-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
248 lines (214 loc) · 10.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import argparse
import copy
import sys
import time
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import network.model_rnn1 as model_rnn
from dataset.dataset_utils import *
from save_utils import *
from torch.utils.tensorboard import SummaryWriter
def train(model, criterion, optimizer, scheduler, config, checkpoint, logger):
epoch = config["begin_epoch"]
best_model = copy.deepcopy(model.state_dict())
best_loss = sys.maxsize
best_epoch = epoch - 1
for epoch in range(epoch, config["epochs"]):
print("Begin epoch")
begin_time = time.time()
print("-" * 50)
print("Epoch {}/{}".format(epoch, config["epochs"] - 1))
print("learning rate", scheduler.get_lr())
model.train()
train_losses = []
iteration = 0
for samples in train_data_loader:
optimizer.zero_grad()
h = torch.zeros(len(samples), config["a_dim"]).to(device)
loss = []
for i in range(0, config["iter_len"]):
images, distances = AutoFocusDataLoader.to_images_and_distances(samples, config["feature_type"])
images = torch.stack(images, dim=0)
images = images.to(device)
distances = torch.from_numpy(np.array(distances, dtype=np.float32) * 0.02).to(device)
h, y = model(images, h, i)
loss.append(criterion(y, distances))
_y = np.around(y.detach().cpu().numpy() * 50).astype(np.int64)
AutoFocusDataLoader.move(samples, _y)
loss = sum(loss)
# loss = loss[-1]
_loss = loss.detach().cpu().numpy()
_loss = float(_loss)
train_losses.append(_loss * len(samples))
loss.backward()
optimizer.step()
print(time.strftime("%Y-%m-%d %H:%M:%S"), "Epoch {:03d} Iteration {:04d} loss {:6.4f}".format(epoch, iteration, _loss))
iteration += 1
losses = [np.sum(train_losses) / len(train_dataset), ]
print("Average train loss {}".format(losses[0]))
logger.add_scalar("train/loss", losses[0])
save_file = "checkpoint-epoch{:02d}.pth".format(epoch)
checkpoint.save(save_file, model, optimizer, scheduler, epoch)
scheduler.step()
model.eval()
val_l1_losses = []
del distances
del y
for samples in val_data_loader:
with torch.no_grad():
h = torch.zeros(len(samples), config["a_dim"]).to(device)
for i in range(0, config["iter_len"]):
images, distances = AutoFocusDataLoader.to_images_and_distances(samples, config["feature_type"])
images = torch.stack(images, dim=0).to(device)
distances = np.array(distances, dtype=np.float32)
h, y = model(images, h, i)
_y = np.around(y.detach().cpu().numpy() * 50).astype(np.int64)
if _y[0] == 0:
break
else:
AutoFocusDataLoader.move(samples, _y)
l1_loss = np.abs(_y - distances)
l1_loss = float(l1_loss)
val_l1_losses.append(l1_loss * len(samples))
losses = [np.sum(val_l1_losses) / len(val_dataset), ]
print("Average val l1 loss {}".format(losses[0]))
logger.add_scalar("val/l1_loss", losses[0])
if best_loss > losses[0]:
best_model = copy.deepcopy(model.state_dict())
best_loss = losses[0]
best_epoch = epoch
end_time = time.time()
print("Time of one epoch", (end_time - begin_time))
return best_model, best_epoch
# class BatchCollator(object):
# def __call__(self, batch):
# ms = []
# for group, transformed_images, pos_idxs in batch:
# for pos_idx in pos_idxs:
# m = Microscope(copy.deepcopy(group), pos_idx)
# for pos, image in zip(m.group.positions, transformed_images):
# pos.transformed_image = image
# ms.append(m)
# return ms
class BatchCollator(object):
def __call__(self, batch):
return batch
if __name__ == '__main__':
from config import get_config
config = get_config()
import json
print(json.dumps(config, indent=2))
train_dataset = AutoFocusDataset(config["train_dataset_json_files"], config["dataset_dir"], mode="train")
val_dataset = AutoFocusDataset(config["val_dataset_json_files"], config["dataset_dir"], mode="val")
train_data_loader = DataLoader(train_dataset, batch_size=config["batch_size"], shuffle=False,
num_workers=config["num_workers"],
collate_fn=BatchCollator())
val_data_loader = DataLoader(val_dataset, batch_size=1, shuffle=False, num_workers=config["num_workers"],
collate_fn=lambda batch: batch)
device = torch.device("cuda", config["gpu_devices"] if config["gpu_devices"] else 0)
device_cpu = torch.device("cpu")
device = device if torch.cuda.is_available() else device_cpu
print(device)
log_dir = "{}-{}".format(config["network_type"], config["feature_type"])
log_dir = os.path.join(config["log_dir"], log_dir)
logger = SummaryWriter(log_dir=log_dir)
begin_epoch = 0
model = model_rnn.MyModule(config["a_dim"], config["feature_type"], config["feature_len"])
print("load pretrain model from", config["pretrain_model"])
state_dicts = torch.load(config["pretrain_model"], map_location="cpu")
if state_dicts.get("model_state_dict"):
model.load_state_dict(state_dicts["model_state_dict"], strict=False)
else:
model.load_state_dict(state_dicts, strict=False)
for p in model.cnn.parameters():
p.requires_grad = False
for i in range(config["iter_len"] - 1):
for p in model.heads[i].parameters():
p.requires_grad = False
# if config["iter_len"] > 1 and model.feature_type == "cnn_features":
#
# print("load pretrain model from", config["pretrain_model"])
# state_dicts = torch.load(config["pretrain_model"], map_location="cpu")
# if state_dicts.get("model_state_dict"):
# model.load_state_dict(state_dicts["model_state_dict"], strict=False)
# else:
# model.load_state_dict(state_dicts, strict=False)
if config["iter_len"] == 1:
criterion = nn.L1Loss()
else:
criterion = nn.L1Loss()
model.to(device)
# if config["iter_len"] == 1:
# optimizer = optim.Adam([
# {"params": model.cnn.parameters()},
# {"params": model.heads[0].parameters()},
# # {"params": model.models[0].parameters()},
# ], lr=config["learning_rate"], weight_decay=config["wd"])
# # optimizer = optim.SGD([
# # {"params": model.cnn.parameters()},
# # {"params": model.heads[0].parameters()},
# # # {"params": model.models[0].parameters()},
# # ], lr=config["learning_rate"], momentum=0.9, weight_decay=config["wd"])
# for p in model.cnn.parameters():
# p.requires_grad = True
# for p in model.heads[0].parameters():
# p.requires_grad = True
# # for p in model.models[0].parameters():
# # p.requires_grad = True
# else:
# model.freeze_bn = True
# model.freeze_bn_affine = True
# last_iter = config["iter_len"] - 1
# optimizer = optim.Adam([
# {"params": model.heads[last_iter].parameters()},
# # {"params": model.models[last_iter].parameters()},
# ], lr=config["learning_rate"], weight_decay=config["wd"])
# # optimizer = optim.SGD([
# # {"params": model.heads[last_iter].parameters()},
# # # {"params": model.models[last_iter].parameters()},
# # ], lr=config["learning_rate"], momentum=0.9, weight_decay=config["wd"])
# for p in model.heads[last_iter].parameters():
# p.requires_grad = True
# # for p in model.models[last_iter].parameters():
# # p.requires_grad = True
# # if config["iter_len"] > 1 and model.feature_type == "cnn_features":
# # optimizer = optim.SGD([
# # {"params": model.heads[config["iter_len"] - 1].parameters()},
# # ], lr=config["learning_rate"], momentum=0.9, weight_decay=config["wd"])
# # else:
# # optimizer = optim.SGD(model.parameters(), lr=config["learning_rate"], momentum=0.9, weight_decay=config["wd"])
model.freeze_bn = True
model.freeze_bn_affine = True
train_module = model.heads[config["iter_len"] - 1]
optimizer = optim.Adam(train_module.parameters(), lr=config["learning_rate"], weight_decay=config["wd"])
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=config["lr_milestones"], gamma=0.1)
def save_fn(filepath, model, optimizer, scheduler, epoch):
torch.save({
"epoch": epoch,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"scheduler_state_dict": scheduler.state_dict(),
}, filepath)
print("Save checkpoint in {}".format(filepath))
def load_fn(filepath):
if os.path.exists(filepath):
state_dicts = torch.load(filepath, map_location="cpu")
global begin_epoch
begin_epoch = state_dicts["epoch"] + 1
model.load_state_dict(state_dicts["model_state_dict"])
optimizer.load_state_dict(state_dicts["optimizer_state_dict"])
scheduler.load_state_dict(state_dicts["scheduler_state_dict"])
model.to(device)
print("load checkpoint from", filepath)
else:
raise FileNotFoundError(filepath)
cpkt = CheckPoint(log_dir, save_fn, load_fn, clean=False)
cpkt.try_load_last()
for name, p in model.named_parameters():
print(p.requires_grad, name)
print("Begin")
config["begin_epoch"] = begin_epoch
best_model, best_epoch = train(model, criterion, optimizer, scheduler, config, cpkt, logger)
logger.close()
torch.save(best_model, os.path.join(log_dir, "best_model-epoch{}.pth".format(best_epoch)))