-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage.py
executable file
·292 lines (238 loc) · 8.6 KB
/
image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
#!python3
import replicate
import requests
from loguru import logger
from rich.console import Console
import typer
from icecream import ic
from pathlib import Path
import os
import ell
from ell_helper import init_ell, run_studio, get_ell_model
from typing import Annotated
import sys
console = Console()
app = typer.Typer(no_args_is_help=True)
# Initialize ELL
init_ell()
@ell.simple(model=get_ell_model(openai=True))
def prompt_illustrate_igor_pixar(prompt: str):
"""
You are an AI that creates enhanced prompts for an image generation model. The user provides a simple prompt, and you enrich it. When they mention Igor, refer to him as Idvorkin with the following characteristics:
"Charming and whimsical portrait of Idvorkin, a bald, 40-year-old man standing 5 feet 8 inches tall, weighing 175 lbs with an athletic build. Captured with a vintage 35mm camera (f/1.8), in vivid 12K resolution. He has a playful look and a twinkle in his eye."
Start the prompt with "Encanto style"
Incorporate these details seamlessly into the enhanced prompt. Return only the enriched prompt, as it will be directly passed to the image generation model.
"""
return prompt
@ell.simple(model=get_ell_model(openai=True))
def prompt_illustrate_igor(prompt: str):
"""
You are an AI that creates enhanced prompts for an image generation model. The user provides a simple prompt, and you enrich it. When they mention Igor, refer to him as Idvorkin with the following characteristics:
"Charming and whimsical portrait of Idvorkin, a bald, 40-year-old man standing 5 feet 8 inches tall, weighing 175 lbs with an athletic build. Captured with a vintage 35mm camera (f/1.8), in vivid 12K resolution. He has a playful look and a twinkle in his eye."
Incorporate these details seamlessly into the enhanced prompt. Return only the enriched prompt, as it will be directly passed to the image generation model.
"""
return prompt
@ell.simple(model=get_ell_model(openai=True))
def prompt_illustrate(prompt: str):
"""
You are an AI that makes great prompts for an image generation model. The user passes in a simple prompt and you make it richer,
"""
return prompt
IDVORKIN_LORA_MODEL = "idvorkin/idvorkin-flux-lora-1:4bd4ea7bf781298ebd315871972b9becc6c9e94d3d361bfb2425098e40e88192"
def show(img):
if "TMUX" in os.environ:
os.system(f"timg --grid 2 --title -ps {img}")
else:
os.system(f"timg --grid 2 --title -p {img}")
@app.command()
def gen_flux(
prompt: Annotated[
str,
typer.Argument(
help="Text prompt to generate the image from (can also be provided via stdin)",
show_default="A pixar style 3d render of a raccoon",
),
] = "A pixar style 3d render of a raccoon",
raw: Annotated[
bool, typer.Option(help="Use raw prompt without enhancement")
] = False,
):
"""
Generate an image using the Flux model based on the given prompt.
Args:
prompt (str): The text prompt to generate the image from.
raw (bool): If True, use the raw prompt without enhancement
"""
# Get prompt from stdin if available
if not sys.stdin.isatty():
stdin_prompt = sys.stdin.read().strip()
if stdin_prompt:
prompt = stdin_prompt
ic("using STDIN:", prompt)
if not prompt:
raise typer.BadParameter("No prompt provided via argument or stdin")
ic("final prompt:", prompt)
if raw:
augmented_prompt = prompt
else:
augmented_prompt = prompt_illustrate(prompt)
ic(augmented_prompt)
output = replicate.run(
"black-forest-labs/flux-1.1-pro",
input={
"prompt": augmented_prompt,
"aspect_ratio": "1:1",
"output_format": "webp",
"output_quality": 80,
"safety_tolerance": 2,
"prompt_upsampling": True,
},
)
ic(output)
show(output)
ic(output)
print (str(output))
@app.command()
def gen_igor(
prompt: Annotated[
str,
typer.Argument(
help="Text prompt to generate an image of Igor (can also be provided via stdin)",
show_default="A pixar style 3d render of Igor",
),
] = "A pixar style 3d render of Igor",
pixar: Annotated[bool, typer.Option(help="Use Pixar style rendering")] = True,
raw: Annotated[
bool, typer.Option(help="Use raw prompt without enhancement")
] = False,
):
"""
Generate an image of Igor (Idvorkin) using a custom LoRA model based on the given prompt.
Args:
prompt (str): The text prompt to generate the image from.
pixar (bool): If True, use Pixar style rendering
raw (bool): If True, use the raw prompt without enhancement
"""
# Get prompt from stdin if available
if not sys.stdin.isatty():
stdin_prompt = sys.stdin.read().strip()
if stdin_prompt:
prompt = stdin_prompt
ic("using STDIN:", prompt)
if not prompt:
raise typer.BadParameter("No prompt provided via argument or stdin")
ic("final prompt:", prompt)
if raw:
augmented_prompt = prompt
else:
augmented_prompt = (
prompt_illustrate_igor(prompt)
if not pixar
else prompt_illustrate_igor_pixar(prompt)
)
ic(augmented_prompt)
extra_lora = ""
if pixar:
extra_lora = "huggingface.co/dallinmackay/Encanto-FLUX"
images = replicate.run(
IDVORKIN_LORA_MODEL,
input={
"model": "dev",
"prompt": augmented_prompt,
"lora_scale": 1,
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"extra_lora_scale": 0.8,
"num_inference_steps": 28,
"disable_safety_checker": True,
"extra_lora": extra_lora,
},
)
image = images[0]
ic(image)
show(image)
ic(image)
print (str(image))
def make_grid_of_images(images):
from PIL import Image
import requests
from io import BytesIO
import tempfile
# Calculate the grid dimensions
num_images = len(images)
grid_size = int(num_images**0.5)
if grid_size**2 < num_images:
grid_size += 1
# Create a new blank image for the grid
grid_width = grid_size * 300
grid_height = grid_size * 300
grid = Image.new("RGB", (grid_width, grid_height))
# Download and append each image to the grid
for i, url in enumerate(images):
response = requests.get(url)
img = Image.open(BytesIO(response.content))
img = img.resize((300, 300))
row = i // grid_size
col = i % grid_size
grid.paste(img, (col * 300, row * 300))
# Save the grid to a temporary file
with tempfile.NamedTemporaryFile(suffix=".webp", delete=False) as tmp_file:
grid.save(tmp_file.name, format="WEBP")
return tmp_file.name
@app.command()
def training():
"""
List and display information about model trainings.
"""
trainings = replicate.trainings.list()
for train in trainings:
ic(train)
# first model
first_model = replicate.trainings.get("0wenrm2tcdrm40chj5ytchdebm")
Path("model_dump.json").write_text(first_model.json(indent=2))
@app.command()
def dump():
"""
Dump model information and download model files for the custom Idvorkin LoRA model.
"""
model = replicate.models.get("idvorkin/idvorkin-flux-lora-1")
# write model to file
ic(model)
version = model.versions.list()[0]
Path("model_dump.json").write_text(version.json(indent=2))
# Get the URLs of the model files
files = (
version.openapi_schema.get("components", {})
.get("schemas", {})
.get("Input", {})
.get("properties", {})
.get("weights", {})
.get("default", [])
)
ic(files)
# Download each file
for file_url in files:
response = requests.get(file_url)
filename = file_url.split("/")[-1]
with open(filename, "wb") as f:
f.write(response.content)
@app.command()
def studio(
port: Annotated[
int | None, typer.Option(help="Port to run the ELL Studio on")
] = None,
):
"""
Launch the ELL Studio interface for interactive model exploration and testing.
This command opens the ELL Studio, allowing users to interactively work with
language models, test prompts, and analyze responses in a user-friendly environment.
"""
run_studio(port=port)
@logger.catch()
def app_wrap_loguru():
app()
if __name__ == "__main__":
app_wrap_loguru()