forked from scaelles/DEXTR-KerasTensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdextr_ros_service.py
74 lines (55 loc) · 2.69 KB
/
dextr_ros_service.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#!/usr/bin/env python
from PIL import Image
import numpy as np
from matplotlib import pyplot as plt
from keras import backend as K
import rospy
import tensorflow as tf
from networks.dextr import DEXTR
from mypath import Path
from helpers import helpers as helpers
from cv_bridge import CvBridge
from dextr_msgs.srv import DEXTRRequest,DEXTRRequestResponse
modelName = 'dextr_pascal-sbd'
pad = 50
thres = 0.8
gpu_id = 0
# Handle input and output args
sess = tf.compat.v1.Session()
K.set_session(sess)
bridge = CvBridge()
with sess.as_default():
net = DEXTR(nb_classes=1, resnet_layers=101, input_shape=(512, 512), weights=modelName,
num_input_channels=4, classifier='psp', sigmoid=True)
def handle_request(req):
image = req.image
points = req.points
cv_image = bridge.imgmsg_to_cv2(image, desired_encoding='passthrough')
extreme_points_ori = np.zeros((4,2), dtype=int)
for i in range(4):
extreme_points_ori[i,0] = points[i].x
extreme_points_ori[i,1] = points[i].y
# Crop image to the bounding box from the extreme points and resize
bbox = helpers.get_bbox(cv_image, points=extreme_points_ori, pad=pad, zero_pad=True)
crop_image = helpers.crop_from_bbox(cv_image, bbox, zero_pad=True)
resize_image = helpers.fixed_resize(crop_image, (512, 512)).astype(np.float32)
# Generate extreme point heat map normalized to image values
extreme_points = extreme_points_ori - [np.min(extreme_points_ori[:, 0]), np.min(extreme_points_ori[:, 1])] + [pad,
pad]
extreme_points = (512 * extreme_points * [1 / crop_image.shape[1], 1 / crop_image.shape[0]]).astype(np.int)
extreme_heatmap = helpers.make_gt(resize_image, extreme_points, sigma=10)
extreme_heatmap = helpers.cstm_normalize(extreme_heatmap, 255)
# Concatenate inputs and convert to tensor
input_dextr = np.concatenate((resize_image, extreme_heatmap[:, :, np.newaxis]), axis=2)
# Run a forward pass
pred = net.model.predict(input_dextr[np.newaxis, ...])[0, :, :, 0]
result = helpers.crop2fullmask(pred, bbox, im_size=cv_image.shape[:2], zero_pad=True, relax=pad) > thres
result = result.astype(np.uint8) #convert to an unsigned byte
return DEXTRRequestResponse(bridge.cv2_to_imgmsg(result*255, encoding="passthrough"))
def dextr_server():
rospy.init_node('dextr_server')
s = rospy.Service('dextr', DEXTRRequest, handle_request)
print("DEXTR Server Ready.")
rospy.spin()
if __name__ == "__main__":
dextr_server()