A dataset can be used by accessing DatasetCatalog
for its data, or MetadataCatalog for its metadata (class names, etc).
This document explains how to setup the builtin datasets so they can be used by the above APIs.
Use Custom Datasets gives a deeper dive on how to use DatasetCatalog
and MetadataCatalog
,
and how to add new datasets to them.
Mask-Adapter has builtin support for a few datasets.
The datasets are assumed to exist in a directory specified by the environment variable
DETECTRON2_DATASETS
.
Under this directory, detectron2 will look for datasets in the structure described below, if needed.
$DETECTRON2_DATASETS/
# Training datasets
coco/
# Evaluatation datasets
ADEChallengeData2016/
VOCdevkit/
ADE20K_2021_17_01/
pascal_ctx_d2/
pascal_voc_d2/
You can set the location for builtin datasets by export DETECTRON2_DATASETS=/path/to/datasets
.
If left unset, the default is ./datasets
relative to your current working directory.
Expected dataset structure for COCO:
coco/
#http://images.cocodataset.org/zips/train2017.zip
train2017/
#http://images.cocodataset.org/zips/val2017.zip
val2017/
# image files that are mentioned in the corresponding json
#http://images.cocodataset.org/annotations/annotations_trainval2017.zip
annotations/
instances_{train,val}2017.json
panoptic_{train,val}2017.json
captions_{train,val}2017.json
#COCO-Panoptic
panoptic_{train,val}2017/ # png annotations
panoptic_semseg_{train,val}2017/ # generated by the script mentioned below
#COCO-Stuff
#http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/stuffthingmaps_trainval2017.zip
stuffthingmaps/
# generate by prepare_coco_stuff_sem_seg.py
stuffthingmaps_detectron2/
Install panopticapi by:
pip install git+https://github.com/cocodataset/panopticapi.git
Then, run python datasets/prepare_coco_semantic_annos_from_panoptic_annos.py
, to extract semantic annotations from panoptic annotations (only used for evaluation).
Generate the semantic segmentation annotations coco/stuffthingmaps_detectron2/
by running:python datasets/prepare_coco_stuff_sem_seg.py
Expected dataset structure for ADE20k (A150):
ADEChallengeData2016/
images/
annotations/
objectInfo150.txt
# download instance annotation
annotations_instance/
# generated by prepare_ade20k_sem_seg.py
annotations_detectron2/
# below are generated by prepare_ade20k_pan_seg.py
ade20k_panoptic_{train,val}.json
ade20k_panoptic_{train,val}/
# below are generated by prepare_ade20k_ins_seg.py
ade20k_instance_{train,val}.json
The directory annotations_detectron2
is generated by running python datasets/prepare_ade20k_sem_seg.py
.
Install panopticapi by:
pip install git+https://github.com/cocodataset/panopticapi.git
Download the instance annotation from http://sceneparsing.csail.mit.edu/:
wget http://sceneparsing.csail.mit.edu/data/ChallengeData2017/annotations_instance.tar
Then, run python datasets/prepare_ade20k_pan_seg.py
, to combine semantic and instance annotations for panoptic annotations.
And run python datasets/prepare_ade20k_ins_seg.py
, to extract instance annotations in COCO format.
Expected dataset structure for ADE20k-Full (A-847):
ADE20K_2021_17_01/
images/
index_ade20k.pkl
objects.txt
# generated by prepare_ade20k_full_sem_seg.py
images_detectron2/
annotations_detectron2/
Register and download the dataset from https://groups.csail.mit.edu/vision/datasets/ADE20K/:
cd $DETECTRON2_DATASETS
wget your/personal/download/link/{username}_{hash}.zip
unzip {username}_{hash}.zip
Generate the directories ADE20K_2021_17_01/images_detectron2
and ADE20K_2021_17_01/annotations_detectron2
by running:
python datasets/prepare_ade20k_full_sem_seg.py
Expected dataset structure for PASCAL Context (PC-59), PASCAL Context Full (PC-459):
VOCdevkit/
VOC2012/
Annotations/
JPEGImages/
ImageSets/
Segmentation/
VOC2010/
JPEGImages/
trainval/
trainval_merged.json
# generated by prepare_pascal_voc_sem_seg.py
pascal_voc_d2/
images/
annotations_pascal20/
# generated by prepare_pascal_ctx_sem_seg.py
pascal_ctx_d2/
images/
annotations_ctx59/
# generated by prepare_pascal_ctx_full_sem_seg.py
annotations_ctx459/
Download the dataset from http://host.robots.ox.ac.uk/pascal/VOC/:
cd $DETECTRON2_DATASETS
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
# generate folder VOCdevkit/VOC2012
tar -xvf VOCtrainval_11-May-2012.tar
Generate directory pascal_voc_d2
running:
python datasets/prepare_pascal_voc_sem_seg.py
Download the dataset from http://host.robots.ox.ac.uk/pascal/VOC/ and annotation from https://www.cs.stanford.edu/~roozbeh/pascal-context/:
cd $DETECTRON2_DATASETS
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2010/VOCtrainval_03-May-2010.tar
# generate folder VOCdevkit/VOC2010
tar -xvf VOCtrainval_03-May-2010.tar
wget https://www.cs.stanford.edu/~roozbeh/pascal-context/trainval.tar.gz
# generate folder VOCdevkit/VOC2010/trainval
tar -xvzf trainval.tar.gz -C VOCdevkit/VOC2010
wget https://codalabuser.blob.core.windows.net/public/trainval_merged.json -P VOCdevkit/VOC2010/
Install Detail API by:
git clone https://github.com/zhanghang1989/detail-api.git
rm detail-api/PythonAPI/detail/_mask.c
pip install -e detail-api/PythonAPI/
Generate directory pascal_ctx_d2/images
and pascal_ctx_d2/annotations_ctx59
running:
python datasets/prepare_pascal_ctx_sem_seg.py
Generate directory pascal_ctx_d2/annotations_ctx459
running:
python datasets/prepare_pascal_ctx_full_sem_seg.py