diff --git a/exspy/components/eels_arctan.py b/exspy/components/eels_arctan.py index 99b190f5a..5a52432bf 100644 --- a/exspy/components/eels_arctan.py +++ b/exspy/components/eels_arctan.py @@ -17,10 +17,10 @@ # along with eXSpy. If not, see . -from hyperspy._components.expression import Expression +import hyperspy.api as hs -class EELSArctan(Expression): +class EELSArctan(hs.model.components1D.Expression): r"""Arctan function component for EELS (with minimum at zero). .. math:: diff --git a/exspy/components/eels_double_power_law.py b/exspy/components/eels_double_power_law.py index dd8cb5336..7db5f49c2 100644 --- a/exspy/components/eels_double_power_law.py +++ b/exspy/components/eels_double_power_law.py @@ -20,10 +20,10 @@ import numpy as np from hyperspy.docstrings.parameters import FUNCTION_ND_DOCSTRING -from hyperspy._components.expression import Expression +import hyperspy.api as hs -class DoublePowerLaw(Expression): +class DoublePowerLaw(hs.model.components1D.Expression): r"""Double power law component for EELS spectra. .. math:: diff --git a/exspy/components/eels_vignetting.py b/exspy/components/eels_vignetting.py index f52266fe2..1b887fc2d 100644 --- a/exspy/components/eels_vignetting.py +++ b/exspy/components/eels_vignetting.py @@ -19,7 +19,7 @@ import numpy as np from hyperspy.component import Component -from hyperspy._components.gaussian import Gaussian +import hyperspy.api as hs class Vignetting(Component): @@ -46,7 +46,7 @@ def __init__(self): self.right.value = np.nan self.side_vignetting = False self.fix_side_vignetting() - self.gaussian = Gaussian() + self.gaussian = hs.model.components1D.Gaussian() self.gaussian.centre.free, self.gaussian.A.free = False, False self.sigma.value = 1.0 self.gaussian.A.value = 1.0 diff --git a/exspy/components/pes_see.py b/exspy/components/pes_see.py index 68445ad55..b7bf6b2a6 100644 --- a/exspy/components/pes_see.py +++ b/exspy/components/pes_see.py @@ -20,12 +20,13 @@ import numpy as np import logging -from hyperspy._components.expression import Expression +import hyperspy.api as hs + _logger = logging.getLogger(__name__) -class SEE(Expression): +class SEE(hs.model.components1D.Expression): r"""Secondary electron emission component for Photoemission Spectroscopy. .. math:: diff --git a/exspy/misc/eels/base_gos.py b/exspy/misc/eels/base_gos.py index 49f045d00..58c0a6768 100644 --- a/exspy/misc/eels/base_gos.py +++ b/exspy/misc/eels/base_gos.py @@ -144,7 +144,7 @@ def integrateq(self, onset_energy, angle, E0): # Perform the integration in a log grid qaxis, gos = self.get_qaxis_and_gos(i, qmin, qmax) logsqa0qaxis = np.log((a0 * qaxis) ** 2) - qint[i] = integrate.simps(gos, logsqa0qaxis) + qint[i] = integrate.simpson(gos, x=logsqa0qaxis) E = self.energy_axis + energy_shift # Energy differential cross section in (barn/eV/atom) qint *= (4.0 * np.pi * a0**2.0 * R**2 / E / T * self.subshell_factor) * 1e28 diff --git a/exspy/misc/eels/tools.py b/exspy/misc/eels/tools.py index 276c87f9c..e7e255467 100644 --- a/exspy/misc/eels/tools.py +++ b/exspy/misc/eels/tools.py @@ -60,16 +60,14 @@ def _estimate_gain( variance2fit = variance average2fit = average - fit = np.polyfit(average2fit, variance2fit, pol_order) + fit = np.polynomial.Polynomial.fit(average2fit, variance2fit, pol_order) if weighted is True: - from hyperspy._signals.signal1D import Signal1D - from hyperspy.models.model1d import Model1D - from hyperspy.components1d import Line + import hyperspy.api as hs - s = Signal1D(variance2fit) + s = hs.signals.Signal1D(variance2fit) s.axes_manager.signal_axes[0].axis = average2fit - m = Model1D(s) - line = Line() + m = s.create_model() + line = hs.model.components1D.Polynomial() line.a.value = fit[1] line.b.value = fit[0] m.append(line) @@ -109,29 +107,30 @@ def estimate_variance_parameters( """Find the scale and offset of the Poissonian noise By comparing an SI with its denoised version (i.e. by PCA), - this plots an - estimation of the variance as a function of the number of counts - and fits a - polynomy to the result. + this plots an estimation of the variance as a function of the number of counts + and fits a polynomial to the result. Parameters ---------- - noisy_SI, clean_SI : signal1D.Signal1D instances - mask : numpy bool array + noisy_SI, clean_SI : hyperspy.api.signals.Signal1D + mask : numpy.ndarray To define the channels that will be used in the calculation. pol_order : int - The order of the polynomy. + The order of the polynomial. higher_than: float To restrict the fit to counts over the given value. - return_results : Bool - plot_results : Bool + return_results : bool + Whether to return the results or not. + plot_results : bool + Whether to plot the results or not. store_results: {True, False, "ask"}, default "ask" If True, it stores the result in the signal metadata Returns ------- - Dictionary with the result of a linear fit to estimate the offset - and scale factor + dict + Dictionary with the result of a linear fit to estimate the offset + and scale factor """ with noisy_signal.unfolded(), clean_signal.unfolded(): diff --git a/exspy/signals/dielectric_function.py b/exspy/signals/dielectric_function.py index 047ea90e1..0997aeb68 100644 --- a/exspy/signals/dielectric_function.py +++ b/exspy/signals/dielectric_function.py @@ -18,7 +18,7 @@ import numpy as np from scipy import constants -from scipy.integrate import simps, cumtrapz +from scipy.integrate import simpson, cumtrapz from hyperspy._signals.complex_signal1d import ( ComplexSignal1D, @@ -82,12 +82,12 @@ def get_number_of_effective_electrons(self, nat, cumulative=False): axis = self.axes_manager.signal_axes[0] if cumulative is False: - dneff1 = k * simps( + dneff1 = k * simpson( (-1.0 / self.data).imag * axis.axis, x=axis.axis, axis=axis.index_in_array, ) - dneff2 = k * simps( + dneff2 = k * simpson( self.data.imag * axis.axis, x=axis.axis, axis=axis.index_in_array ) neff1 = self._get_navigation_signal(data=dneff1) diff --git a/exspy/signals/eds.py b/exspy/signals/eds.py index 2486cc07c..6a7115870 100644 --- a/exspy/signals/eds.py +++ b/exspy/signals/eds.py @@ -24,16 +24,17 @@ from collections.abc import Iterable from matplotlib import pyplot as plt +import hyperspy.api as hs from hyperspy import utils from hyperspy.signal import BaseSignal from hyperspy._signals.signal1d import Signal1D, LazySignal1D from exspy.misc.elements import elements as elements_db from exspy.misc.eds import utils as utils_eds from hyperspy.misc.utils import isiterable -from hyperspy.utils.markers import Texts, VerticalLines, Lines from hyperspy.docstrings.plot import BASE_PLOT_DOCSTRING_PARAMETERS, PLOT1D_DOCSTRING from hyperspy.docstrings.signal import LAZYSIGNAL_DOC + _logger = logging.getLogger(__name__) @@ -1012,14 +1013,14 @@ def _add_vertical_lines_groups(self, position, render_figure=True, **kwargs): The position on the signal axis. Each row corresponds to a group. kwargs - keywords argument for :py:class:`~.api.plot.markers.VerticalLine` + keywords argument for :class:`hyperspy.api.plot.markers.VerticalLine` """ colors = itertools.cycle( np.sort(plt.rcParams["axes.prop_cycle"].by_key()["color"]) ) for x, color in zip(position, colors): - line = VerticalLines(offsets=x, color=color, **kwargs) + line = hs.plot.markers.VerticalLines(offsets=x, color=color, **kwargs) self.add_marker(line, render_figure=False) if render_figure: self._render_figure(plot=["signal_plot"]) @@ -1050,12 +1051,12 @@ def add_xray_lines_markers(self, xray_lines, render_figure=True): % utils_eds._get_element_and_line(xray_line) ) - line_markers = Lines( + line_markers = hs.plot.markers.Lines( segments=segments, transform="relative", color="black", ) - text_markers = Texts( + text_markers = hs.plot.markers.Texts( offsets=offsets, texts=line_names, offset_transform="relative", @@ -1137,7 +1138,7 @@ def _add_background_windows_markers(self, windows_position, render_figure=True): x2 = (bw[2] + bw[3]) / 2.0 segments.append([[x1, y1[0]], [x2, y2[0]]]) segments = np.array(segments) - lines = Lines(segments=segments, color="black") + lines = hs.plot.markers.Lines(segments=segments, color="black") self.add_marker(lines, render_figure=False) if render_figure: self._render_figure(plot=["signal_plot"]) diff --git a/exspy/signals/eels.py b/exspy/signals/eels.py index cb5286b6a..b711df9cf 100644 --- a/exspy/signals/eels.py +++ b/exspy/signals/eels.py @@ -28,13 +28,10 @@ import hyperspy.api as hs from hyperspy.signal import BaseSetMetadataItems, BaseSignal from hyperspy._signals.signal1d import Signal1D, LazySignal1D -import hyperspy.axes -from hyperspy.components1d import PowerLaw from hyperspy.misc.utils import display, isiterable, underline from hyperspy.misc.math_tools import optimal_fft_size from hyperspy.ui_registry import add_gui_method, DISPLAY_DT, TOOLKIT_DT -from hyperspy.utils.markers import Texts, Lines from hyperspy.docstrings.signal1d import ( CROP_PARAMETER_DOC, SPIKES_DIAGNOSIS_DOCSTRING, @@ -622,10 +619,10 @@ def estimating_function(data, threshold=None): if binned: return data.sum() else: - from scipy.integrate import simps + from scipy.integrate import simpson axis = ax.axis[:ind] - return simps(y=data, x=axis) + return simpson(y=data, x=axis) I0 = self.map( estimating_function, @@ -1058,7 +1055,7 @@ def fourier_ratio_deconvolution( axis = ll.axes_manager.signal_axes[0] if fwhm is None: fwhm = float( - ll.get_current_signal().estimate_peak_width()._get_current_data() + ll.get_current_signal().estimate_peak_width()._get_current_data()[0] ) _logger.info("FWHM = %1.2f" % fwhm) @@ -1069,9 +1066,7 @@ def fourier_ratio_deconvolution( I0_shape.insert(axis.index_in_array, 1) I0 = I0.reshape(I0_shape) - from hyperspy.components1d import Gaussian - - g = Gaussian() + g = hs.model.components1D.Gaussian() g.sigma.value = fwhm / 2.3548 g.A.value = 1 g.centre.value = 0 @@ -1287,7 +1282,7 @@ def power_law_extrapolation( s.data = np.zeros(new_shape) s.data[..., : axis.size] = self.data s.get_dimensions_from_data() - pl = PowerLaw() + pl = hs.model.components1D.PowerLaw() pl._axes_manager = self.axes_manager A, r = pl.estimate_parameters( s, @@ -1454,7 +1449,7 @@ def kramers_kronig_analysis( axis = s.axes_manager.signal_axes[0] eaxis = axis.axis.copy() - if isinstance(zlp, hyperspy.signal.BaseSignal): + if isinstance(zlp, hs.signals.BaseSignal): if ( zlp.axes_manager.navigation_dimension == self.axes_manager.navigation_dimension @@ -1480,7 +1475,7 @@ def kramers_kronig_analysis( in the BaseSignal class or a Number." ) - if isinstance(t, hyperspy.signal.BaseSignal): + if isinstance(t, hs.signals.BaseSignal): if ( t.axes_manager.navigation_dimension == self.axes_manager.navigation_dimension @@ -1711,13 +1706,13 @@ def _get_offsets_and_segments(self, edges): return offsets, segments def _initialise_markers(self): - self._edge_markers["lines"] = Lines( + self._edge_markers["lines"] = hs.plot.markers.Lines( segments=np.empty((0, 2, 2)), transform="relative", color="black", shift=np.array([0.0, 0.19]), ) - self._edge_markers["texts"] = Texts( + self._edge_markers["texts"] = hs.plot.markers.Texts( offsets=np.empty((0, 2)), texts=np.empty((0,)), offset_transform="relative", @@ -1975,7 +1970,7 @@ def rebin(self, new_shape=None, scale=None, crop=True, dtype=None, out=None): out.events.data_changed.trigger(obj=out) return m - rebin.__doc__ = hyperspy.signal.BaseSignal.rebin.__doc__ + rebin.__doc__ = hs.signals.BaseSignal.rebin.__doc__ def vacuum_mask( self, threshold=10.0, start_energy=None, closing=True, opening=False diff --git a/exspy/tests/models/test_linear_model.py b/exspy/tests/models/test_linear_model.py index b81d8e951..d5f503702 100644 --- a/exspy/tests/models/test_linear_model.py +++ b/exspy/tests/models/test_linear_model.py @@ -19,8 +19,6 @@ import numpy as np import pytest from hyperspy.decorators import lazifyTestClass -from hyperspy._components.gaussian import Gaussian -from hyperspy._components.lorentzian import Lorentzian import hyperspy.api as hs import exspy @@ -100,8 +98,8 @@ def setup_method(self, method): s = hs.data.two_gaussians().inav[0] s.set_signal_type("EELS") m = s.create_model(auto_background=False, auto_add_edges=False) - g1 = Gaussian(centre=40) - g2 = Gaussian(centre=55) + g1 = hs.model.components1D.Gaussian(centre=40) + g2 = hs.model.components1D.Gaussian(centre=55) m.extend([g1, g2]) # make dummy twinning @@ -134,7 +132,7 @@ def test_expression_convolved(nav_dim, multiple_free_parameters): to_convolve.axes_manager[-1].offset = -to_convolve_component.centre.value # Create reference signal from model with convolution - l_ref = Lorentzian(A=100, centre=20, gamma=4) + l_ref = hs.model.components1D.Lorentzian(A=100, centre=20, gamma=4) m_ref = s_ref.create_model(auto_add_edges=False, auto_background=False) m_ref.append(l_ref) m_ref.low_loss = to_convolve @@ -148,7 +146,7 @@ def test_expression_convolved(nav_dim, multiple_free_parameters): to_convolve = hs.stack([to_convolve] * 3) m = s.create_model(auto_add_edges=False, auto_background=False) - lor = Lorentzian(centre=20, gamma=4) + lor = hs.model.components1D.Lorentzian(centre=20, gamma=4) m.append(lor) assert not m.convolved m.low_loss = to_convolve @@ -179,7 +177,7 @@ def test_expression_multiple_linear_parameter(nav_dim, convolve): p_ref = hs.model.components1D.Polynomial(order=2, a0=25, a1=-50, a2=2.5) # Create signal to convolve - to_convolve_component = Gaussian(A=100, sigma=5, centre=10) + to_convolve_component = hs.model.components1D.Gaussian(A=100, sigma=5, centre=10) to_convolve = hs.signals.Signal1D(to_convolve_component.function(np.arange(1000))) to_convolve.axes_manager[-1].offset = -to_convolve_component.centre.value @@ -224,12 +222,12 @@ def test_multiple_linear_parameters_convolution(nav_dim): s_ref = EELSSpectrum(np.ones(1000)) # Create signal to convolve - to_convolve_component = Gaussian(A=1000, sigma=50, centre=100) + to_convolve_component = hs.model.components1D.Gaussian(A=1000, sigma=50, centre=100) to_convolve = EELSSpectrum(to_convolve_component.function(np.arange(1000))) to_convolve.axes_manager[-1].offset = -to_convolve_component.centre.value - l_ref1 = Lorentzian(A=100, centre=200, gamma=10) - l_ref2 = Lorentzian(A=100, centre=600, gamma=20) + l_ref1 = hs.model.components1D.Lorentzian(A=100, centre=200, gamma=10) + l_ref2 = hs.model.components1D.Lorentzian(A=100, centre=600, gamma=20) m_ref = s_ref.create_model(auto_add_edges=False, auto_background=False) m_ref.extend([l_ref1, l_ref2]) @@ -244,8 +242,8 @@ def test_multiple_linear_parameters_convolution(nav_dim): to_convolve = hs.stack([to_convolve] * 3) m = s.create_model(auto_add_edges=False, auto_background=False) - l1 = Lorentzian(centre=200, gamma=10) - l2 = Lorentzian(centre=600, gamma=20) + l1 = hs.model.components1D.Lorentzian(centre=200, gamma=10) + l2 = hs.model.components1D.Lorentzian(centre=600, gamma=20) m.extend([l1, l2]) assert not m.convolved m.low_loss = to_convolve diff --git a/upcoming_changes/33.maintenance.rst b/upcoming_changes/33.maintenance.rst new file mode 100644 index 000000000..8c3e1c7d7 --- /dev/null +++ b/upcoming_changes/33.maintenance.rst @@ -0,0 +1 @@ +Fix deprecation scipy and numpy warnings. \ No newline at end of file