-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_detect.py
53 lines (46 loc) · 1.89 KB
/
face_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import cv2
import os
import numpy as np
haar_file = 'haarcascade_frontalface_default.xml'
datasets ='dataset/'
(images, labels, names, id) = ([], [], {}, 0)
for (subdir, dirs, files) in os.walk(datasets):
for subdir in dirs:
names[id] =subdir
subjectpath = os.path.join(datasets, subdir)
for filename in os.listdir(subjectpath):
path = os.path.join(subjectpath, filename)
label = id
images.append(cv2.imread(path, 0))
labels.append(int(label))
id = id + 1
(images, labels) = [np.array(lists) for lists in [images, labels]]
# Load the face recognizer from the 'face' submodule
model = cv2.face.LBPHFaceRecognizer_create()
# Rest of your code...
model.train(images, labels)
face_cascade = cv2.CascadeClassifier(haar_file)
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
if ret == True:
img_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(img_gray, 1.3, 4)
# detectMultiscale(source_image,scale,min_neighbours)
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
face = img_gray[y:y + h, x:x + h]
face_resize = cv2.resize(face, (640, 480))
prediction = model.predict(face_resize)
if prediction[1] < 25:
person_name=names[prediction[0]]
cv2.putText(frame, '%s' % (person_name), (x + 5, (y + 25 + h)),
cv2.FONT_HERSHEY_PLAIN, 1.5, (20, 185, 20), 2)
else:
cv2.putText(frame, "Unknown", (x + 5, (y + 25 + h)), cv2.FONT_HERSHEY_PLAIN,
1.5, (65, 65, 255), 2)
cv2.imshow("Face Recognition", frame)
if cv2.waitKey(1) == ord("q"):
break
cap.release()
cv2.destroyAllWindows()