-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtokenizers.py
189 lines (127 loc) · 5.69 KB
/
tokenizers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import os
import MicroTokenizer
from MicroTokenizer.tokenizer import Tokenizer
def tokenizer_MicroTokenizer_with_HMM(input_file, output_file, delim=" ", corpus=None):
with open(input_file, 'r') as fp, open(output_file, 'w') as output_fd:
output_lines = []
for raw_line in fp:
line = raw_line.strip()
if not line:
# empty line get empty result
result = ""
else:
result = delim.join(MicroTokenizer.cut_by_HMM(line))
result_with_new_line = result + "\n"
output_lines.append(result_with_new_line)
output_fd.writelines(output_lines)
def tokenizer_MicroTokenizer_with_DAG(input_file, output_file, delim=" ", corpus=None):
with open(input_file, 'r') as fp, open(output_file, 'w') as output_fd:
output_lines = []
for raw_line in fp:
line = raw_line.strip()
if not line:
# empty line get empty result
result = ""
else:
result = delim.join(MicroTokenizer.cut_by_DAG(line))
result_with_new_line = result + "\n"
output_lines.append(result_with_new_line)
output_fd.writelines(output_lines)
def tokenizer_MicroTokenizer_with_joint_model(input_file, output_file, delim=" ", corpus=None):
with open(input_file, 'r') as fp, open(output_file, 'w') as output_fd:
output_lines = []
for raw_line in fp:
line = raw_line.strip()
if not line:
# empty line get empty result
result = ""
else:
result = delim.join(MicroTokenizer.cut_by_joint_model(line))
result_with_new_line = result + "\n"
output_lines.append(result_with_new_line)
output_fd.writelines(output_lines)
def tokenizer_MicroTokenizer_with_CRF(input_file, output_file, delim=" ", corpus=None):
with open(input_file, 'r') as fp, open(output_file, 'w') as output_fd:
output_lines = []
for raw_line in fp:
line = raw_line.strip()
if not line:
# empty line get empty result
result = ""
else:
result = delim.join(MicroTokenizer.cut_by_CRF(line))
result_with_new_line = result + "\n"
output_lines.append(result_with_new_line)
output_fd.writelines(output_lines)
def tokenizer_MicroTokenizer_with_custom_joint_model(input_file, output_file, delim=" ", corpus=None):
output_dir = os.path.join("MicroTokenizer_model", corpus)
tokenizer = Tokenizer(output_dir)
with open(input_file, 'r') as fp, open(output_file, 'w') as output_fd:
output_lines = []
for raw_line in fp:
line = raw_line.strip()
if not line:
# empty line get empty result
result = ""
else:
result = delim.join(tokenizer.cut_by_joint_model(line))
result_with_new_line = result + "\n"
output_lines.append(result_with_new_line)
output_fd.writelines(output_lines)
def tokenizer_MicroTokenizer_with_custom_CRF_model(input_file, output_file, delim=" ", corpus=None):
output_dir = os.path.join("MicroTokenizer_model", corpus)
tokenizer = Tokenizer(output_dir)
with open(input_file, 'r') as fp, open(output_file, 'w') as output_fd:
output_lines = []
for raw_line in fp:
line = raw_line.strip()
if not line:
# empty line get empty result
result = ""
else:
result = delim.join(tokenizer.cut_by_CRF(line))
result_with_new_line = result + "\n"
output_lines.append(result_with_new_line)
output_fd.writelines(output_lines)
def tokenizer_MicroTokenizer_with_max_match_forward(input_file, output_file, delim=" ", corpus=None):
tokenizer = Tokenizer()
with open(input_file, 'r') as fp, open(output_file, 'w') as output_fd:
output_lines = []
for raw_line in fp:
line = raw_line.strip()
if not line:
# empty line get empty result
result = ""
else:
result = delim.join(tokenizer.cut_by_max_match_forward(line))
result_with_new_line = result + "\n"
output_lines.append(result_with_new_line)
output_fd.writelines(output_lines)
def tokenizer_MicroTokenizer_with_max_match_backward(input_file, output_file, delim=" ", corpus=None):
tokenizer = Tokenizer()
with open(input_file, 'r') as fp, open(output_file, 'w') as output_fd:
output_lines = []
for raw_line in fp:
line = raw_line.strip()
if not line:
# empty line get empty result
result = ""
else:
result = delim.join(tokenizer.cut_by_max_match_backward(line))
result_with_new_line = result + "\n"
output_lines.append(result_with_new_line)
output_fd.writelines(output_lines)
def tokenizer_MicroTokenizer_with_max_match_bidirectional(input_file, output_file, delim=" ", corpus=None):
tokenizer = Tokenizer()
with open(input_file, 'r') as fp, open(output_file, 'w') as output_fd:
output_lines = []
for raw_line in fp:
line = raw_line.strip()
if not line:
# empty line get empty result
result = ""
else:
result = delim.join(tokenizer.cut_by_max_match_bidirectional(line))
result_with_new_line = result + "\n"
output_lines.append(result_with_new_line)
output_fd.writelines(output_lines)