-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstock_pipeline.py
257 lines (215 loc) · 6.88 KB
/
stock_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import warnings
from typing import Union, Callable
import numpy as np
import pandas as pd
import sklearn.base
from sklearn import clone
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import StratifiedKFold
from numpy.lib.stride_tricks import sliding_window_view
from sklearn.base import clone
import pandas as pd
from sklearn.metrics import roc_auc_score
from sklearn.utils.multiclass import type_of_target
def get_metrics(y_true, y_pred, **kwargs):
metrics = get_clf_metrics(y_true, y_pred, clf_threshold, **kwargs)
return metrics
def get_metrics_by(data, true_col, pred_col, by, **kwargs):
records = []
data = data.dropna(subset=[true_col, pred_col])
for keys, rows in data.groupby(by):
y_true = rows[true_col]
y_pred = rows[pred_col]
metrics = get_metrics(y_true, y_pred, **kwargs)
if isinstance(by, str):
metrics[by] = keys
else:
metrics.update(dict(zip(by, keys)))
records.append(metrics)
return pd.DataFrame(records)
def get_clf_metrics(y_true, y_pred_proba, threshold=0.5):
return {
"AUC ROC": roc_auc_score(y_true, y_pred_proba)}
def get_cv_results(
model: sklearn.base.BaseEstimator,
data: Union[pd.DataFrame, np.ndarray],
feature_names,
target: Union[str, np.array],
n_folds: int = 5,
):
y = target
if isinstance(target, str):
y = data[target]
X = data
if feature_names:
X = data[feature_names]
k_fold = StratifiedKFold(n_folds)
results = []
try:
index = data.index
except AttributeError:
index = np.arange(len(data))
for (
train_index,
test_index,
) in k_fold.split(data, target):
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
m = clone(model)
m.fit(X_train, y_train)
y_pred = m.predict(X_test)
y_pred = pd.Series(y_pred, index=index[test_index])
results.append(y_pred)
y_pred = pd.concat(results)
y_pred = y_pred.set_index()
return y_pred
def _select_items(data, index_series):
if len(index_series) == 0:
return None
val_index = np.concatenate(index_series.values)
return data.loc[val_index]
def time_series_split(
data,
split_size,
datetime_col="datetime",
train_size=4,
val_size=1,
test_size=0,
expanding=True,
**kwargs,
):
assert data.index.is_unique
groups = pd.Series(
{
i: rows.index
for i, (date, rows) in enumerate(
data.resample(on=datetime_col, rule=split_size, **kwargs)
)
}
)
group_ids = np.arange(len(groups))
size = train_size + val_size + test_size
if size > len(group_ids):
mess = "Not enough data to perform cross-validation"
if "ticker" in data:
ticker = data.ticker.iloc[0]
mess += f" for {ticker}"
warnings.warn(mess)
return
view = sliding_window_view(group_ids, size)
for ids in view:
train_idx = ids[:train_size]
val_ids = ids[train_size : train_size + val_size]
test_ids = ids[train_size + val_size :]
if expanding:
train_index = groups[: train_idx[-1] + 1]
else:
train_index = groups.iloc[train_idx]
# train_index = np.concatenate(train_index.values)
test_data = _select_items(data, groups.iloc[test_ids])
train_data = _select_items(data, train_index)
val_data = _select_items(data, groups.iloc[val_ids])
if test_data is None:
yield train_data, val_data
else:
yield train_data, val_data, test_data
def get_cv_index(
data,
split_size,
datetime_col="datetime",
train_size=4,
val_size=1,
test_size=0,
expanding=True,
**kwargs,
):
assert data.index.is_unique
groups = pd.Series(
{
i: rows.index
for i, (date, rows) in enumerate(
data.resample(on=datetime_col, rule=split_size, **kwargs)
)
}
)
group_ids = np.arange(len(groups))
size = train_size + val_size + test_size
if size > len(group_ids):
mess = "Not enough data to perform cross-validation"
if "ticker" in data:
ticker = data.ticker.iloc[0]
mess += f" for {ticker}"
warnings.warn(mess)
return
view = sliding_window_view(group_ids, size)
train_ind = []
val_ind = []
for ids in view:
train_idx = ids[:train_size]
train_ind.append(train_idx)
val_ids = ids[train_size : train_size + val_size]
val_ind.append(val_ids)
test_ids = ids[train_size + val_size :]
if expanding:
train_index = groups[: train_idx[-1] + 1]
else:
train_index = groups.iloc[train_idx]
cv = list(zip(train_ind, val_ind))
train_inds = [np.hstack(groups.iloc[cv[i][0]]) for i in range(len(cv))]
val_inds = [np.hstack(groups.iloc[cv[i][1]]) for i in range(len(cv))]
cv = list(zip(train_inds, val_inds))
return cv
def _add_predicts(train_data, model, feature_names):
X = train_data[feature_names]
try:
y_pred = model.predict_proba(X)
except AttributeError:
if isinstance(model, SGDClassifier):
y_pred = model.decision_function(X)
else:
y_pred = model.predict(X)
if len(y_pred.shape) == 2:
y_pred = y_pred[:, 1]
train_data["y_pred"] = y_pred
return train_data
def cross_validate_by_ticker(
features, model, feature_names, target_name, return_model=False, **kwargs
):
for ticker, rows in features.groupby("ticker"):
yield from cross_validate_by_time(
rows, model, feature_names, target_name, return_model, **kwargs
)
def cross_validate_by_time(
rows,
model,
feature_names,
target_name,
return_model=False,
rule="1y",
test_size=1,
train_size=3,
train_filter_f: Callable[[pd.DataFrame], pd.DataFrame] = None,
**kwargs,
):
for train_data, val_data, test_data in time_series_split(
rows, split_size=rule, test_size=test_size, train_size=train_size, **kwargs
):
incomplete = False
for x in (train_data, val_data, test_data):
if len(x) == 0:
incomplete = True
break
if incomplete:
continue
if train_filter_f:
train_data = train_filter_f(train_data)
X = train_data[feature_names]
y = train_data[target_name]
estimator = clone(model).fit(X, y)
_add_predicts(train_data, estimator, feature_names)
_add_predicts(val_data, estimator, feature_names)
_add_predicts(test_data, estimator, feature_names)
if return_model:
yield model, train_data, val_data, test_data
else:
yield train_data, val_data, test_data