-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprune_llm.py
79 lines (65 loc) · 2.93 KB
/
prune_llm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import argparse
import os
import numpy as np
import torch
from datetime import datetime
from transformers import AutoTokenizer, AutoModelForCausalLM
from importlib.metadata import version
from utils.prune_utils import prune_model
from utils.eval_utils import eval_ppl
print('torch', version('torch'))
print('transformers', version('transformers'))
print('accelerate', version('accelerate'))
print('# of gpus: ', torch.cuda.device_count())
def get_llm(args, device):
model = AutoModelForCausalLM.from_pretrained(
args.model,
torch_dtype=torch.float16,
device_map="auto"
)
model.seqlen = 2048
return model
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, help='LLaMA model')
parser.add_argument('--seed', type=int, default=0, help='Seed for sampling the calibration data.')
parser.add_argument('--nsamples', type=int, default=128, help='Number of calibration samples.')
parser.add_argument("--sparsity_type", type=str, default="2:4", choices=["2:4", "unstructured"])
parser.add_argument("--sparsity", type=float, default=None)
parser.add_argument("--prune_method", type=str, choices=["wanda", "sparsegpt"])
parser.add_argument('--save_result', type=str, default=None, help='Path to save results.')
parser.add_argument('--save_model', type=str, default=None, help='Path to save the pruned model.')
parser.add_argument("--eval_zero_shot", action="store_true")
args = parser.parse_args()
# Setting seeds for reproducibility
np.random.seed(args.seed)
torch.random.manual_seed(args.seed)
device = torch.device("cuda:0")
print("use device ", device)
# Handling n:m sparsity
if args.sparsity_type != "unstructured":
prune_n, prune_m = map(int, args.sparsity_type.split(":"))
else:
prune_n = prune_m = 0
model_name = args.model.split("/")[-1]
print(f"loading llm model {args.model}")
model = get_llm(args, device)
tokenizer = AutoTokenizer.from_pretrained(args.model, use_fast=False)
prune_model(args, model, tokenizer, device, prune_n=prune_n, prune_m=prune_m)
ppl_test = eval_ppl(args, model, tokenizer, device)
print(f"wikitext perplexity: {ppl_test}")
if args.save_result is not None:
if not os.path.exists(args.save_result):
os.makedirs(args.save_result)
format_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
save_filepath = os.path.join(args.save_result, f"log_{model_name}_{format_time}.txt")
with open(save_filepath, "w") as f:
print(f"ppl_test: {ppl_test:.4f}\n\n", file=f, flush=True)
print(f"args:", file=f, flush=True)
for k, v in vars(args).items():
print(f"\t{k}={v}", file=f, flush=True)
if args.save_model is not None:
model.save_pretrained(args.save_model)
tokenizer.save_pretrained(args.save_model)
if __name__ == '__main__':
main()