forked from bmsookim/fine-tuning.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_features.py
154 lines (126 loc) · 5.01 KB
/
extract_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# ************************************************************
# Author : Bumsoo Kim, 2017
# Github : https://github.com/meliketoy/fine-tuning.pytorch
#
# Korea University, Data-Mining Lab
# Deep Convolutional Network Fine tuning Implementation
#
# Description : extract_features.py
# The main code for extracting features of trained model.
# ***********************************************************
from __future__ import print_function, division
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
import numpy as np
import config as cf
import torchvision
import time
import copy
import os
import sys
import argparse
from torchvision import datasets, models, transforms
from networks import *
from torch.autograd import Variable
from PIL import Image
import pickle
parser = argparse.ArgumentParser(description='PyTorch Digital Mammography Training')
parser.add_argument('--lr', default=1e-3, type=float, help='learning_rate')
parser.add_argument('--net_type', default='resnet', type=str, help='model')
parser.add_argument('--depth', default=50, type=int, help='depth of model')
parser.add_argument('--finetune', '-f', action='store_true', help='Fine tune pretrained model')
parser.add_argument('--addlayer','-a',action='store_true', help='Add additional layer in fine-tuning')
parser.add_argument('--testOnly', '-t', action='store_true', help='Test mode with the saved model')
args = parser.parse_args()
# Phase 1 : Data Upload
print('\n[Phase 1] : Data Preperation')
data_dir = cf.test_dir
trainset_dir = cf.data_base.split("/")[-1] + os.sep
print("| Preparing %s dataset..." %(cf.test_dir.split("/")[-1]))
use_gpu = torch.cuda.is_available()
# Phase 2 : Model setup
print('\n[Phase 2] : Model setup')
def getNetwork(args):
if (args.net_type == 'vggnet'):
net = VGG(args.finetune, args.depth)
file_name = 'vgg-%s' %(args.depth)
elif (args.net_type == 'resnet'):
net = resnet(args.finetune, args.depth)
file_name = 'resnet-%s' %(args.depth)
else:
print('Error : Network should be either [VGGNet / ResNet]')
sys.exit(1)
return net, file_name
def softmax(x):
return np.exp(x) / np.sum(np.exp(x), axis=0)
print("| Loading checkpoint model for feature extraction...")
assert os.path.isdir('checkpoint'), 'Error: No checkpoint directory found!'
assert os.path.isdir('checkpoint/'+trainset_dir), 'Error: No model has been trained on the dataset!'
_, file_name = getNetwork(args)
checkpoint = torch.load('./checkpoint/'+trainset_dir+file_name+'.t7')
model = checkpoint['model']
print("| Consisting a feature extractor from the model...")
if(args.net_type == 'alexnet' or args.net_type == 'vggnet'):
feature_map = list(checkpoint['model'].module.classifier.children())
feature_map.pop()
new_classifier = nn.Sequential(*feature_map)
extractor = copy.deepcopy(checkpoint['model'])
extractor.module.classifier = new_classifier
elif (args.net_type) == 'resnet'):
feature_map = list(model.module.children())
feature_map.pop()
extractor = nn.Sequential(*feature_map)
if use_gpu:
model.cuda()
extractor.cuda()
cudnn.benchmark = True
model.eval()
extractor.eval()
sample_input = Variable(torch.randn(1,3,224,224), volatile=True)
if use_gpu:
sample_input = sample_input.cuda()
sample_output = extractor(sample_input)
featureSize = sample_output.size(1)
print("| Feature dimension = %d" %featureSize)
print("\n[Phase 3] : Feature & Score Extraction")
def is_image(f):
return f.endswith(".png") or f.endswith(".jpg")
test_transform = transforms.Compose([
transforms.Scale(224),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(cf.mean, cf.std)
])
if not os.path.isdir('vectors'):
os.mkdir('vectors')
for subdir, dirs, files in os.walk(data_dir):
for f in files:
file_path = subdir + os.sep + f
if (is_image(f)):
vector_dict = {
'file_path': "",
'feature': [],
'score': 0,
}
image = Image.open(file_path).convert('RGB')
if test_transform is not None:
image = test_transform(image)
inputs = image
inputs = Variable(inputs, volatile=True)
if use_gpu:
inputs = inputs.cuda()
inputs = inputs.view(1, inputs.size(0), inputs.size(1), inputs.size(2)) # add batch dim in the front
features = extractor(inputs).view(featureSize)
outputs = model(inputs)
softmax_res = softmax(outputs.data.cpu().numpy()[0])
vector_dict['file_path'] = file_path
vector_dict['feature'] = features
vector_dict['score'] = softmax_res[1]
vector_file = 'vectors' + os.sep + os.path.splitext(f)[0] + ".pickle"
print(vector_file)
print(vector_dict['feature'].size())
print(vector_dict['score'])
with open(vector_file, 'wb') as pkl:
pickle.dump(vector_dict, pkl, protocol=pickle.HIGHEST_PROTOCOL)