 1. */
unsigned long long rev15(unsigned long long x) {
unsigned long long t;
x = (x << 32) | (x >> 32); // Swap register halves.
x = (x & 0x0001FFFF0001FFFFLL) << 15 | // Rotate left
(x & 0xFFFE0000FFFE0000LL) >> 17; // 15.
t = (x ^ (x >> 10)) & 0x003F801F003F801FLL;
x = (t | (t << 10)) ^ x;
t = (x ^ (x >> 4)) & 0x0E0384210E038421LL;
x = (t | (t << 4)) ^ x;
t = (x ^ (x >> 2)) & 0x2248884222488842LL;
x = (t | (t << 2)) ^ x;
return x;
}
/* Here's the other way. 25 operations if the rotate shift counts as 1. */
unsigned long long rev15a(unsigned long long x) {
unsigned long long t;
x = (x << 31) | (x >> 33); // I.e., shlr(x, 31).
t = (x ^ (x >> 20)) & 0x00000FFF800007FFLL;
x = (t |(t << 20)) ^ x;
t = (x ^ (x >> 8)) & 0x00F8000F80700807LL;
x = (t |(t << 8)) ^ x;
t = (x ^ (x >> 4)) & 0x0808708080807008LL;
x = (t |(t << 4)) ^ x;
t = (x ^ (x >> 2)) & 0x1111111111111111LL;
x = (t |(t << 2)) ^ x;
return x;
}
/* A table lookup method. 13 ops + 4 loads if the loop is strung out. */
unsigned rev16(unsigned x) {
static unsigned char table[256] = {
0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF};
int i;
unsigned r;
r = 0;
for (i = 3; i >= 0; i--) {
r = (r << 8) + table[x & 0xFF];
x = x >> 8;
}
return r;
}
/* ----------------------------- errors ----------------------------- */
int errors, errords;
void error(int x, int y) {
errors = errors + 1;
printf("Error for x = %08x, got %08x\n", x, y);
}
void errord(long long x, long long y) {
errords = errords + 1;
printf("Error for x = %016llx, got %016llx\n", x, y);
}
/* ------------------------------ main ------------------------------ */
int main() {
int i, n, m;
unsigned r;
unsigned long long rd;
static unsigned test[] = {0,0, 1,0x80000000, 2,0x40000000,
3,0xC0000000, 4,0x20000000, 5,0xA0000000, 6,0x60000000,
7,0xE0000000, 8,0x10000000, 9,0x90000000, 10,0x50000000,
11,0xD0000000, 12,0x30000000, 13,0xB0000000, 14,0x70000000,
15,0xF0000000, 16,0x08000000, 59,0xDC000000, 60,0x3C000000,
61,0xBC000000, 62,0x7C000000, 63,0xFC000000, 64,0x02000000,
125,0xBE000000, 126,0x7E000000, 127,0xFE000000, 128,0x01000000,
253,0xBF000000, 254,0x7F000000, 255,0xFF000000, 256,0x00800000,
257,0x80800000, 509,0xBF800000, 510,0x7F800000, 511,0xFF800000,
512,0x00400000, 0x55555555,0xAAAAAAAA, 0x01234567,0xE6A2C480,
0xFFFFFFF1,0x8FFFFFFF, 0xFFFFFFFF,0xFFFFFFFF};
static unsigned long long testd[] = {0,0, 1,0x8000000000000000LL,
2,0x4000000000000000LL, 4,0x2000000000000000LL,
8,0x1000000000000000LL, 16,0x0800000000000000LL,
0x1111111111111111LL,0x8888888888888888LL,
0x2222222222222222LL,0x4444444444444444LL,
0X3333333333333333LL,0XCCCCCCCCCCCCCCCCLL,
0X5555555555555555LL,0XAAAAAAAAAAAAAAAALL,
0X6666666666666666LL,0X6666666666666666LL,
0X7777777777777777LL,0XEEEEEEEEEEEEEEEELL,
0X9999999999999999LL,0X9999999999999999LL,
0XBBBBBBBBBBBBBBBBLL,0XDDDDDDDDDDDDDDDDLL,
0X0123456789ABCDEFLL,0XF7B3D591E6A2C480LL,
0XFFFFFFFFFFFFFFFFLL,0XFFFFFFFFFFFFFFFFLL};
n = sizeof(test)/4;
printf("rev1:\n");
for (i = 0; i < n; i += 2) {
r = rev1(test[i]);
if (r != test[i+1]) error(test[i], r);
r = rev1(test[i+1]);
if (r != test[i]) error(test[i+1], r);}
printf("rev2:\n");
for (i = 0; i < n; i += 2) {
r = rev2(test[i]);
if (r != test[i+1]) error(test[i], r);
r = rev2(test[i+1]);
if (r != test[i]) error(test[i+1], r);}
printf("rev3:\n");
for (i = 0; i < n; i += 2) {
r = rev3(test[i] & 0x0000003F);
if (r != test[i+1] >> 26) error(test[i], r);
r = rev3(test[i+1] & 0x0000003F);
if (r != test[i] >> 26) error(test[i+1], r);}
printf("rev4:\n");
for (i = 0; i < n; i += 2) {
r = rev4(test[i] & 0x0000003F);
if (r != test[i+1] >> 26) error(test[i], r);
r = rev4(test[i+1] & 0x0000003F);
if (r != test[i] >> 26) error(test[i+1], r);}
printf("rev5:\n");
for (i = 0; i < n; i += 2) {
r = rev5(test[i] & 0x000000FF);
if (r != test[i+1] >> 24) error(test[i], r);
r = rev5(test[i+1] & 0x000000FF);
if (r != test[i] >> 24) error(test[i+1], r);}
printf("rev6:\n");
for (i = 0; i < n; i += 2) {
r = rev6(test[i] & 0x000000FF);
if (r != test[i+1] >> 24) error(test[i], r);
r = rev6(test[i+1] & 0x000000FF);
if (r != test[i] >> 24) error(test[i+1], r);}
printf("rev7:\n");
for (i = 0; i < n; i += 2) {
r = rev7(test[i] & 0x000000FF);
if (r != test[i+1] >> 24) error(test[i], r);
r = rev7(test[i+1] & 0x000000FF);
if (r != test[i] >> 24) error(test[i+1], r);}
printf("rev8:\n");
for (i = 0; i < n; i += 2) {
r = rev8(test[i] & 0x000000FF);
if (r != test[i+1] >> 24) error(test[i], r);
r = rev8(test[i+1] & 0x000000FF);
if (r != test[i] >> 24) error(test[i+1], r);}
printf("rev9:\n");
for (i = 0; i < n; i += 2) {
r = rev9(test[i] & 0x000001FF);
if (r != test[i+1] >> 23) error(test[i], r);
r = rev9(test[i+1] & 0x000001FF);
if (r != test[i] >> 23) error(test[i+1], r);}
printf("rev10:\n");
for (i = 0; i < n; i += 2) {
r = rev10(test[i] & 0x000001FF);
if (r != test[i+1] >> 23) error(test[i], r);
r = rev10(test[i+1] & 0x000001FF);
if (r != test[i] >> 23) error(test[i+1], r);}
printf("rev10a:\n");
for (i = 0; i < n; i += 2) {
r = rev10a(test[i] & 0x000001FF);
if (r != test[i+1] >> 23) error(test[i], r);
r = rev10a(test[i+1] & 0x000001FF);
if (r != test[i] >> 23) error(test[i+1], r);}
printf("rev11:\n");
for (i = 0; i < n; i += 2) {
r = rev11(test[i] & 0x0000FFFF);
if (r != test[i+1] >> 16) error(test[i], r);
r = rev11(test[i+1] & 0x0000FFFF);
if (r != test[i] >> 16) error(test[i+1], r);}
printf("rev11a:\n");
for (i = 0; i < n; i += 2) {
r = rev11a(test[i] & 0x0000FFFF);
if (r != test[i+1] >> 16) error(test[i], r);
r = rev11a(test[i+1] & 0x0000FFFF);
if (r != test[i] >> 16) error(test[i+1], r);}
printf("rev12:\n");
for (i = 0; i < n; i += 2) {
r = rev12(test[i]);
if (r != test[i+1]) error(test[i], r);
r = rev12(test[i+1]);
if (r != test[i]) error(test[i+1], r);}
printf("rev12a:\n");
for (i = 0; i < n; i += 2) {
r = rev12a(test[i]);
if (r != test[i+1]) error(test[i], r);
r = rev12a(test[i+1]);
if (r != test[i]) error(test[i+1], r);}
printf("rev12b:\n");
for (i = 0; i < n; i += 2) {
r = rev12b(test[i]);
if (r != test[i+1]) error(test[i], r);
r = rev12b(test[i+1]);
if (r != test[i]) error(test[i+1], r);}
printf("rev13:\n");
for (i = 0; i < n; i += 2) {
r = rev13(test[i]);
if (r != test[i+1] >> 5) error(test[i], r);
r = rev13(test[i+1]);
if (r != test[i] >> 5) error(test[i+1], r);}
printf("rev14:\n");
for (i = 0; i < n; i += 2) {
r = rev14(test[i]);
if (r != test[i+1]) error(test[i], r);
r = rev14(test[i+1]);
if (r != test[i]) error(test[i+1], r);}
printf("rev14a:\n");
for (i = 0; i < n; i += 2) {
r = rev14a(test[i]);
if (r != test[i+1]) error(test[i], r);
r = rev14a(test[i+1]);
if (r != test[i]) error(test[i+1], r);}
m = sizeof(testd)/8;
printf("rev15:\n");
for (i = 0; i < m; i += 2) {
rd = rev15(testd[i]);
if (rd != testd[i+1]) errord(testd[i], rd);
rd = rev15(testd[i+1]);
if (rd != testd[i]) errord(testd[i+1], rd);
}
printf("rev15a:\n");
for (i = 0; i < m; i += 2) {
rd = rev15a(testd[i]);
if (rd != testd[i+1]) errord(testd[i], rd);
rd = rev15a(testd[i+1]);
if (rd != testd[i]) errord(testd[i+1], rd);
}
printf("rev16:\n");
for (i = 0; i < n; i += 2) {
r = rev16(test[i]);
if (r != test[i+1]) error(test[i], r);
r = rev16(test[i+1]);
if (r != test[i]) error(test[i+1], r);}
if (errors == 0)
printf("All functions passed all %d 32-bit cases.\n", sizeof(test)/8);
if (errords == 0)
printf("All functions passed all %d 64-bit cases.\n", sizeof(testd)/16);
return errors + errords;
}