-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmanager.py
617 lines (504 loc) · 20.6 KB
/
manager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
import argparse
import numpy as np
import os
import pickle
import random
import teneva
from time import perf_counter as tpc
import torch
import torch.nn.functional as F
import torch.optim as optim
from spikingjelly.activation_based.functional import reset_net
from .data.data_main import Data
from .gen.gen_main import Gen
from .model.model_main import Model
from .opt import opt_ng_portfolio, opt_protes, opt_random
from .utils import Log, plot_hist_am, plot_opt_conv
from .hardware import configure_hardware
import os
configure_hardware(verbose=False)
OPTS = {
'RS': {
'func': opt_random,
#'args': {'k': 10}
},
'NG': {
'func': opt_ng_portfolio,
},
'TT': {
'func': opt_protes,
'args': {'k': 10, 'k_top': 1, 'with_qtt': True},
},
'TT-s': {
'func': opt_protes,
'args': {'k': 5, 'k_top': 1, 'with_qtt': True}
},
'TT-b': {
'func': opt_protes,
'args': {'k': 25, 'k_top': 5, 'with_qtt': True}
},
'TT-exp': {
'func': opt_protes,
'args': {'k': 100, 'k_top': 10, 'with_qtt': True, 'lr': 0.1, 'k_gd': 1}
},
}
PLOT_SHAPE = {
1: (1,1),
2: (1,2),
3: (1,3),
4: (2,2),
5: (2,3),
6: (2,3)
}
class MangoManager:
def __init__(self, data, gen, model, task, kind, cls=None, layer=None,
unit=None, root='result', device=None, opt_args=None, model_path=None, **kwargs):
self.data_name = data
self.gen_name = gen
self.model_name = model
self.task = task
self.kind = kind
self.cls = cls
self.layer = layer
self.unit = unit
self.opt_args = opt_args
if 'am_methods' not in opt_args:
self.opt_args['am_methods'] = list(OPTS.keys())
if 'opt_budget' not in opt_args:
self.opt_args['opt_budget'] = 10000
if 'track_opt_progress' not in opt_args:
self.opt_args['track_opt_progress'] = True
if 'res_mode' not in opt_args:
self.opt_args['res_mode'] = 'best'
if 'nrep' not in opt_args:
self.opt_args['nrep'] = 1
if 'layer_names' in kwargs:
self.layer_names_to_scan = kwargs['layer_names']
print(self.opt_args)
self.set_rand()
self.set_device(device)
self.set_path(root)
self.set_log()
self.load_data()
self.load_gen()
self.load_model(model_path=model_path)
def end(self):
self.log.end()
def func(self, z):
from spikingjelly.activation_based.functional import reset_net
nrep = self.opt_args['nrep']
x = self.gen.run(z)
all_values = []
for i in range(nrep):
activation = self.model.run_target(x)
#activation = self.model.run(x)[:,5]
#reset_net(self.model.net)
values = activation.detach().to('cpu').numpy()
all_values.append(values)
#print('values:', all_values)
agg_values = np.vstack(all_values)
#print(np.mean(agg_values, axis=0))
final_values = np.mean(agg_values, axis=0)
if max(final_values) == 1:
return None
else:
return final_values
def func_ind(self, z_index):
return self.func(self.gen.ind_to_poi(z_index))
def get_path(self, fpath):
fpath = os.path.join(self.path, fpath)
os.makedirs(os.path.dirname(fpath), exist_ok=True)
return fpath
def load_data(self, log=True):
if self.data_name is None:
raise ValueError('Name of the dataset is not set')
if log:
tm = self.log.prc(f'Loading "{self.data_name}" dataset')
self.data = Data(self.data_name)
if log:
self.log('')
def load_gen(self, log=True):
if self.gen_name is None:
return
try:
self.gen = Gen(self.gen_name, self.data, self.device)
if log:
tm = self.log.prc(f'Loading "{self.gen_name}" generator')
self.log.res(tpc()-tm)
except Exception as e:
self.log(repr(e))
self.log.wrn('Can not load Gen')
if log:
self.log('')
def load_model(self, log=True, model_path=None):
if self.model_name is None:
return
try:
self.model = Model(self.model_name, self.data, self.device, model_path=model_path)
self.model.set_target(cls=self.cls, layer=self.layer, unit=self.unit, logger=self.log)
if log:
tm = self.log.prc(f'Loading "{self.model_name}" model')
self.log.res(tpc()-tm)
except Exception as e:
self.log(repr(e))
self.log.wrn(f'Can not load Model')
if log:
self.log('')
def run(self):
method_name = f'task_{self.task}_{self.kind}'
getattr(self, method_name)()
self.end()
def run_train_cifar10_vae_vq(self, lr=1.E-3, iters=15000, log_step=500):
from gen.vae_vq_cifar10 import VAEVqCifar10
tm = self.log.prc(f'Training "vae_vq_cifar10" model')
vae = VAEVqCifar10()
vae.to(self.device)
optimizer = optim.Adam(vae.parameters(), lr=lr, amsgrad=False)
train_res_recon_error = []
train_res_perplexity = []
vae.train()
# Batch of real images to visualize accuracy while training:
x_real = torch.cat([self.data.get()[0][None] for _ in range(25)])
p, _, l = self.model.run_pred(x_real)
titles = [f'{v_l} ({v_p:-7.1e})' for (v_p, v_l) in zip(p, l)]
self.data.plot_many(x_real,
titles,
cols=5,
rows=5,
fpath=self.get_path(f'img/images_real.png'))
for it in range(iters):
(data, _) = next(iter(self.data.dataloader_trn))
data = data.to(self.device)
optimizer.zero_grad()
vq_loss, data_recon, perplexity = vae(data)
recon_error = F.mse_loss(data_recon, data) / self.data.var_trn
loss = recon_error + vq_loss
loss.backward()
optimizer.step()
train_res_recon_error.append(recon_error.item())
train_res_perplexity.append(perplexity.item())
if (it+1) % log_step == 0 or it == 0 or it == iters-1:
fpath = 'gen/vae_vq_cifar10/data/vae_vq_cifar10.pt'
torch.save(vae.state_dict(), fpath)
e_recon = np.mean(train_res_recon_error[-log_step:])
e_perpl = np.mean(train_res_perplexity[-log_step:])
text = f'# {it+1:-8d} | '
text += f'time {tpc()-tm:-7.1e} sec | '
text += f'E recon = {e_recon:-9.3e} | '
text += f'Perplexity = {e_perpl:-9.3e} | '
self.log(text)
# Plot samples for the current model:
self.load_gen(log=False)
z = self.gen.rev(x_real)
x = self.gen.run(z)
p, _, l = self.model.run_pred(x)
titles = [f'{v_l} ({v_p:-7.1e})' for (v_p, v_l) in zip(p, l)]
self.data.plot_many(x,
titles,
cols=5,
rows=5,
fpath=self.get_path(f'img/it_{it+1}_gen.png'))
self.log.res(tpc()-tm)
def set_device(self, device=None):
if device is None:
if torch.cuda.is_available():
self.device = torch.device('cuda')
else:
self.device = torch.device('cpu')
else:
self.device = device
def set_log(self):
info = ''
if self.data_name:
info += f'Data : "{self.data_name}"\n'
if self.gen_name:
info += f'Gen : "{self.gen_name}"\n'
if self.model_name:
info += f'Model : "{self.model_name}"\n'
if self.task:
info += f'Task : "{self.task}"\n'
if self.kind:
info += f'Kind of task : "{self.kind}"\n'
if self.cls:
info += f'Target class : "{self.cls}"\n'
if self.layer:
info += f'Target layer : "{self.layer}"\n'
if self.unit:
info += f'Target unit : "{self.unit}"\n'
self.log = Log(self.get_path(f'log.txt'))
self.log.title(f'Computations ({self.device})', info)
def set_path(self, root='result'):
fbase = f'{self.data_name}'
if self.gen_name:
fbase += f'-{self.gen_name}'
if self.model_name:
fbase += f'-{self.model_name}'
ftask = f'{self.task}-{self.kind}'
if self.cls is not None:
ftask += f'-c_{self.cls}'
if self.layer is not None:
ftask += f'-l_{self.layer}'
if self.unit is not None:
ftask += f'-f_{self.unit}'
self.path = os.path.join(root, fbase, ftask)
def set_rand(self, seed=42):
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
def _task_am(self, m=1.E+4, m_short=1.E+3, mode='class', track_opt_progress=True):
if self.opt_args['opt_budget'] is not None:
m = self.opt_args['opt_budget']
if mode == 'class':
cls = int(self.cls)
label = self.data.labels[cls]
self.model.set_target(cls=cls, logger=self.log)
tm = self.log.prc(f'Running AM for target class {cls} ({label})...')
elif mode == 'unit':
unit = int(self.unit)
layer = self.layer
self.model.set_target(layer=layer, unit=unit, logger=self.log)
tm = self.log.prc(f'Running AM for unit {unit} of layer {self.layer} ({self.model.layer})...')
X, titles, res = [], [], {}
for i, meth in enumerate(self.opt_args['am_methods']):
self.log(f'\nOptimization with "{meth}" method:')
if meth in OPTS:
opt = OPTS[meth]
t = tpc()
optimizer = opt.get('func')
args = opt.get('args', {})
# TODO: add seed fixation
seed = np.random.randint(10**6)
z_index, _, hist = optimizer(self.func_ind, self.gen.d, self.gen.n, m, seed=seed, is_max=True, **args)
if len(set(self.opt_args['am_methods'])) == len(self.opt_args['am_methods']):
textmeth = meth
else:
textmeth = f'{i}_{meth}'
res[textmeth] = hist
t = tpc() - t
#print(self.opt_args['res_mode'])
#print(z_index)
historic_z = hist[2]
recomputed_activations = np.zeros(len(historic_z) + 1)
xlist = []
for j, z_ind in enumerate(historic_z):
z = self.gen.ind_to_poi(z_ind)
x = self.gen.run(z)
a = self.model.run_target(x)
recomputed_activations[j] = a
xlist.append(x)
z = self.gen.ind_to_poi(z_index)
x = self.gen.run(z)
a = self.model.run_target(x)
recomputed_activations[-1] = a
xlist.append(x)
print('recomputed history of activations:')
print(recomputed_activations)
if self.opt_args['res_mode'] == 'best': # replace latest image with the best one
best_ind = np.argmax(recomputed_activations)
x = xlist[best_ind]
a = recomputed_activations[best_ind]
self.log(f'Result: it {m:-7.1e}, t {t:-7.1e}, a {a:-11.5e}')
title = f'{meth} : p={a:-9.3e}'
X.append(x)
titles.append(title)
if track_opt_progress:
X_opt, titles_opt = [], []
print('times', hist[0])
for (t_opt, m_opt, z_index_opt, e_opt) in zip(*hist):
z_opt = self.gen.ind_to_poi(z_index_opt)
x_opt = self.gen.run(z_opt)
title_opt = f'{meth} : p={e_opt:-9.3e}; m={m_opt:-7.1e}'
X_opt.append(x_opt)
titles_opt.append(title_opt)
if mode == 'class':
fname = f'gif/am_c{cls}_{meth}.gif'
elif mode == 'unit':
fname = f'gif/am_u{unit}_layer_({layer})_{meth}.gif'
self.data.animate(X_opt, titles_opt, fpath=self.get_path(fname))
else:
self.log(f'Unknown method {meth}, optimization skipped')
with open(self.get_path('dat/opt_info.pkl'), 'wb') as f:
pickle.dump(res, f)
# with open(self.get_path('dat/opt_info.pkl'), 'rb') as f:
# res = pickle.load(f)
if mode == 'class':
title = f'Activation maximization for class "{cls}" ({label})'
elif mode == 'unit':
title = f'Activation maximization for unit {unit} of layer {self.layer}'
try:
plot_opt_conv(res, title, self.get_path('img/opt_conv.png'))
plot_opt_conv(res, title, self.get_path('img/opt_conv_short.png'), m_min=m_short)
except Exception as e:
self.log(repr(e))
self.log.wrn(f'AM plotting failed')
if mode == 'class':
fname = f'img/am_c{cls}.png'
elif mode == 'unit':
fname = f'img/am_u{unit}_{layer}.png'
self.data.plot_many(X,
titles,
fpath=self.get_path(fname),
rows=PLOT_SHAPE[len(X)][0],
cols=PLOT_SHAPE[len(X)][1],
size=10)
self.log.res(tpc()-tm)
def task_am_class(self, m=1.E+4, m_short=1.E+3):
if self.model.target_mode is None:
self.model.set_target_mode(self.cls, self.layer, self.unit)
if self.model.target_mode != 'class':
raise ValueError(f'Input (class={self.cls}, unit={self.unit}, layer={self.layer}) not compatible with class AM mode')
self._task_am(m, m_short, mode='class', track_opt_progress=self.opt_args['track_opt_progress'])
def task_am_unit(self, m=1.E+4, m_short=1.E+3):
if self.model.target_mode is None:
self.model.set_target_mode(self.cls, self.layer, self.unit)
if self.model.target_mode != 'unit':
raise ValueError(
f'Input (class={self.cls}, unit={self.unit}, layer={self.layer}) not compatible with unit AM mode')
self._task_am(m, m_short, mode='unit', track_opt_progress=self.opt_args['track_opt_progress'])
def task_check_data(self):
name = self.data.name
tm = self.log.prc(f'Check data for "{name}" dataset')
self.log(self.data.info())
self.data.plot_many(fpath=self.get_path(f'img/{name}.png'))
self.log.res(tpc()-tm)
def task_check_gen(self, m1=5, m2=5, rep=5):
tm = self.log.prc(f'Generate random images')
for i in range(rep):
if self.gen.discrete:
z = teneva.sample_lhs([self.gen.n]*self.gen.d, m1*m2)
else:
z = torch.randn(m1*m2, self.gen.d)
t = tpc()
x = self.gen.run(z)
t = (tpc() - t) / len(x)
self.log(f'Gen {len(x)} random samples (time/sample {t:-8.2e} sec)')
p, _, l = self.model.run_pred(x)
titles = [f'{v_l} ({v_p:-7.1e})' for (v_p, v_l) in zip(p, l)]
self.data.plot_many(x,
titles,
cols=m1,
rows=m2,
fpath=self.get_path(f'img/{i+1}_gen_rand.png'))
self.log.res(tpc()-tm)
if self.gen.enc is None:
return
self.log('')
tm = self.log.prc(f'Reconstruct images from the dataset')
for i in range(rep):
x = torch.cat([self.data.get()[0][None] for _ in range(m1*m2)])
p, _, l = self.model.run_pred(x)
titles = [f'{v_l} ({v_p:-7.1e})' for (v_p, v_l) in zip(p, l)]
self.data.plot_many(x,
titles,
cols=m1,
rows=m2,
fpath=self.get_path(f'img/{i+1}_gen_real.png'))
t = tpc()
z = self.gen.rev(x)
t = (tpc() - t) / len(x)
self.log(f'Gen {len(x)} embeddings (time/sample {t:-8.2e} sec)')
x = self.gen.run(z)
p, _, l = self.model.run_pred(x)
titles = [f'{v_l} ({v_p:-7.1e})' for (v_p, v_l) in zip(p, l)]
self.data.plot_many(x,
titles,
cols=m1,
rows=m2,
fpath=self.get_path(f'img/{i+1}_gen_repr.png'))
self.log.res(tpc()-tm)
def task_check_model(self, trn=True, tst=True):
if not self.model.has_target():
raise ValueError('Target for the model is not set')
for mod in ['trn', 'tst']:
if mod == 'trn' and not trn or mod == 'tst' and not tst:
continue
if mod == 'trn' and self.data.data_trn is None:
continue
if mod == 'tst' and self.data.data_tst is None:
continue
t = tpc()
n, m, a = self.model.check(tst=(mod == 'tst'),
only_one_batch=(str(self.device) == 'cpu'),
with_target=True)
t = tpc() - t
text = f'Accuracy {mod}'
text += f' : {float(m)/n*100:.2f}% ({m:-9d} / {n:-9d})'
text += f' | time = {t:-10.2f} sec'
self.log(text)
text = f'Activation {mod}'
text += f' : [{np.min(a):-7.1e}, {np.max(a):-7.1e}] '
text += f'(avg: {np.mean(a):-7.1e})'
self.log(text)
title = f'Activation of the target neuron on the "{mod}" data'
fpath = self.get_path(f'img/check_target_{mod}.png')
plot_hist_am(a, title, fpath)
self.log('')
def task_train_gen(self):
if self.gen_name == 'vae_vq':
if self.data_name == 'cifar10':
return self.run_train_cifar10_vae_vq()
raise NotImplementedError(f'task_train_gen not implemented for gen {self.gen_name} and dataset {self.data_name} pair')
def task_scan_layer(self):
layer_names = self.layer_names_to_scan
self.model.set_activity_hooks(layers=layer_names, logger=self.log)
def args_build():
parser = argparse.ArgumentParser(
prog='MANGO',
description='Software product for analysis of activations and specialization in '\
'artificial neural networks (ANN), including spiking neural networks (SNN) '\
'with the tensor train (TT) decomposition and other gradient-free methods.',
epilog = '© Andrei Chertkov, Nikita Pospelov, Maxim Beketov'
)
parser.add_argument('-d', '--data',
type=str,
help='Name of the used dataset',
default='cifar10',
choices=['mnist', 'mnistf', 'cifar10', 'imagenet']
)
parser.add_argument('-g', '--gen',
type=str,
help='Name of the used generator',
default=None,
choices=['gan_sn', 'vae_vq']
)
parser.add_argument('-m', '--model',
type=str,
help='Name of the used model',
default=None,
choices=['alexnet', 'densenet', 'vgg16', 'vgg19', 'snn']
)
parser.add_argument('-t', '--task',
type=str,
help='Name of the task',
default=None,
choices=['check', 'train', 'am']
)
parser.add_argument('-k', '--kind',
type=str,
help='Kind of the task',
default=None
)
parser.add_argument('-c', '--cls',
type=str,
help='Target class',
default=None
)
parser.add_argument('-l', '--layer',
type=str,
help='Target layer',
default=0
)
parser.add_argument('-u', '--unit',
type=str,
help='Target unit',
default=0
)
parser.add_argument('-r', '--root',
type=str,
help='Path to the folder with results',
default='result'
)
args = parser.parse_args()
return args.data, args.gen, args.model, args.task, args.kind, args.cls, args.layer, args.unit, args.root
if __name__ == '__main__':
MangoManager(*args_build()).run()