-
Notifications
You must be signed in to change notification settings - Fork 41
/
colpaliRAG_module.py
666 lines (565 loc) · 30 KB
/
colpaliRAG_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
import os
import logging
import torch
import builtins
from byaldi import RAGMultiModalModel
from .graphRAG_module import GraphRAGapp
from typing import Tuple, Optional, Dict, Union, List, Any
from pathlib import Path
import numpy as np
from PIL import Image
from io import BytesIO
import base64
from .send_request import send_request
import asyncio
import json
import shutil
from PIL import Image
from io import BytesIO
from pdf2image import convert_from_path
from .utils import get_api_key, load_placeholder_image
import comfy.model_management as mm
from comfy.utils import ProgressBar
import folder_paths
from .transformers_api import TransformersModelManager
import sys
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Global variable for model caching
if not hasattr(builtins, 'global_colpali_model'):
builtins.global_colpali_model = None
class colpaliRAGapp:
def __init__(self):
self.comfy_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
self.rag_dir = os.path.join(folder_paths.base_path, "custom_nodes", "ComfyUI-IF_AI_tools", "IF_AI", "rag")
self._rag_root_dir = None
self._input_dir = None
self.graphrag_app = GraphRAGapp()
self.transformers_api = TransformersModelManager()
self.cached_index_model = None # Add this line to store the loaded index
self.cached_index_name = None # Add this line to track which index is loaded
@property
def rag_root_dir(self):
return self._rag_root_dir
@rag_root_dir.setter
def rag_root_dir(self, value):
self._rag_root_dir = value
self._input_dir = os.path.join(self.rag_dir, value, "input") if value else None
logger.debug(f"rag_root_dir setter: set to {self._rag_root_dir}")
logger.debug(f"input_dir set to {self._input_dir}")
if self._input_dir:
os.makedirs(self._input_dir, exist_ok=True)
logger.debug(f"Created input directory: {self._input_dir}")
def set_rag_root_dir(self, rag_folder_name):
if rag_folder_name:
new_rag_root_dir = os.path.join(self.rag_dir, rag_folder_name)
else:
new_rag_root_dir = os.path.join(self.rag_dir, "rag_data")
self._rag_root_dir = rag_folder_name # Ensure rag_folder_name is a string
self._input_dir = os.path.join(new_rag_root_dir, "input")
# Ensure directories exist
os.makedirs(self._rag_root_dir, exist_ok=True)
os.makedirs(self._input_dir, exist_ok=True)
logger.debug(f"set_rag_root_dir: rag_root_dir set to {self._rag_root_dir}")
logger.debug(f"set_rag_root_dir: input_dir set to {self._input_dir}")
return self._rag_root_dir, self._input_dir
@classmethod
def get_colpali_model(cls, query_type):
logger.debug(f"Attempting to get ColPali model. Current state: {'Loaded' if builtins.global_colpali_model is not None else 'Not loaded'}")
if query_type == "colqwen2":
model_path = os.path.join(folder_paths.models_dir, "LLM", "colqwen2-v0.1")
elif query_type == "colpali-v1.2":
model_path = os.path.join(folder_paths.models_dir, "LLM", "colpali-v1.2")
elif query_type == "colpali":
model_path = os.path.join(folder_paths.models_dir, "LLM", "colpali")
else:
logger.error(f"Invalid query type: {query_type}")
return None
if builtins.global_colpali_model is None:
torch.cuda.empty_cache()
logger.info(f"Loading ColPali model from {model_path}")
try:
builtins.global_colpali_model = RAGMultiModalModel.from_pretrained(
model_path,
device="cuda",
verbose=1,
)
logger.info("ColPali model loaded and cached globally on CUDA")
except Exception as e:
logger.error(f"Error loading ColPali model: {str(e)}")
builtins.global_colpali_model = None
else:
logger.info("Using existing globally cached ColPali model")
return builtins.global_colpali_model
async def insert(self):
try:
logger.debug("Starting insert function...")
settings = self.graphrag_app.load_settings()
index_path = os.path.join(self.rag_dir, settings.get("rag_folder_name"), "input")
index_name = settings.get("rag_folder_name")
query_type = settings.get("query_type", "colqwen")
# Get the model
colpali_model = self.get_colpali_model(query_type)
if colpali_model is None:
logger.error("Failed to load ColPali model for indexing")
return False
# Check if index already exists
index_folder = os.path.join(".byaldi", index_name)
is_existing_index = os.path.exists(index_folder)
# Patch the processor's process_images method
original_process_images = colpali_model.model.processor.process_images
def process_images_wrapper(*args, **kwargs):
result = original_process_images(*args, **kwargs)
processed = {}
for k, v in result.items():
if torch.is_tensor(v):
if 'pixel_values' in k:
processed[k] = v.to(dtype=torch.bfloat16)
else:
processed[k] = v.to(dtype=torch.long)
else:
processed[k] = v
return processed
try:
# Apply the patch
colpali_model.model.processor.process_images = process_images_wrapper
# Create new index or add to existing one
if is_existing_index:
logger.info(f"Found existing index: {index_name}, loading it first...")
# Load existing index
colpali_model = self.get_colpali_model(query_type)
colpali_model = colpali_model.from_index(
index_name,
index_root=".byaldi",
device="cuda",
verbose=1
)
# Get list of already indexed files
indexed_files = set()
if hasattr(colpali_model.model, 'doc_ids_to_file_names'):
indexed_files = set(colpali_model.model.doc_ids_to_file_names.values())
# Process new files only
new_files = []
for file in os.listdir(index_path):
file_path = os.path.join(index_path, file)
if file_path not in indexed_files:
new_files.append(file_path)
if new_files:
logger.info(f"Adding {len(new_files)} new documents to existing index")
colpali_model.index(
input_path=new_files,
index_name=index_name,
store_collection_with_index=False,
overwrite=False,
max_image_width=1024,
max_image_height=1024,
)
else:
logger.info("No new documents to add to the index")
else:
logger.info(f"Creating new index: {index_name}")
colpali_model.index(
input_path=index_path,
index_name=index_name,
store_collection_with_index=False,
overwrite=False,
max_image_width=1024,
max_image_height=1024,
)
# Remove extra folder if it exists
extra_folder = os.path.join(self.comfy_dir, settings.get("rag_folder_name"))
if os.path.exists(extra_folder) and os.path.isdir(extra_folder):
logger.debug(f"Removing extra folder: {extra_folder}")
shutil.rmtree(extra_folder)
return True
finally:
# Restore original process_images method
colpali_model.model.processor.process_images = original_process_images
except Exception as e:
logger.error(f"Error during indexing: {str(e)}")
return False
def load_indexed_images(self, index_name, size):
"""Load previously indexed images from the stored index and convert new PDFs"""
try:
index_path = os.path.join(self.rag_dir, index_name, "input")
images_path = os.path.join(self.rag_dir, index_name, "converted_images")
os.makedirs(images_path, exist_ok=True)
# Get sorted list of PDF files to ensure consistent ordering
pdf_files = sorted([f for f in os.listdir(index_path) if f.lower().endswith('.pdf')])
if not pdf_files:
logger.warning("No PDF files found in the input directory.")
return None
all_images = {}
# Process each PDF file
for doc_id, pdf_file in enumerate(pdf_files):
pdf_name = os.path.splitext(pdf_file)[0]
pdf_images_dir = os.path.join(images_path, pdf_name)
pdf_path = os.path.join(index_path, pdf_file)
logger.debug(f"Processing PDF {pdf_file} as doc_id {doc_id}")
# Check if conversion is needed
needs_conversion = True
if os.path.exists(pdf_images_dir) and os.listdir(pdf_images_dir):
pdf_mtime = os.path.getmtime(pdf_path)
newest_image = max(
os.path.getmtime(os.path.join(pdf_images_dir, f))
for f in os.listdir(pdf_images_dir)
if f.endswith('.png')
)
needs_conversion = pdf_mtime > newest_image
if needs_conversion:
logger.info(f"Converting PDF: {pdf_file}")
os.makedirs(pdf_images_dir, exist_ok=True)
images = convert_from_path(
pdf_path,
thread_count=os.cpu_count() - 1,
fmt='png',
paths_only=False,
size=size,
)
# Save converted images with consistent naming
for page_num, img in enumerate(images, 1):
img_path = os.path.join(pdf_images_dir, f"page_{page_num:03d}.png")
img.save(img_path, "PNG")
logger.debug(f"Saved {img_path}")
# Load images in correct order
page_files = sorted(
[f for f in os.listdir(pdf_images_dir) if f.endswith('.png')],
key=lambda x: int(x.split('_')[1].split('.')[0]) # Sort by page number
)
images = []
for page_file in page_files:
img_path = os.path.join(pdf_images_dir, page_file)
try:
img = Image.open(img_path)
if img.mode != 'RGB':
img = img.convert('RGB')
images.append(img)
logger.debug(f"Loaded {img_path}")
except Exception as e:
logger.error(f"Error loading {img_path}: {e}")
continue
all_images[doc_id] = images
logger.debug(f"Loaded {len(images)} pages for document {doc_id} ({pdf_file})")
return all_images
except Exception as e:
logger.error(f"Error loading indexed images: {str(e)}")
return None
def get_top_results(self, results, all_images, index_name, llm_provider="transformers"):
"""
Get relevant images and their metadata based on search results.
Returns lists of images and masks along with result information.
Args:
results: Search results to process
all_images: Dictionary of loaded images
index_name: Name of the index being used
llm_provider: The LLM provider being used (default: "transformers")
"""
top_results_images = []
top_results_masks = []
result_info = []
try:
# Get list of PDF files
index_path = os.path.join(self.rag_dir, index_name, "input")
pdf_files = sorted([f for f in os.listdir(index_path) if f.lower().endswith('.pdf')])
# Sort and filter results with safe score extraction
def get_score(result):
try:
return float(result.score) if hasattr(result, 'score') else 0.0
except (ValueError, TypeError):
return 0.0
sorted_results = sorted(results, key=get_score, reverse=True)
# For non-standard LLM providers, only take the highest scoring result
if llm_provider.lower() not in ["transformers", "openai", "anthropic"]:
sorted_results = sorted_results[:1]
logger.debug("Processing sorted results:")
for r in sorted_results:
score = get_score(r)
try:
doc_id = int(r.doc_id) if isinstance(r.doc_id, str) else r.doc_id
page_num = int(r.page_num) if isinstance(r.page_num, str) else r.page_num
logger.debug(f"Doc: {doc_id}, Page: {page_num}, Score: {score}")
except (ValueError, TypeError) as e:
logger.warning(f"Invalid result format: {e}")
continue
# Create a mapping of original doc_ids to ensure correct ordering
doc_id_map = {i: os.path.splitext(pdf_file)[0] for i, pdf_file in enumerate(pdf_files)}
for result in sorted_results:
# Updated integer conversion logic
try:
doc_id = int(result.doc_id) if isinstance(result.doc_id, str) else result.doc_id
page_num = int(result.page_num) if isinstance(result.page_num, str) else result.page_num
except (ValueError, TypeError) as e:
logger.warning(f"Invalid doc_id or page_num format: {e}")
continue
# Validate document ID
if doc_id not in all_images:
logger.warning(f"Document ID {doc_id} not found in loaded images")
continue
# Validate page number (convert to 0-based index)
page_idx = page_num - 1
if page_idx < 0 or page_idx >= len(all_images[doc_id]):
logger.warning(f"Invalid page {page_num} for document {doc_id}")
continue
# Get image for this result
try:
image = all_images[doc_id][page_idx]
logger.debug(f"Retrieved image for doc {doc_id} ('{doc_id_map[doc_id]}'), page {page_num}")
# Ensure image is in RGB format
if image.mode != 'RGB':
image = image.convert('RGB')
# Convert to tensor
img_array = np.array(image).astype(np.float32) / 255.0
img_tensor = torch.from_numpy(img_array)[None,]
# Create corresponding mask
mask_tensor = torch.ones((1, img_array.shape[0], img_array.shape[1]),
dtype=torch.float32, device="cpu")
# Add to results
top_results_images.append(img_tensor)
top_results_masks.append(mask_tensor)
# Store result info
result_info.append({
"doc_id": doc_id,
"page_num": page_num,
"score": float(result.score) if hasattr(result, 'score') else 0.0,
"pdf_name": doc_id_map[doc_id],
"metadata": result.metadata if hasattr(result, 'metadata') else {}
})
except Exception as e:
logger.error(f"Error processing image for doc {doc_id}, page {page_num}: {e}")
continue
if top_results_images:
# Combine tensors
try:
top_combined_images = torch.cat(top_results_images, dim=0)
top_combined_masks = torch.cat(top_results_masks, dim=0)
# Add debug logging for tensor shapes
logger.debug(f"Number of images processed: {len(top_results_images)}")
logger.debug(f"Combined images tensor shape: {top_combined_images.shape}")
logger.debug(f"Combined masks tensor shape: {top_combined_masks.shape}")
if llm_provider.lower() not in ["transformers", "openai", "anthropic"]:
# Verify we only have one image
assert top_combined_images.shape[0] == 1, "Expected only one image for non-standard LLM provider"
assert top_combined_masks.shape[0] == 1, "Expected only one mask for non-standard LLM provider"
logger.debug("Confirmed single image output for non-standard LLM provider")
logger.debug("Final result order:")
for info in result_info:
logger.debug(f"Doc: {info['doc_id']} ({info['pdf_name']}), Page: {info['page_num']}, Score: {info['score']:.2f}")
return top_combined_images, top_combined_masks, result_info
except Exception as e:
logger.error(f"Error combining tensors: {e}")
return None, None, []
logger.debug("No valid images to process")
return None, None, []
except Exception as e:
logger.error(f"Error in get_top_results: {str(e)}")
return None, None, []
async def query(self, prompt: str, query_type: str, system_message_str: str, **kwargs):
try:
# 1. Initialize settings and parameters
settings: dict = self.graphrag_app.load_settings()
llm_provider: str = kwargs.pop("llm_provider", settings.get("llm_provider", "ollama"))
base_ip: str = kwargs.pop("base_ip", settings.get("base_ip", "localhost"))
port: str = kwargs.pop("port", settings.get("port", "11434"))
llm_model: str = kwargs.pop('llm_model', settings.get("llm_model", "llama3.1:latest"))
llm_api_key: str = settings.get('external_llm_api_key') if settings.get('external_llm_api_key') != "" else get_api_key(f"{settings['llm_provider'].upper()}_API_KEY", settings['llm_provider'])
keep_alive: str = kwargs.pop("keep_alive", settings.get("keep_alive", "False"))
seed: str = kwargs.pop("seed", settings.get("seed", "None"))
temperature: float = float(kwargs.pop("temperature", settings.get("temperature", "0.7")))
top_p: float = float(kwargs.pop("top_p", settings.get("top_p", "0.90")))
top_k: int = int(kwargs.pop("top_k", settings.get("top_k", "40")))
max_tokens: int = int(kwargs.pop("max_tokens", settings.get("max_tokens", "2048")))
presence_penalty: float = float(kwargs.pop("repeat_penalty", settings.get("repeat_penalty", "1.2")))
random: str = kwargs.pop("random", settings.get("random", "False"))
stop: str = kwargs.pop("stop", settings.get("stop", "None"))
precision: str = kwargs.pop("precision", settings.get("precision", "fp16"))
attention: str = kwargs.pop("attention", settings.get("attention", "sdpa"))
index_name: str = kwargs.pop("rag_folder_name", settings.get("rag_folder_name"))
prime_directives: str = kwargs.pop("prime_directives", settings.get("prime_directives", "None"))
aspect_ratio: str = kwargs.pop("aspect_ratio", settings.get("aspect_ratio", "16:9"))
top_k_search: str = kwargs.pop("top_k_search", settings.get("top_k_search", "3"))
#vertical/horizontal is x/y on pdf2image that is why I inverted the aspect ratio
size: tuple[int, int] = (768, 1024) if aspect_ratio == "16:9" else (1024, 768) if aspect_ratio == "9:16" else (1024, 1024)
messages: list = []
if prime_directives != "None":
system_message_str = prime_directives
elif system_message_str == "None":
system_message_str = "You are a helpful assistant. Analyze the image and answer the user's question."
# 2. Get and validate model
colpali_model = await self._prepare_model(query_type, index_name)
if not colpali_model:
return self._create_error_response(prompt, "ColPali model not available")
# 3. Perform search and validate results
top_k_search_int: int = int(top_k_search)
results: Union[List[str], List[Any]] = await self._perform_search(
colpali_model,
str(prompt),
top_k_search_int,
llm_provider=llm_provider
)
if not results:
return self._create_error_response(prompt, "No relevant documents found", tool_output="Search returned no results")
# 4. Process images
image_data: Optional[Union[
Tuple[torch.Tensor, torch.Tensor, List[Dict]],
Tuple[torch.Tensor, torch.Tensor, List[str]]
]] = await self._process_images(
results,
index_name,
size,
llm_provider=llm_provider
)
if not image_data:
return self._create_error_response(prompt, "Failed to process images")
images_tensor: torch.Tensor
masks_tensor: torch.Tensor
result_info: Union[List[Dict], List[str]]
images_tensor, masks_tensor, result_info = image_data
logger.debug(f"Images tensor shape: {images_tensor.shape}")
logger.debug(f"Result info: {result_info}")
try:
generated_text: Union[str, List[str]]
generated_text = await send_request(
llm_provider=llm_provider,
base_ip=base_ip,
port=port,
images=images_tensor,
llm_model=llm_model,
system_message=system_message_str,
user_message=prompt,
messages=messages,
seed=seed,
temperature=temperature,
max_tokens=max_tokens,
random=random,
top_k=top_k,
top_p=top_p,
repeat_penalty=presence_penalty,
stop=stop,
keep_alive=keep_alive,
llm_api_key=llm_api_key if llm_api_key != "" else None,
precision=precision,
attention=attention,
)
# Handle case where generated_text is a list
if isinstance(generated_text, list):
generated_text = "\n".join(generated_text) # Join with newlines to preserve formatting
except Exception as e:
logger.error(f"Error in API request: {str(e)}")
return {
"Question": prompt,
"Response": f"Error communicating with {llm_provider}: {str(e)}",
"Negative": "",
"Tool_Output": str(result_info),
"Retrieved_Image": images_tensor.detach() if torch.is_tensor(images_tensor) else None,
"Mask": masks_tensor.detach() if torch.is_tensor(masks_tensor) else None
}
# 6. Format and return response
return {
"Question": prompt,
"Response": generated_text,
"Negative": "",
"Tool_Output": self._format_tool_output(result_info),
"Retrieved_Image": images_tensor,
"Mask": masks_tensor
}
except Exception as e:
logger.error(f"Error in colpali query: {str(e)}")
return self._create_error_response(prompt, f"Error processing query: {str(e)}")
async def _prepare_model(self, query_type, index_name):
"""Prepare and validate the ColPali model"""
try:
# Check if we already have the correct index loaded
if self.cached_index_model is not None and self.cached_index_name == index_name:
logger.debug(f"Using cached index model for {index_name}")
return self.cached_index_model
# Get base model
colpali_model = self.get_colpali_model(query_type)
if not colpali_model:
logger.error("Failed to get base ColPali model")
return None
# Load new index
logger.debug(f"Loading new index {index_name} from .byaldi...")
try:
model = RAGMultiModalModel.from_index(
index_name,
index_root=".byaldi",
device="cuda",
verbose=1
)
# Verify index loaded correctly
if not hasattr(model.model, 'indexed_embeddings') or not model.model.indexed_embeddings:
logger.error("Index loaded but no embeddings found")
return None
# Cache the successfully loaded index
self.cached_index_model = model
self.cached_index_name = index_name
logger.debug(f"Successfully loaded and cached index with {len(model.model.indexed_embeddings)} embeddings")
return model
except Exception as e:
logger.error(f"Error loading index: {str(e)}")
return None
except Exception as e:
logger.error(f"Error in _prepare_model: {str(e)}")
return None
async def _perform_search(self, model, prompt, top_k_search, llm_provider="transformers"):
"""
Perform search and validate results
Args:
model: The RAG model to use for search
prompt: The search prompt
top_k_search: Number of results to return
llm_provider: The LLM provider being used (default: "transformers")
"""
logger.debug(f"Searching with prompt: {prompt}")
# Adjust top_k based on llm_provider
if llm_provider.lower() not in ["transformers", "openai", "anthropic"]:
top_k_search = 1
results = model.search(prompt, k=top_k_search)
if results:
for result in results:
if hasattr(result, 'doc_id'):
result.doc_id = int(result.doc_id) if isinstance(result.doc_id, str) else result.doc_id
if hasattr(result, 'page_num'):
result.page_num = int(result.page_num) if isinstance(result.page_num, str) else result.page_num
return results
async def _process_images(self, results, index_name, size, llm_provider="transformers"):
"""Process and validate images from search results"""
all_images = self.load_indexed_images(index_name, size)
if all_images is None:
return None
return self.get_top_results(results, all_images, index_name, llm_provider)
def _format_tool_output(self, result_info):
"""Format tool output text"""
tool_text = "Retrieved Documents:\n"
for info in result_info:
tool_text += f"\nDocument {info['doc_id']}, Page {info['page_num']}"
tool_text += f"\nRelevance Score: {info['score']:.2f}"
if info['metadata']:
tool_text += f"\nMetadata: {info['metadata']}"
tool_text += "\n"
return tool_text
def _create_error_response(self, prompt, error_message, tool_output=None):
"""Create standardized error response"""
return {
"Question": prompt,
"Response": error_message,
"Negative": "",
"Tool_Output": tool_output,
"Retrieved_Image": None,
"Mask": None
}
def cleanup(self):
"""Cleanup method to free up GPU memory when needed"""
if builtins.global_colpali_model:
del builtins.global_colpali_model
builtins.global_colpali_model = None
torch.cuda.empty_cache()
logger.info("Cleaned up models and freed GPU memory")
def cleanup_index(self):
"""Method to manually clear the cached index if needed"""
self.cached_index_model = None
self.cached_index_name = None
torch.cuda.empty_cache()
logger.info("Cleared cached index and freed GPU memory")
async def _generate_text_response(self, images_tensor, prompt, system_message_str, params):
"""Generate text response based on provider"""