-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathmodel.py
317 lines (273 loc) · 13.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
from six.moves import xrange
import better_exceptions
import tensorflow as tf
import numpy as np
from commons.ops import *
def _mnist_arch(d):
with tf.variable_scope('enc') as enc_param_scope :
enc_spec = [
Conv2d('conv2d_1',1,d//4,data_format='NHWC'),
lambda t,**kwargs : tf.nn.relu(t),
Conv2d('conv2d_2',d//4,d//2,data_format='NHWC'),
lambda t,**kwargs : tf.nn.relu(t),
Conv2d('conv2d_3',d//2,d,data_format='NHWC'),
lambda t,**kwargs : tf.nn.relu(t),
]
with tf.variable_scope('dec') as dec_param_scope :
dec_spec = [
TransposedConv2d('tconv2d_1',d,d//2,data_format='NHWC'),
lambda t,**kwargs : tf.nn.relu(t),
TransposedConv2d('tconv2d_2',d//2,d//4,data_format='NHWC'),
lambda t,**kwargs : tf.nn.relu(t),
TransposedConv2d('tconv2d_3',d//4,1,data_format='NHWC'),
lambda t,**kwargs : tf.nn.sigmoid(t),
]
return enc_spec,enc_param_scope,dec_spec,dec_param_scope
def _cifar10_arch(d):
def _residual(t,conv3,conv1):
return conv1(tf.nn.relu(conv3(tf.nn.relu(t))))+t
from functools import partial
with tf.variable_scope('enc') as enc_param_scope :
enc_spec = [
Conv2d('conv2d_1',3,d,data_format='NHWC'),
lambda t,**kwargs : tf.nn.relu(t),
Conv2d('conv2d_2',d,d,data_format='NHWC'),
lambda t,**kwargs : tf.nn.relu(t),
partial(_residual,
conv3=Conv2d('res_1_3',d,d,3,3,1,1,data_format='NHWC'),
conv1=Conv2d('res_1_1',d,d,1,1,1,1,data_format='NHWC')),
partial(_residual,
conv3=Conv2d('res_2_3',d,d,3,3,1,1,data_format='NHWC'),
conv1=Conv2d('res_2_1',d,d,1,1,1,1,data_format='NHWC')),
]
with tf.variable_scope('dec') as dec_param_scope :
dec_spec = [
partial(_residual,
conv3=Conv2d('res_1_3',d,d,3,3,1,1,data_format='NHWC'),
conv1=Conv2d('res_1_1',d,d,1,1,1,1,data_format='NHWC')),
partial(_residual,
conv3=Conv2d('res_2_3',d,d,3,3,1,1,data_format='NHWC'),
conv1=Conv2d('res_2_1',d,d,1,1,1,1,data_format='NHWC')),
TransposedConv2d('tconv2d_1',d,d,data_format='NHWC'),
lambda t,**kwargs : tf.nn.relu(t),
TransposedConv2d('tconv2d_2',d,3,data_format='NHWC'),
lambda t,**kwargs : tf.nn.sigmoid(t),
]
return enc_spec,enc_param_scope,dec_spec,dec_param_scope
def _imagenet_arch(d,num_residual=4):
def _residual(t,conv3,conv1):
return conv1(tf.nn.relu(conv3(tf.nn.relu(t))))+t
from functools import partial
with tf.variable_scope('enc') as enc_param_scope :
enc_spec = [
Conv2d('conv2d_1',3,d//2,data_format='NHWC'),
lambda t,**kwargs : tf.nn.relu(t),
Conv2d('conv2d_2',d//2,d,data_format='NHWC'),
lambda t,**kwargs : tf.nn.relu(t),
]
enc_spec += [
partial(_residual,
conv3=Conv2d('res_%d_3'%i,d,d,3,3,1,1,data_format='NHWC'),
conv1=Conv2d('res_%d_1'%i,d,d,1,1,1,1,data_format='NHWC'))
for i in range(num_residual)
]
with tf.variable_scope('dec') as dec_param_scope :
dec_spec = [
partial(_residual,
conv3=Conv2d('res_%d_3'%i,d,d,3,3,1,1,data_format='NHWC'),
conv1=Conv2d('res_%d_1'%i,d,d,1,1,1,1,data_format='NHWC'))
for i in range(num_residual)
]
dec_spec += [
lambda t,**kwargs : tf.nn.relu(t),
TransposedConv2d('tconv2d_1',d,d//2,data_format='NHWC'),
lambda t,**kwargs : tf.nn.relu(t),
TransposedConv2d('tconv2d_2',d//2,3,data_format='NHWC'),
lambda t,**kwargs : tf.nn.sigmoid(t),
]
return enc_spec,enc_param_scope,dec_spec,dec_param_scope
class VQVAE():
def __init__(self,lr,global_step,beta,
x,K,D,
arch_fn,
param_scope,is_training=False):
with tf.variable_scope(param_scope):
enc_spec,enc_param_scope,dec_spec,dec_param_scope = arch_fn(D)
with tf.variable_scope('embed') :
embeds = tf.get_variable('embed', [K,D],
initializer=tf.truncated_normal_initializer(stddev=0.02))
self.embeds = embeds
with tf.variable_scope('forward') as forward_scope:
# Encoder Pass
_t = x
for block in enc_spec :
_t = block(_t)
z_e = _t
# Middle Area (Compression or Discretize)
_t = tf.expand_dims(z_e, axis=-2)
_e = embeds
_t = tf.norm(_t-_e,axis=-1)
k = tf.argmin(_t,axis=-1) # -> [latent_h,latent_w]
z_q = tf.gather(embeds,k)
self.z_e = z_e # -> [batch,latent_h,latent_w,D]
self.k = k
self.z_q = z_q # -> [batch,latent_h,latent_w,D]
# Decoder Pass
_t = z_q
for block in dec_spec:
_t = block(_t)
self.p_x_z = _t
# Losses
self.recon = tf.reduce_mean((self.p_x_z - x)**2,axis=[0,1,2,3])
self.vq = tf.reduce_mean(
tf.norm(tf.stop_gradient(self.z_e) - z_q,axis=-1)**2,
axis=[0,1,2])
self.commit = tf.reduce_mean(
tf.norm(self.z_e - tf.stop_gradient(z_q),axis=-1)**2,
axis=[0,1,2])
self.loss = self.recon + self.vq + beta * self.commit
# NLL
# TODO: is it correct impl?
# it seems tf.reduce_prod(tf.shape(self.z_q)[1:2]) should be multipled
# in front of log(1/K) if we assume uniform prior on z.
self.nll = -1.*(tf.reduce_mean(tf.log(self.p_x_z),axis=[1,2,3]) + tf.log(1/tf.cast(K,tf.float32)))/tf.log(2.)
if( is_training ):
with tf.variable_scope('backward'):
# Decoder Grads
decoder_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,dec_param_scope.name)
decoder_grads = list(zip(tf.gradients(self.loss,decoder_vars),decoder_vars))
# Encoder Grads
encoder_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,enc_param_scope.name)
grad_z = tf.gradients(self.recon,z_q)
encoder_grads = [(tf.gradients(z_e,var,grad_z)[0]+beta*tf.gradients(self.commit,var)[0],var)
for var in encoder_vars]
# Embedding Grads
embed_grads = list(zip(tf.gradients(self.vq,embeds),[embeds]))
optimizer = tf.train.AdamOptimizer(lr)
self.train_op= optimizer.apply_gradients(decoder_grads+encoder_grads+embed_grads,global_step=global_step)
else :
# Another decoder pass that we can play with!
size = self.z_e.get_shape()[1]
self.latent = tf.placeholder(tf.int64,[None,size,size])
_t = tf.gather(embeds,self.latent)
for block in dec_spec:
_t = block(_t)
self.gen = _t
save_vars = {('train/'+'/'.join(var.name.split('/')[1:])).split(':')[0] : var for var in
tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,param_scope.name) }
#for name,var in save_vars.items():
# print(name,var)
self.saver = tf.train.Saver(var_list=save_vars,max_to_keep = 3)
def save(self,sess,dir,step=None):
if(step is not None):
self.saver.save(sess,dir+'/model.ckpt',global_step=step)
else :
self.saver.save(sess,dir+'/last.ckpt')
def load(self,sess,model):
self.saver.restore(sess,model)
class PixelCNN(object):
def __init__(self,lr,global_step,grad_clip,
size, embeds, K, D,
num_classes, num_layers, num_maps,
is_training=True):
import sys
sys.path.append('pixelcnn')
from layers import GatedCNN
self.X = tf.placeholder(tf.int32,[None,size,size])
if( num_classes is not None ):
self.h = tf.placeholder(tf.int32,[None,])
onehot_h = tf.one_hot(self.h,num_classes,axis=-1)
else:
onehot_h = None
if( embeds is not None ):
X_processed = tf.gather(tf.stop_gradient(embeds),self.X)
else:
embeds = tf.get_variable('embed', [K,D],
initializer=tf.truncated_normal_initializer(stddev=0.02))
X_processed = tf.gather(embeds,self.X)
v_stack_in, h_stack_in = X_processed, X_processed
for i in range(num_layers):
filter_size = 3 if i > 0 else 7
mask = 'b' if i > 0 else 'a'
residual = True if i > 0 else False
i = str(i)
with tf.variable_scope("v_stack"+i):
v_stack = GatedCNN([filter_size, filter_size, num_maps], v_stack_in, mask=mask, conditional=onehot_h).output()
v_stack_in = v_stack
with tf.variable_scope("v_stack_1"+i):
v_stack_1 = GatedCNN([1, 1, num_maps], v_stack_in, gated=False, mask=mask).output()
with tf.variable_scope("h_stack"+i):
h_stack = GatedCNN([1, filter_size, num_maps], h_stack_in, payload=v_stack_1, mask=mask, conditional=onehot_h).output()
with tf.variable_scope("h_stack_1"+i):
h_stack_1 = GatedCNN([1, 1, num_maps], h_stack, gated=False, mask=mask).output()
if residual:
h_stack_1 += h_stack_in # Residual connection
h_stack_in = h_stack_1
with tf.variable_scope("fc_1"):
fc1 = GatedCNN([1, 1, num_maps], h_stack_in, gated=False, mask='b').output()
with tf.variable_scope("fc_2"):
self.fc2 = GatedCNN([1, 1, K], fc1, gated=False, mask='b', activation=False).output()
self.dist = tf.distributions.Categorical(logits=self.fc2)
self.sampled = self.dist.sample()
self.log_prob = self.dist.log_prob(self.sampled)
loss_per_batch = tf.reduce_sum(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.fc2,
labels=self.X),axis=[1,2])
self.loss = tf.reduce_mean(loss_per_batch,axis=0)
save_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,tf.contrib.framework.get_name_scope())
self.saver = tf.train.Saver(var_list=save_vars,max_to_keep = 3)
if( is_training ):
with tf.variable_scope('backward'):
optimizer = tf.train.AdamOptimizer(lr)
gradients = optimizer.compute_gradients(self.loss,var_list=save_vars)
if( grad_clip is None ):
clipped_gradients = gradients
else :
clipped_gradients = [(tf.clip_by_value(_[0], -grad_clip, grad_clip), _[1]) for _ in gradients]
#clipped_gradients = [(tf.clip_by_average_norm(_[0], grad_clip), _[1]) for _ in gradients]
self.train_op = optimizer.apply_gradients(clipped_gradients,global_step)
#for var in save_vars:
# print(var,var.name)
def sample_from_prior(self,sess,classes,batch_size):
# Generates len(classes)*batch_size Z samples.
size = self.X.get_shape()[1]
feed_dict={
self.X: np.zeros([len(classes)*batch_size,size,size],np.int32)
}
if( classes is not None ):
feed_dict[self.h] = np.repeat(classes,batch_size).astype(np.int32)
log_probs = np.zeros((len(classes)*batch_size,))
for i in xrange(size):
for j in xrange(size):
sampled,log_prob = sess.run([self.sampled,self.log_prob],feed_dict=feed_dict)
feed_dict[self.X][:,i,j]= sampled[:,i,j]
log_probs += log_prob[:,i,j]
return feed_dict[self.X], log_probs
def save(self,sess,dir,step=None):
if(step is not None):
self.saver.save(sess,dir+'/model-pixelcnn.ckpt',global_step=step)
else :
self.saver.save(sess,dir+'/last-pixelcnn.ckpt')
def load(self,sess,model):
self.saver.restore(sess,model)
if __name__ == "__main__":
with tf.variable_scope('params') as params:
pass
x = tf.placeholder(tf.float32,[None,32,32,3])
global_step = tf.Variable(0, trainable=False)
net = VQVAE(0.1,global_step,0.1,x,20,256,_cifar10_arch,params,True)
with tf.variable_scope('pixelcnn'):
latent = tf.placeholder(tf.int32,[None,3,3])
embeds = net.embeds
pixelcnn = PixelCNN(0.1,global_step,1.0,
3,embeds,20,32,
True,10,20)
init_op = tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer())
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
sess.graph.finalize()
sess.run(init_op)
#print(sess.run(net.train_op,feed_dict={x:np.random.random((10,32,32,3))}))
sampled,log_prob = pixelcnn.sample_from_prior(sess,np.arange(10),1)
print(sampled[0], np.exp(log_prob[0]))