There is a small command line utility integrated in this project to measure the performance of our in-memory and our file backend. It is also capable of comparing benchmarking results.
To run the benchmarks, navigate to the project folder in your console and run
clj -M:benchmark CMD [OPTIONS] [FILEPATHS]
The command can either be run
or compare
.
clj -M:benchmark run [OPTIONS] [OUTPUTFILEPATH]+
Options:
Short | Long | Description | Default |
---|---|---|---|
-u | --db-server-url URL | Base URL for datahike server for benchmark output. | |
-n | --db-name DBNAME | Database name for datahike server for benchmark output. | |
-g | --db-token TOKEN | Token for datahike server for benchmark output. | |
-t | --tag TAG | Add tag to measurements; multiple tags possible. | #{} |
-o | --output-format FORMAT | Short form of output format to use. | edn |
-c | --config-name CONFIGNAME | Name of database configuration to use. | (all) |
-d | --db-entity-counts VECTOR | Numbers of entities in database for which benchmarks should be run. | [0 1000] |
-x | --tx-entity-counts VECTOR | Numbers of entities in transaction for which benchmarks should be run. | [0 1000] |
-y | --data-types TYPEVECTOR | Vector of data types to test queries on. | [:int :str] |
-z | --data-found-opts OPTS | Run query for existent or nonexistent values in the database. | :all |
-i | --iterations ITERATIONS | Number of iterations of each measurement. | 10 |
-f | --function FUNCTIONNAME | Name of function to test. | (all) |
-q | --query QUERYNAME | Name of query to test. | (all) |
-h | --help | Show help screen for tool usage. |
- Benchmark connection time for databases with 1000 entities (= 4000 datoms) and file backend with tag feature and output as edn
TIMBRE_LEVEL=':warn' clj -M:benchmark run -f :connection -d '[1000]' -c file -t feature -o edn feature.edn
- Benchmark transaction time for integer datoms and 10 entities (= 40 datoms) per transaction using mem backend and output as csv
TIMBRE_LEVEL=':warn' clj -M:benchmark run -f :transaction -y '[:int]' -x '[10]' -c mem-set -o csv feature.csv
- Benchmark query time for a simple query for all backends, for every configuration run the query 10 times and take the average time
TIMBRE_LEVEL=':warn' clj -M:benchmark run -f :query -q :simple-query -i 10
Options for -c
:
mem-set
for in-memory database with persistent-set indexmem-hht
for in-memory database with hitchhiker-tree indexfile
for database with file store backend and hitchhiker-tree index
Implementations:
(def db-configs
[{:config-name "mem-set"
:config {:store {:backend :mem :id "performance-set"}
:schema-flexibility :write
:keep-history? false
:index :datahike.index/persistent-set}}
{:config-name "mem-hht"
:config {:store {:backend :mem :id "performance-hht"}
:schema-flexibility :write
:keep-history? false
:index :datahike.index/hitchhiker-tree}}
{:config-name "file"
:config {:store {:backend :file :path "/tmp/performance-hht"}
:schema-flexibility :write
:keep-history? false
:index :datahike.index/hitchhiker-tree}}])
Options for -f
:
:connection
: Testingdatahike/connect
. Run can be configured via options-c
,-d
,-i
:transaction
: Testingdatahike/transact
. Run can be configured via options-c
,-d
,-x
,-i
:query
: Testingdatahike/q
. Run can be configured via options-c
,-d
,-y
,-z
,-i
,-q
Used for query functions
Options for -z
:
:int
for datatypelong
:str
for data typeString
Options for -q
:
- Simple query:
:simple-query
- Join queries:
:e-join-query
:e-join-query-first-fixed
:e-join-query-second-fixed
:a-join-query
:v-join-query
- Predicate queries:
:equals-query
:equals-query-1-fixed
:less-than-query
:less-than-query-1-fixed
- Queries using arguments from bindings:
:scalar-arg-query
:scalar-arg-query-with-join
:vector-arg-query
- Aggregate queries:
:stddev-query
:variance-query
:max-query
:median-query
:avg-query
- Cache check queries:
:simple-query-first-run
:simple-query-second-run
If applicable, the queries are run for each different implemented data type, for data in the database and data not in the database.
Implementation:
(defn simple-query [db attr val]
{:query (conj '[:find ?e :where]
(conj '[?e] attr val))
:args [db]})
Implementation:
(defn e-join-query [db attr1 attr2]
{:query (conj '[:find ?e :where]
(conj '[?e] attr1 '?v1)
(conj '[?e] attr2 '?v2))
:args [db]})
(defn a-join-query [db attr]
{:query (conj '[:find ?v1 ?v2 :where]
(conj '[?e1] attr '?v1)
(conj '[?e2] attr '?v2))
:args [db]})
(defn v-join-query [db attr1 attr2]
{:query (conj '[:find ?e1 ?e2 :where]
(conj '[?e1] attr1 '?v)
(conj '[?e2] attr2 '?v))
:args [db]})
(defn e-join-query-first-fixed [db attr1 val1 attr2]
{:query (conj '[:find ?v2 :where]
(conj '[?e] attr1 val1)
(conj '[?e] attr2 '?v2))
:args [db]})
(defn e-join-query-second-fixed [db attr1 attr2 val2]
{:query (conj '[:find ?v1 :where]
(conj '[?e] attr1 '?v1)
(conj '[?e] attr2 val2))
:args [db]})
Implementation:
(defn less-than-query [db attr]
{:query (conj '[:find ?e1 ?e2 :where]
(conj '[?e1] attr '?v1)
(conj '[?e2] attr '?v2)
'[(< ?v1 ?v2)])
:args [db]})
(defn equals-query [db attr]
{:query (conj '[:find ?e1 ?e2 :where]
(conj '[?e1] attr '?v1)
(conj '[?e2] attr '?v2)
'[(= ?v1 ?v2)])
:args [db]})
(defn less-than-query-1-fixed [db attr comp-val]
{:query (conj '[:find ?e :where]
(conj '[?e] attr '?v)
(conj '[]
(sequence (conj '[= ?v] comp-val))))
:args [db]})
(defn equals-query-1-fixed [db attr comp-val]
{:query (conj '[:find ?e :where]
(conj '[?e] attr '?v)
(conj '[]
(sequence (conj '[= ?v] comp-val))))
:args [db]})
Implementation:
(defn scalar-arg-query [db attr val]
{:query (conj '[:find ?e
:in $ ?v
:where]
(conj '[?e] attr '?v))
:args [db val]})
(defn scalar-arg-query-with-join [db attr val]
{:query (conj '[:find ?e1 ?e2 ?v2
:in $ ?v1
:where]
(conj '[?e1] attr '?v1)
(conj '[?e2] attr '?v2))
:args [db val]})
(defn vector-arg-query [db attr vals]
{:query (conj '[:find ?e
:in $ ?v
:where]
(conj '[?e] attr '?v))
:args [db vals]})
Only run for data type :int
.
[{:function :sum-query
:query {:query '[:find (sum ?x)
:in [?x ...]]
:args [(repeatedly (count entities) #(rand-int 100))]}}
{:function :avg-query
:query {:query '[:find (avg ?x)
:in [?x ...]]
:args [(repeatedly (count entities) #(rand-int 100))]}}
{:function :median-query
:query {:query '[:find (median ?x)
:in [?x ...]]
:args [(repeatedly (count entities) #(rand-int 100))]}}
{:function :variance-query
:query {:query '[:find (variance ?x)
:in [?x ...]]
:args [(repeatedly (count entities) #(rand-int 100))]}}
{:function :stddev-query
:query {:query '[:find (stddev ?x)
:in [?x ...]]
:args [(repeatedly (count entities) #(rand-int 100))]}}
{:function :max-query
:query {:query '[:find (max ?x)
:in [?x ...]]
:args [(repeatedly (count entities) #(rand-int 100))]}}]
Simple query with exact same configuration run twice. Identifiers are :simple-query-first-run
for the first time it is run and :simple-query-second-run
for the second run.
Formats:
remote-db
; using an instance of datahike-server to upload the results. The server configuration iscontrolled by options -u -n and -gedn
csv
If an output filename is given the result is saved in a file instead of printed to stdout.
The edn output will look as follows:
[ ;; ...
{:context {:dh-config {:schema-flexibility :write,
:keep-history? false,
:index :datahike.index/persistent-set,
:name "mem-set",
:backend :mem},
:function :vector-arg-query,
:db-entities 2500,
:db-datoms 10000,
:execution {:data-type :int,
:data-in-db? true}},
:time {:mean 0.17954399999999998,
:median 0.172268,
:std 0.02388124449855995,
:count 10,
:observations [0.173015 0.168094 0.174449 0.250349 0.169847 0.168364 0.168926 0.169352 0.172268 0.180776]},
:tag "bind-collection-bounds-opt"}
;; ...
]
Usage:
clj -A:benchmark compare [-p] [FILEPATHS]*
The comparison tool gives the option to compare any number of benchmarking results using
a) textual table format (default) or
b) plots (if command line option -p
has been given).
Please note:
- At the moment the comparison tool can only handle edn files as input, so be aware of that and run the benchmarks with
--output edn
when you are planning to use this tool later. - Use different tags for the benchmarks you want to compare since the comparison tool assumes measurements with the same tag to belong to the same group of measurements.
Example for comparison table:
clj -A:benchmark compare benchmarks1.edn benchmarks2.edn
Example for comparison plots:
clj -A:benchmark compare -p benchmarks1.edn benchmarks2.edn
The plots produced are scatter plots of the results combined with line plots using the median of the values for a measurement point.
If you want to see plots for a single benchmarking result, nothing keeps you from using the comparison tool on a single file.
The comparison tool has proven valuable to our team for comparing different branches of the datahike project to detect performance regressions or improvements.
Workflow:
- Run the benchmarks on the branch you are forking from with the option
--output edn
giving it an expressive tag, e.g. the name of the branch:
git checkout development
clj -A:benchmark run -t development -o edn development.edn
- Run the benchmarks on your feature branch with the option
--output edn
giving it a tag, e.g. the name of your new feature:
git checkout feature
clj -A:benchmark run -t feature -o edn feature.edn
- Run the comparison tool on any branch giving both of the previous output files as input:
clj -A:benchmark compare -p development.edn feature.edn