-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining_code.py
108 lines (90 loc) · 3.69 KB
/
training_code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader, random_split
from datasetmaker import CSVDataset
from nets import HandNet, FaceNet, HandNet2
import os
import argparse
# CONSTANTS
BATCH_SIZE = 64
LEARNING_RATE = 0.001
NUM_EPOCHS = 10
MODEL_TYPE = None
def get_model(model_type):
if model_type == 'hand' or model_type == 0:
return HandNet()
elif model_type =="hand2":
return HandNet2()
elif model_type == 'face' or model_type == 1:
return FaceNet()
else:
raise ValueError('Invalid model type')
# Load dataset
def get_dataloaders(data_path):
dataset = CSVDataset(data_path)
dataset.check()
# Split dataset into training and test sets
train_size = int(0.8 * len(dataset))
test_size = len(dataset) - train_size
train_dataset, test_dataset = random_split(dataset, [train_size, test_size])
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False)
return train_loader, test_loader
# Define model, loss function, and optimizer
def train_model(model_type, train_loader, test_loader):
model = get_model(model_type)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)
# Training loop
num_epochs = NUM_EPOCHS
for epoch in range(num_epochs):
model.train()
running_loss = 0.0
for inputs, labels in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {running_loss / len(train_loader):.4f},', end=' ')
evaluate_model(model, test_loader)
return model
# Evaluation on the test set
def evaluate_model(model, test_loader):
model.eval()
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in test_loader:
outputs = model(inputs)
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'Accuracy: {100 * correct / total:.2f}%')
# Save model in /models directory
def save_model(model):
if not os.path.exists('./models'):
os.makedirs('./models')
torch.save(model.state_dict(), f'./models/{MODEL_TYPE}_model_{0}_scaled_epoch{NUM_EPOCHS}_lr{LEARNING_RATE}_bs_{BATCH_SIZE}.pth')
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Train a hand or face gesture recognition model')
parser.add_argument('model_type', type=str, help='Type of model to train: hand or face')
parser.add_argument('data_path', type=str, help='Path to the CSV file containing the data')
parser.add_argument('--batch_size', type=int, default=16, help='Batch size for training')
parser.add_argument('--learning_rate', type=float, default=0.001, help='Learning rate for training')
parser.add_argument('--num_epochs', type=int, default=50, help='Number of epochs for training')
args = parser.parse_args()
MODEL_TYPE = args.model_type
DATA_PATH = args.data_path
if args.batch_size: BATCH_SIZE = args.batch_size
if args.learning_rate: LEARNING_RATE = args.learning_rate
if args.num_epochs: NUM_EPOCHS = args.num_epochs
train_loader, test_loader = get_dataloaders(DATA_PATH)
print("Data loaded successfully.")
model = train_model(MODEL_TYPE, train_loader, test_loader)
evaluate_model(model, test_loader)
print("Model training and evaluation completed successfully.")
save_model(model)
print("Model saved successfully.")