-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathngram_score.py
27 lines (24 loc) · 945 Bytes
/
ngram_score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
from math import log10
class ngram_score(object):
def __init__(self, ngramfile, sep=' '):
''' load a file containing ngrams and counts, calculate log probabilities '''
self.ngrams = {}
for line in file(ngramfile):
key, count = line.split(sep)
self.ngrams[key] = int(count)
self.L = len(key)
self.N = sum(self.ngrams.itervalues())
# calculate log probabilities
for key in self.ngrams.keys():
self.ngrams[key] = log10(float(self.ngrams[key]) / self.N)
self.floor = log10(0.01 / self.N)
def score(self, text):
''' compute the score of text '''
score = 0
ngrams = self.ngrams.__getitem__
for i in xrange(len(text) - self.L + 1):
if text[i:i + self.L] in self.ngrams:
score += ngrams(text[i:i + self.L])
else:
score += self.floor
return score