forked from allenai/XNOR-Net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.lua
94 lines (82 loc) · 2.79 KB
/
model.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
-- Modified by Mohammad Rastegari (Allen Institute for Artificial Intelligence (AI2))
-- Copyright (c) 2014, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found in the
-- LICENSE file in the root directory of this source tree. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
--
require 'nn'
require 'cunn'
require 'cudnn'
require 'optim'
--[[
1. Create Model
2. Create Criterion
3. Convert model to CUDA
]]--
-- 1. Create Network
-- 1.1 If preloading option is set, preload weights from existing models appropriately
if opt.retrain ~= 'none' then
assert(paths.filep(opt.retrain), 'File not found: ' .. opt.retrain)
print('Loading model from file: ' .. opt.retrain);
model = torch.load(opt.retrain) -- defined in util.lua
model:clearState()
else
paths.dofile('models/' .. opt.netType .. '.lua')
print('=> Creating model from file: models/' .. opt.netType .. '.lua')
model = createModel(opt.nGPU) -- for the model creation code, check the models/ folder
--Initializing the parameters
model:apply(rand_initialize)
if opt.loadParams ~= 'none' then
local saved_model = torch.load(opt.loadParams)
--local saved_params = torch.load(opt.loadParams)
loadParams(model,saved_model);
end
end
--debugger.enter()
-- This is useful for fitting ResNet-50 on 4 GPUs, but requires that all
-- containers override backwards to call backwards recursively on submodules
if opt.shareGradInput then
-- Share gradInput for memory efficient backprop
local cache = {}
model:apply(function(m)
local moduleType = torch.type(m)
if torch.isTensor(m.gradInput) and moduleType ~= 'nn.ConcatTable' then
if cache[moduleType] == nil then
cache[moduleType] = torch.CudaStorage(1)
end
m.gradInput = torch.CudaTensor(cache[moduleType], 1, 0)
end
end)
for i, m in ipairs(model:findModules('nn.ConcatTable')) do
if cache[i % 2] == nil then
cache[i % 2] = torch.CudaStorage(1)
end
m.gradInput = torch.CudaTensor(cache[i % 2], 1, 0)
end
end
-- apply parallel
model:cuda()
if opt.nGPU >1 then
model = makeDataParallel(model, opt.nGPU,true,true)
end
--getting the parameters and gradient pointers
parameters, gradParameters = model:getParameters()
realParams = parameters:clone()
convNodes = model:findModules('cudnn.SpatialConvolution')
-- much faster
cudnn.fastest = true
cudnn.benchmark = true
-- 2. Create Criterion
criterion = nn.ClassNLLCriterion()
print('=> Model')
print(model)
print('=> Criterion')
print(criterion)
-- 3. Convert model to CUDA
print('==> Converting model to CUDA')
-- model is converted to CUDA in the init script itself
-- model = model:cuda()
criterion:cuda()
collectgarbage()