-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblender.py
136 lines (114 loc) · 4.93 KB
/
blender.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#!/usr/bin/env python
"""
An audio synthesis library for Python.
It makes heavy use of the `itertools` module.
Good luck! (This is a work in progress.)
"""
import sys
import math
import wave
import struct
import random
import argparse
from itertools import count, islice
try:
from itertools import zip_longest
except ImportError:
from itertools import imap as map
from itertools import izip as zip
from itertools import izip_longest as zip_longest
try:
stdout = sys.stdout.buffer
except AttributeError:
stdout = sys.stdout
# metadata
__author__ = 'Zach Denton'
__author_email__ = '[email protected]'
__version__ = '0.3'
__url__ = 'http://github.com/zacharydenton/wavebender'
__longdescr__ = '''
An audio synthesis library for Python.
'''
__classifiers__ = [
'Topic :: Multimedia :: Sound/Audio :: Sound Synthesis'
]
def grouper(n, iterable, fillvalue=None):
"grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx"
args = [iter(iterable)] * n
return zip_longest(fillvalue=fillvalue, *args)
def sine_wave(frequency=440.0, framerate=44100, amplitude=0.5,
skip_frame=0):
'''
Generate a sine wave at a given frequency of infinite length.
'''
if amplitude > 1.0: amplitude = 1.0
if amplitude < 0.0: amplitude = 0.0
for i in count(skip_frame):
sine = math.sin(2.0 * math.pi * float(frequency) * (float(i) / float(framerate)))
yield float(amplitude) * sine
def square_wave(frequency=440.0, framerate=44100, amplitude=0.5):
for s in sine_wave(frequency, framerate, amplitude):
if s > 0:
yield amplitude
elif s < 0:
yield -amplitude
else:
yield 0.0
def damped_wave(frequency=440.0, framerate=44100, amplitude=0.5, length=44100):
if amplitude > 1.0: amplitude = 1.0
if amplitude < 0.0: amplitude = 0.0
return (math.exp(-(float(i%length)/float(framerate))) * s for i, s in enumerate(sine_wave(frequency, framerate, amplitude)))
def white_noise(amplitude=0.5):
'''
Generate random samples.
'''
return (float(amplitude) * random.uniform(-1, 1) for i in count(0))
def compute_samples(channels, nsamples=None):
'''
create a generator which computes the samples.
essentially it creates a sequence of the sum of each function in the channel
at each sample in the file for each channel.
'''
return islice(zip(*(map(sum, zip(*channel)) for channel in channels)), nsamples)
def write_wavefile(f, samples, nframes=None, nchannels=2, sampwidth=2, framerate=44100, bufsize=2048):
"Write samples to a wavefile."
if nframes is None:
nframes = 0
w = wave.open(f, 'wb')
w.setparams((nchannels, sampwidth, framerate, nframes, 'NONE', 'not compressed'))
max_amplitude = float(int((2 ** (sampwidth * 8)) / 2) - 1)
# split the samples into chunks (to reduce memory consumption and improve performance)
for chunk in grouper(bufsize, samples):
frames = b''.join(b''.join(struct.pack('h', int(max_amplitude * sample)) for sample in channels) for channels in chunk if channels is not None)
w.writeframesraw(frames)
w.close()
def write_pcm(f, samples, sampwidth=2, framerate=44100, bufsize=2048):
"Write samples as raw PCM data."
max_amplitude = float(int((2 ** (sampwidth * 8)) / 2) - 1)
# split the samples into chunks (to reduce memory consumption and improve performance)
for chunk in grouper(bufsize, samples):
frames = b''.join(b''.join(struct.pack('h', int(max_amplitude * sample)) for sample in channels) for channels in chunk if channels is not None)
f.write(frames)
f.close()
def main():
parser = argparse.ArgumentParser(prog="wavebender")
parser.add_argument('-c', '--channels', help="Number of channels to produce", default=2, type=int)
parser.add_argument('-b', '--bits', help="Number of bits in each sample", choices=(16,), default=16, type=int)
parser.add_argument('-r', '--rate', help="Sample rate in Hz", default=44100, type=int)
parser.add_argument('-t', '--time', help="Duration of the wave in seconds.", default=60, type=int)
parser.add_argument('-a', '--amplitude', help="Amplitude of the wave on a scale of 0.0-1.0.", default=0.5, type=float)
parser.add_argument('-f', '--frequency', help="Frequency of the wave in Hz", default=440.0, type=float)
parser.add_argument('filename', help="The file to generate.")
args = parser.parse_args()
# each channel is defined by infinite functions which are added to produce a sample.
channels = ((sine_wave(args.frequency, args.rate, args.amplitude),) for i in range(args.channels))
# convert the channel functions into waveforms
samples = compute_samples(channels, args.rate * args.time)
# write the samples to a file
if args.filename == '-':
filename = stdout
else:
filename = args.filename
write_wavefile(filename, samples, args.rate * args.time, args.channels, args.bits // 8, args.rate)
if __name__ == "__main__":
main()