forked from ibaiGorordo/ONNX-YOLOv8-Object-Detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvideo_object_detection.py
43 lines (32 loc) · 1.16 KB
/
video_object_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import cv2
from cap_from_youtube import cap_from_youtube
from yolov8 import YOLOv8
# # Initialize video
# cap = cv2.VideoCapture("input.mp4")
videoUrl = 'https://youtu.be/Snyg0RqpVxY'
cap = cap_from_youtube(videoUrl, resolution='720p')
start_time = 5 # skip first {start_time} seconds
cap.set(cv2.CAP_PROP_POS_FRAMES, start_time * cap.get(cv2.CAP_PROP_FPS))
# out = cv2.VideoWriter('output.avi', cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), cap.get(cv2.CAP_PROP_FPS), (3840, 2160))
# Initialize YOLOv7 model
model_path = "models/yolov8m.onnx"
yolov8_detector = YOLOv8(model_path, conf_thres=0.5, iou_thres=0.5)
cv2.namedWindow("Detected Objects", cv2.WINDOW_NORMAL)
while cap.isOpened():
# Press key q to stop
if cv2.waitKey(1) == ord('q'):
break
try:
# Read frame from the video
ret, frame = cap.read()
if not ret:
break
except Exception as e:
print(e)
continue
# Update object localizer
boxes, scores, class_ids = yolov8_detector(frame)
combined_img = yolov8_detector.draw_detections(frame)
cv2.imshow("Detected Objects", combined_img)
# out.write(combined_img)
# out.release()