All available download links:
-
BaiduPan, password:
uomm
In the local disk, the iPER root folder is $iPER_root_dir, and cd
to $iPER_root_dir.
-
download
train.txt
,val.txt
, and move them into $iPER_root_dir -
download all split files from
splits/images_HD.tar.gz.aa
tosplits/images_HD.tar.gz.bk
, and move them to $iPER_root_dir/splits, and we will arrive at the following file structure:$iPER_root_dir: |-- splits | |-- images_HD.tar.gz.aa | |-- images_HD.tar.gz.ab | |-- images_HD.tar.gz.ac | |-- ...... | |-- images_HD.tar.gz.bj | `-- images_HD.tar.gz.bk |-- train.txt `-- val.txt
-
merge all the
splits
files intoimages_HD.tar.gz
and move it to $iPER_root_dir,cat splits/images_HD.tar.gz.* > images_HD.tar.gz
Then, we will arrive at the following file structure
$iPER_root_dir: |-- splits | |-- images_HD.tar.gz.aa | |-- images_HD.tar.gz.ab | |-- images_HD.tar.gz.ac | |-- ...... | |-- images_HD.tar.gz.bj | `-- images_HD.tar.gz.bk |-- images_HD.tar.gz |-- train.txt `-- val.txt
-
extract
images_HD.tar.gz
to $iPER_root_dir,tar -xzvf images.tar.gz
Then, we will arrive at the following file structure
$iPER_root_dir: |-- images_HD | |-- 001 | | |-- 1 | | | |-- 1 | | | `-- 2 | | |-- 10 | | | |-- 1 | | | `-- 2 | | |-- 11 | | | |-- 1 | | | `-- 2 | | |-- 12 | ....... | |-- 029 | | `-- 1 | | | |-- 1 | | | `-- 2 | `-- 030 | `-- 1 | | | |-- 1 | | | `-- 2 |-- splits | |-- images_HD.tar.gz.aa | |-- images_HD.tar.gz.ab | |-- images_HD.tar.gz.ac | |-- ...... | |-- images_HD.tar.gz.bj | `-- images_HD.tar.gz.bk |-- images_HD.tar.gz |-- train.txt `-- val.txt
-
run the following script to process the iPER dataset
python scripts/train/prepare_iPER_dataset.py \ --output_dir $iPER_root_dir \ --gpu_ids 0,0,0,1,1,1,2,2,2,3,3,3,5,5,5,6,6,6,7,7,7,8,8,8,9,9,9
Then, all the processed information will be saved into $iPER_root_dir/primitives, and we will arrive at the following file structure,
$iPER_root_dir: |-- images_HD | |-- 001 | | |-- 1 | | | |-- 1 | | | `-- 2 | | |-- 10 | | | |-- 1 | | | `-- 2 | | |-- 11 | | | |-- 1 | | | `-- 2 | | |-- 12 | ....... | |-- 029 | | `-- 1 | | | |-- 1 | | | `-- 2 | `-- 030 | `-- 1 | | | |-- 1 | | | `-- 2 |-- splits | |-- images_HD.tar.gz.aa | |-- images_HD.tar.gz.ab | |-- images_HD.tar.gz.ac | |-- ...... | |-- images_HD.tar.gz.bj | `-- images_HD.tar.gz.bk |-- images_HD.tar.gz |-- primitives | |-- 001 | | |-- 1 | | | |-- 1 | | | `-- 2 | | |-- 10 | | | |-- 1 | | | `-- 2 | |-- 005 | | `-- 1 | | |-- 1 | | `-- 2 | ...... | `-- 030 | `-- 1 | |-- 1 | `-- 2 |-- train.txt `-- val.txt
The MotionSynthetic root folder is $MotionSynthetic_root_dir, and cd
to $MotionSynthetic_root_dir.
-
download
train.txt
andval.txt
, and move them to $MotionSynthetic_root_dir; -
download
videos.zip
andposes.zip
, and move them to $MotionSynthetic_root_dir; -
unzip
videos.zip
andposes.zip
unzip videos.zip unzip poses.zip
Then, we will arrive at the following file structure:
$MotionSynthetic_root_dir |-- poses | |-- MG_125611487366942_0366_0018 | | |-- kps.pkl | | `-- pose_shape.pkl | |-- MG_125611494277906_2031_0017 | | |-- kps.pkl | | `-- pose_shape.pkl | | ...... | `-- PeopleSnapshot_male-9-plaza_2211_0016 | |-- kps.pkl | `-- pose_shape.pkl |-- poses.zip |-- train.txt |-- val.txt |-- videos | |-- MG_125611487366942_0366_0018.mp4 | ...... | `-- PeopleSnapshot_male-9-plaza_2211_0016.mp4 `-- videos.zip
-
run the following script to process the MotionSynthetic dataset
python scripts/train/prepare_motionSynthetic_dataset.py \ --output_dir /p300/tpami/datasets_reproduce/motionSynthetic \ --gpu_ids 0,0,0,0,1,1,1,1
Then, all the processed information will be saved into $MotionSynthetic_root_dir/primitives, and we will arrive at the following file structure:
$MotionSynthetic_root_dir |-- poses | |-- MG_125611487366942_0366_0018 | | |-- kps.pkl | | `-- pose_shape.pkl | |-- MG_125611494277906_2031_0017 | | |-- kps.pkl | | `-- pose_shape.pkl | | ...... | `-- PeopleSnapshot_male-9-plaza_2211_0016 | |-- kps.pkl | `-- pose_shape.pkl |-- poses.zip |-- primitives | |-- MG_125611487366942_0366_0018 | | `-- processed | | |-- actual_background | | |-- background | | |-- images | | |-- parse | | |-- vid_info.pkl | | `-- visual.mp4 | | ...... | `-- PeopleSnapshot_male-9-plaza_2211_0016 | `-- processed | |-- actual_background | |-- background | |-- images | |-- parse | |-- vid_info.pkl | `-- visual.mp4 |-- train.txt |-- val.txt |-- videos | |-- MG_125611487366942_0366_0018.mp4 | ...... | `-- PeopleSnapshot_male-9-plaza_2211_0016.mp4 `-- videos.zip