-
Notifications
You must be signed in to change notification settings - Fork 2
/
unet.py
108 lines (80 loc) · 3.04 KB
/
unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
""" Parts of the U-Net model """
import torch
import torch.nn as nn
import torch.nn.functional as F
class UNet(nn.Module):
def __init__(self, n_channels=3, N=256):
super(UNet, self).__init__()
self.down1 = DoubleConv(n_channels, N // 4)
self.down2 = DoubleConv(N // 4, N // 2)
self.down3 = DoubleConv(N // 2, N)
self.down4 = DoubleConv(N, 2 * N)
self.inter = nn.Sequential(
nn.Conv2d(2 * N, 4 * N, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU(inplace=True),
nn.Conv2d(4 * N, 4 * N, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU(inplace=True),
)
self.up1 = Up(4 * N, 2 * N)
self.up2 = Up(2 * N, N)
self.up3 = Up(N, N // 2)
self.up4 = Up(N // 2, N // 4)
self.out = nn.Conv2d(N // 4, n_channels, kernel_size=3, stride=1, padding=1)
self.maxpool = nn.MaxPool2d(2)
def forward(self, x):
identity = x
x1 = self.down1(x)
x1_pooled = self.maxpool(x1)
x2 = self.down2(x1_pooled)
x2_pooled = self.maxpool(x2)
x3 = self.down3(x2_pooled)
x3_pooled = self.maxpool(x3)
x4 = self.down4(x3_pooled)
x4_pooled = self.maxpool(x4)
x5 = self.inter(x4_pooled)
x = self.up1(x5, x4)
x = self.up2(x, x3)
x = self.up3(x, x2)
x = self.up4(x, x1)
x = self.out(x)
return x + identity
class DoubleConv(nn.Module):
"""(convolution => [BN] => ReLU) * 2"""
def __init__(self, in_channels, out_channels, mid_channels=None):
super().__init__()
if not mid_channels:
mid_channels = out_channels
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False),
nn.LeakyReLU(inplace=True),
nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),
nn.LeakyReLU(inplace=True)
)
def forward(self, x):
return self.double_conv(x)
class Down(nn.Module):
"""Downscaling with maxpool then double conv"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.maxpool_conv = nn.Sequential(
nn.MaxPool2d(2),
DoubleConv(in_channels, out_channels)
)
def forward(self, x):
return self.maxpool_conv(x)
class Up(nn.Module):
"""Upscaling then double conv"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=3, stride=2, padding=1, output_padding=1)
self.conv = DoubleConv(in_channels, out_channels)
def forward(self, x1, x2):
x1 = self.up(x1)
x = torch.cat([x2, x1], dim=1)
return self.conv(x)
class OutConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(OutConv, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
def forward(self, x):
return self.conv(x)