forked from karpathy/ng-video-lecture
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgpt.py
177 lines (152 loc) · 7.32 KB
/
gpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import torch
import torch.nn as nn
from torch.nn import functional as F
from dataclasses import dataclass
@dataclass
class GPTConfig:
vocab_size: int # vocabulary size
block_size: int = 256 # the maximum context length for predictions?
n_layer: int = 6 # the number of attention blocks
n_head: int = 6 # number of self attention heads
head_size: int = 64 # attention head size, here head_size * n_head = n_embd. We can change this later
n_embd: int = 384 # character embedding vector dimension
dropout: float = 0.2
class Head(nn.Module):
""" one head of self-attention """
def __init__(self, config):
super().__init__()
self.key = nn.Linear(config.n_embd, config.head_size, bias=False)
self.query = nn.Linear(config.n_embd, config.head_size, bias=False)
self.value = nn.Linear(config.n_embd, config.head_size, bias=False)
self.dropout = nn.Dropout(config.dropout)
self.register_buffer('tril', torch.tril(torch.ones(config.block_size, config.block_size)))
def forward(self, x):
# input of size (batch, time-step, channels)
# output of size (batch, time-step, head size)
B,T,C = x.shape
k = self.key(x) # (B,T,hs)
q = self.query(x) # (B,T,hs)
# compute attention scores ("affinities")
wei = q @ k.transpose(-2,-1) * k.shape[-1]**-0.5 # (B, T, hs) @ (B, hs, T) -> (B, T, T)
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
wei = F.softmax(wei, dim=-1) # (B, T, T)
wei = self.dropout(wei)
# perform the weighted aggregation of the values
v = self.value(x) # (B,T,hs)
out = wei @ v # (B, T, T) @ (B, T, hs) -> (B, T, hs)
return out
class MultiHeadAttention(nn.Module):
""" multiple heads of self-attention in parallel """
def __init__(self, config):
super().__init__()
self.heads = nn.ModuleList([Head(config) for _ in range(config.n_head)])
self.proj = nn.Linear(config.head_size * config.n_head, config.n_embd)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1)
out = self.dropout(self.proj(out))
return out
class MultiHeadAttentionParallel(nn.Module):
""" multiple head of self-attention in parallel computing """
def __init__(self, config):
super().__init__()
self.config = config
self.c_attn = nn.Linear(config.n_embd, config.n_embd*3)
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
self.attn_dropout = nn.Dropout(config.dropout)
self.resid_dropout = nn.Dropout(config.dropout)
self.register_buffer('tril', torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
def forward(self, x):
B,T,C = x.shape
x = self.c_attn(x) # (B, T, 3C)
q, k, v = x.chunk(3, dim=-1) # (B, T, n_head*head_size)
q = q.view(B, T, self.config.n_head, self.config.head_size).transpose(1, 2) # (B, n_head, T, head_size)
k = k.view(B, T, self.config.n_head, self.config.head_size).transpose(1, 2) # (B, n_head, T, head_size)
v = v.view(B, T, self.config.n_head, self.config.head_size).transpose(1, 2) # (B, n_head, T, head_size)
wei = q @ k.transpose(-2, -1) / (self.config.head_size**0.5) # (B, n_head, T, T)
wei = wei.masked_fill(self.tril[:, :, :T, :T] == 0, float('-inf'))
wei = F.softmax(wei, dim=-1)
wei = self.attn_dropout(wei)
y = wei @ v # (B, n_head, T, T) @ (B, n_head, T, head_size) -> (B, n_head, T, head_size)
y = y.transpose(1, 2).contiguous().view(B, T, self.config.n_embd)
out = self.resid_dropout(self.c_proj(y))
return out
class FeedFoward(nn.Module):
""" a simple linear layer followed by a non-linearity """
def __init__(self, config):
super().__init__()
self.net = nn.Sequential(
nn.Linear(config.n_embd, 4 * config.n_embd),
nn.ReLU(),
nn.Linear(4 * config.n_embd, config.n_embd),
nn.Dropout(config.dropout),
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
""" Transformer block: communication followed by computation """
def __init__(self, config):
# n_embd: embedding dimension, n_head: the number of heads we'd like
super().__init__()
#self.sa = MultiHeadAttention(n_head, head_size)
self.sa = MultiHeadAttentionParallel(config)
self.ffwd = FeedFoward(config)
self.ln1 = nn.LayerNorm(config.n_embd)
self.ln2 = nn.LayerNorm(config.n_embd)
def forward(self, x):
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
return x
class GPTLanguageModel(nn.Module):
def __init__(self, config, device):
super().__init__()
# each token directly reads off the logits for the next token from a lookup table
self.config = config
self.device = device
self.token_embedding_table = nn.Embedding(config.vocab_size, config.n_embd)
self.position_embedding_table = nn.Embedding(config.block_size, config.n_embd)
self.blocks = nn.Sequential(*[Block(config) for _ in range(config.n_layer)])
self.ln_f = nn.LayerNorm(config.n_embd) # final layer norm
self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
# better init, not covered in the original GPT video, but important, will cover in followup video
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
B, T = idx.shape
# idx and targets are both (B,T) tensor of integers
tok_emb = self.token_embedding_table(idx) # (B,T,C)
pos_emb = self.position_embedding_table(torch.arange(T, device=self.device)) # (T,C)
x = tok_emb + pos_emb # (B,T,C)
x = self.blocks(x) # (B,T,C)
x = self.ln_f(x) # (B,T,C)
logits = self.lm_head(x) # (B,T,vocab_size)
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B*T, C)
targets = targets.view(B*T)
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_new_tokens):
# idx is (B, T) array of indices in the current context
for _ in range(max_new_tokens):
# crop idx to the last block_size tokens
idx_cond = idx[:, -self.config.block_size:]
# get the predictions
logits, loss = self(idx_cond)
# focus only on the last time step
logits = logits[:, -1, :] # becomes (B, C)
# apply softmax to get probabilities
probs = F.softmax(logits, dim=-1) # (B, C)
# sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
# append sampled index to the running sequence
idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
return idx