-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
95 lines (80 loc) · 2.86 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import argparse
import os
import numpy as np
import torch
from datetime import datetime
from transformers import AutoTokenizer, AutoModelForCausalLM
from importlib.metadata import version
from utils.prune_utils import check_sparsity
from utils.eval_utils import eval_ppl, eval_zero_shot, eval_humaneval
print('torch', version('torch'))
print('transformers', version('transformers'))
print('accelerate', version('accelerate'))
print('# of gpus: ', torch.cuda.device_count())
def get_llm(args, device):
model = AutoModelForCausalLM.from_pretrained(
args.model,
torch_dtype=torch.float16,
device_map=device
)
model.seqlen = 2048
return model
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task',
type=str,
default="nlu",
choices=[
"nlu",
"gsm8k",
"human-eval",
]
)
parser.add_argument("--eval_ppl", action="store_true")
parser.add_argument('--model', type=str, help='Path to LLaMA model')
parser.add_argument('--model_name', type=str, help='Name of LLaMA model')
parser.add_argument('--seed', type=int, default=0)
args = parser.parse_args()
return args
def main():
args = get_args()
# Setting seeds for reproducibility
np.random.seed(args.seed)
torch.random.manual_seed(args.seed)
device = torch.device("cuda:0")
print("use device ", device)
print(f"loading llm model {args.model}")
model = get_llm(args, device)
tokenizer = AutoTokenizer.from_pretrained(args.model)
if tokenizer.eos_token is None:
tokenizer.add_special_tokens({"eos_token": "<|endoftext|>"})
model.resize_token_embeddings(len(tokenizer))
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model.to(device)
sparsity = check_sparsity(model)
print(f"sparsity = {sparsity}")
# # Get the test loader
if args.eval_ppl:
ppl_test = eval_ppl(args, model, tokenizer, device)
print(f"wikitext perplexity: {ppl_test}")
if args.task == "nlu":
task_list = ["boolq", "rte","hellaswag","winogrande", "arc_easy","arc_challenge", "openbookqa"]
num_shot = 0
results = eval_zero_shot(args.model_name, model, tokenizer, task_list, num_shot, False)
print("********************************")
print("zero_shot evaluation results")
print(results)
elif args.task == "gsm8k":
task_list = ["gsm8k"]
num_shot = 0
results = eval_zero_shot(args.model_name, model, tokenizer, task_list, num_shot, False)
print("********************************")
print("gsm8k results")
print(results)
elif args.task == "human-eval":
eval_humaneval(args, model, tokenizer)
else:
raise NotImplementedError
if __name__ == '__main__':
main()