-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmain.cpp
326 lines (300 loc) · 11 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
#include <fstream>
#include <sstream>
#include <iostream>
#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
using namespace cv;
using namespace dnn;
using namespace std;
struct Net_config
{
float person_conf_thres;
float person_iou_thres;
float kp_conf_thres;
float kp_iou_thres;
float conf_thres_kp_person;
int overwrite_tol;
bool use_kp_dets;
};
int endswith(string s, string sub) {
return s.rfind(sub) == (s.length() - sub.length()) ? 1 : 0;
}
int kp_face[5] = { 0, 1, 2, 3, 4 };
int segments[12][2] = { {5, 6}, {5, 11}, {11, 12}, {12, 6}, {5, 7}, {7, 9}, {6, 8}, {8, 10}, {11, 13}, {13, 15}, {12, 14}, {14, 16} };
int crowd_segments[14][2] = { {0, 13}, {1, 13}, {0, 2}, {2, 4}, {1, 3}, {3, 5}, {0, 6}, {6, 7}, {7, 1}, {6, 8}, {8, 10}, {7, 9}, {9, 11}, {12, 13} };
class YOLO
{
public:
YOLO(Net_config config, string modelpath);
void detect(Mat& frame);
private:
const int inpWidth = 1280;
const int inpHeight = 1280;
const int num_stride = 4;
vector<string> class_names;
int num_class;
int num_lines;
int num_face_pts;
int* plines;
Net_config config;
const bool keep_ratio = true;
Net net;
void drawPred(float conf, int left, int top, int right, int bottom, Mat& frame, int classid);
Mat resize_image(Mat srcimg, int *newh, int *neww, int *top, int *left);
const float anchors[4][6] = { {19, 27, 44, 40, 38, 94},{96, 68, 86, 152, 180, 137},{140, 301, 303, 264, 238, 542},
{436, 615, 739, 380, 925, 792} };
};
YOLO::YOLO(Net_config config, string modelpath)
{
this->config.person_conf_thres = config.person_conf_thres;
this->config.person_iou_thres = config.person_iou_thres;
this->config.kp_conf_thres = config.kp_conf_thres;
this->config.kp_iou_thres = config.kp_iou_thres;
this->config.conf_thres_kp_person = config.conf_thres_kp_person;
this->config.overwrite_tol = config.overwrite_tol;
this->config.use_kp_dets = config.use_kp_dets;
this->net = readNet(modelpath);
if (endswith(modelpath, "_coco.onnx"))
{
ifstream ifs("class.names");
string line;
while (getline(ifs, line)) this->class_names.push_back(line);
this->num_lines = 12;
this->num_face_pts = 5;
plines = (int*)segments;
}
else
{
ifstream ifs("crowd_class.names");
string line;
while (getline(ifs, line)) this->class_names.push_back(line);
this->num_lines = 14;
this->num_face_pts = 0;
plines = (int*)crowd_segments;
}
this->num_class = class_names.size();
}
Mat YOLO::resize_image(Mat srcimg, int *newh, int *neww, int *top, int *left)
{
int srch = srcimg.rows, srcw = srcimg.cols;
*newh = this->inpHeight;
*neww = this->inpWidth;
Mat dstimg;
if (this->keep_ratio && srch != srcw) {
float hw_scale = (float)srch / srcw;
if (hw_scale > 1) {
*newh = this->inpHeight;
*neww = int(this->inpWidth / hw_scale);
resize(srcimg, dstimg, Size(*neww, *newh), INTER_AREA);
*left = int((this->inpWidth - *neww) * 0.5);
copyMakeBorder(dstimg, dstimg, 0, 0, *left, this->inpWidth - *neww - *left, BORDER_CONSTANT, 114);
}
else {
*newh = (int)this->inpHeight * hw_scale;
*neww = this->inpWidth;
resize(srcimg, dstimg, Size(*neww, *newh), INTER_AREA);
*top = (int)(this->inpHeight - *newh) * 0.5;
copyMakeBorder(dstimg, dstimg, *top, this->inpHeight - *newh - *top, 0, 0, BORDER_CONSTANT, 114);
}
}
else {
resize(srcimg, dstimg, Size(*neww, *newh), INTER_AREA);
}
return dstimg;
}
void YOLO::drawPred(float conf, int left, int top, int right, int bottom, Mat& frame, int classid) // Draw the predicted bounding box
{
//Draw a rectangle displaying the bounding box
rectangle(frame, Point(left, top), Point(right, bottom), Scalar(0, 0, 255), 1);
//Get the label for the class name and its confidence
string label = format("%.2f", conf);
label = this->class_names[classid] + ":" + label;
//Display the label at the top of the bounding box
int baseLine;
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
top = max(top, labelSize.height);
//rectangle(frame, Point(left, top - int(1.5 * labelSize.height)), Point(left + int(1.5 * labelSize.width), top + baseLine), Scalar(0, 255, 0), FILLED);
putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 255, 0), 1);
}
void YOLO::detect(Mat& frame)
{
int newh = 0, neww = 0, padh = 0, padw = 0;
Mat dstimg = this->resize_image(frame, &newh, &neww, &padh, &padw);
Mat blob = blobFromImage(dstimg, 1 / 255.0, Size(this->inpWidth, this->inpHeight), Scalar(0, 0, 0), true, false);
this->net.setInput(blob);
vector<Mat> outs;
this->net.forward(outs, this->net.getUnconnectedOutLayersNames());
int num_proposal = outs[0].size[1];
int nout = outs[0].size[2];
if (outs[0].dims > 2)
{
outs[0] = outs[0].reshape(0, num_proposal);
}
const int num_coords = (nout - this->num_class - 5) * 0.5;
/////generate proposals
vector<float> person_confidences;
vector<Rect> person_boxes;
vector<int> person_classIds;
vector<float> kp_confidences;
vector<Rect> kp_boxes;
vector<int> kp_classIds;
vector<vector<float>> poses;
float ratioh = (float)frame.rows / newh, ratiow = (float)frame.cols / neww;
int n = 0, q = 0, i = 0, j = 0, k = 0, row_ind = 0; ///xmin,ymin,xamx,ymax, box_score, class_score, num_coords*2
float* pdata = (float*)outs[0].data;
for (n = 0; n < this->num_stride; n++) ///ÌØÕ÷ͼ³ß¶È
{
const float stride = pow(2, n + 3);
int num_grid_x = (int)ceil((this->inpWidth / stride));
int num_grid_y = (int)ceil((this->inpHeight / stride));
for (q = 0; q < 3; q++) ///anchor
{
const float anchor_w = this->anchors[n][q * 2];
const float anchor_h = this->anchors[n][q * 2 + 1];
for (i = 0; i < num_grid_y; i++)
{
for (j = 0; j < num_grid_x; j++)
{
float box_score = pdata[4];
Mat scores = outs[0].row(row_ind).colRange(5, 5 + this->num_class);
Point classIdPoint;
double max_class_socre;
// Get the value and location of the maximum score
minMaxLoc(scores, 0, &max_class_socre, 0, &classIdPoint);
max_class_socre *= box_score;
const int class_idx = classIdPoint.x;
if (class_idx == 0)
{
if (box_score > this->config.person_conf_thres && max_class_socre > this->config.person_conf_thres)
{
float cx = (pdata[0] * 2.f - 0.5f + j) * stride; ///cx
float cy = (pdata[1] * 2.f - 0.5f + i) * stride; ///cy
float w = powf(pdata[2] * 2.f, 2.f) * anchor_w; ///w
float h = powf(pdata[3] * 2.f, 2.f) * anchor_h; ///h
int left = int((cx - padw - 0.5 * w)*ratiow);
int top = int((cy - padh - 0.5 * h)*ratioh);
person_confidences.push_back((float)max_class_socre);
person_boxes.push_back(Rect(left, top, (int)(w*ratiow), (int)(h*ratioh)));
person_classIds.push_back(class_idx);
vector<float> kp(num_coords * 3, 0);
for (k = 0; k < num_coords; k++)
{
float x = pdata[5 + this->num_class + 2 * k] * 4 - 2;
float y = pdata[5 + this->num_class + 2 * k + 1] * 4 - 2;
x *= anchor_w;
y *= anchor_h;
x += j * stride;
y += i * stride;
x = (x - padw)*ratiow;
y = (y - padh)*ratioh;
kp[k * 3] = x;
kp[k * 3 + 1] = y;
}
poses.push_back(kp);
}
}
else
{
if (box_score > this->config.kp_conf_thres && max_class_socre > this->config.kp_conf_thres)
{
float cx = (pdata[0] * 2.f - 0.5f + j) * stride; ///cx
float cy = (pdata[1] * 2.f - 0.5f + i) * stride; ///cy
float w = powf(pdata[2] * 2.f, 2.f) * anchor_w; ///w
float h = powf(pdata[3] * 2.f, 2.f) * anchor_h; ///h
int left = int((cx - padw - 0.5 * w)*ratiow);
int top = int((cy - padh - 0.5 * h)*ratioh);
kp_confidences.push_back((float)max_class_socre);
kp_boxes.push_back(Rect(left, top, (int)(w*ratiow), (int)(h*ratioh)));
kp_classIds.push_back(class_idx);
}
}
row_ind++;
pdata += nout;
}
}
}
}
// Perform non maximum suppression to eliminate redundant overlapping boxes with
// lower confidences
vector<int> person_indices;
dnn::NMSBoxes(person_boxes, person_confidences, this->config.person_conf_thres, this->config.person_iou_thres, person_indices);
vector<int> kp_indices;
dnn::NMSBoxes(kp_boxes, kp_confidences, this->config.kp_conf_thres, this->config.kp_iou_thres, kp_indices);
vector<int> pose_mask;
for (i = 0; i < person_indices.size(); i++)
{
const int person_id = person_indices[i];
if (person_confidences[person_id] > this->config.conf_thres_kp_person)
{
pose_mask.push_back(person_id);
}
}
for (i = 0; i < kp_indices.size(); i++)
{
int idx = kp_indices[i];
Rect box = kp_boxes[idx];
float x = box.x + box.width * 0.5;
float y = box.y + box.height * 0.5;
float conf = kp_confidences[idx];
int pt_id = kp_classIds[idx] - 1;
int min_id = 0;
float min_dist = 10000;
for (j = 0; j < pose_mask.size(); j++)
{
const int pose_id = pose_mask[j];
const float dist = sqrt(powf(poses[pose_id][pt_id * 3] - x, 2) + powf(poses[pose_id][pt_id * 3 + 1] - y, 2));
if (dist < min_dist)
{
min_dist = dist;
min_id = pose_id;
}
}
if (conf > poses[min_id][pt_id * 3 + 2] && min_dist < this->config.overwrite_tol)
{
poses[min_id][pt_id * 3] = x;
poses[min_id][pt_id * 3 + 1] = y;
poses[min_id][pt_id * 3 + 2] = conf;
}
}
for (i = 0; i < person_indices.size(); ++i)
{
int idx = person_indices[i];
Rect box = person_boxes[idx];
this->drawPred(person_confidences[idx], box.x, box.y,
box.x + box.width, box.y + box.height, frame, person_classIds[idx]);
}
for (i = 0; i < pose_mask.size(); i++)
{
for (j = 0; j < num_coords; j++)
{
if (poses[pose_mask[i]][j * 3 + 2] > 0)
{
circle(frame, Point(int(poses[pose_mask[i]][j * 3]), int(poses[pose_mask[i]][j * 3 + 1])), 1, Scalar(0, 255, 0), -1);
}
}
for (j = 0; j < this->num_lines; j++)
{
Point pt1 = Point(int(poses[pose_mask[i]][this->plines[2 * j] * 3]), int(poses[pose_mask[i]][this->plines[2 * j] * 3 + 1]));
Point pt2 = Point(int(poses[pose_mask[i]][this->plines[2 * j + 1] * 3]), int(poses[pose_mask[i]][this->plines[2 * j + 1] * 3 + 1]));
line(frame, pt1, pt2, Scalar(255, 0, 255), 1);
}
/*for (j = 0; j < this->num_face_pts; j++)
{
circle(frame, Point(int(poses[pose_mask[i]][kp_face[j] * 3]), int(poses[pose_mask[i]][kp_face[j] * 3 + 1])), 1, Scalar(255, 0, 255), -1);
}*/
}
}
int main()
{
Net_config yolo_nets = { 0.7, 0.45, 0.5, 0.45, 0.2, 25,true };
YOLO yolo_model(yolo_nets, "weights/kapao_m_coco.onnx");
string imgpath = "images/crowdpose_100024.jpg";
Mat srcimg = imread(imgpath);
yolo_model.detect(srcimg);
static const string kWinName = "Deep learning object detection in OpenCV";
namedWindow(kWinName, WINDOW_NORMAL);
imshow(kWinName, srcimg);
waitKey(0);
destroyAllWindows();
}