forked from zlib-ng/zlib-ng
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inflate_p.h
230 lines (198 loc) · 7.54 KB
/
inflate_p.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
/* inflate_p.h -- Private inline functions and macros shared with more than one deflate method
*
*/
#ifndef INFLATE_P_H
#define INFLATE_P_H
#include <stdlib.h>
/* Architecture-specific hooks. */
#ifdef S390_DFLTCC_INFLATE
# include "arch/s390/dfltcc_inflate.h"
#else
/* Memory management for the inflate state. Useful for allocating arch-specific extension blocks. */
# define ZALLOC_INFLATE_STATE(strm) ((struct inflate_state *)ZALLOC(strm, 1, sizeof(struct inflate_state)))
# define ZFREE_STATE(strm, addr) ZFREE(strm, addr)
# define ZCOPY_INFLATE_STATE(dst, src) memcpy(dst, src, sizeof(struct inflate_state))
/* Memory management for the window. Useful for allocation the aligned window. */
# define ZALLOC_WINDOW(strm, items, size) ZALLOC(strm, items, size)
# define ZCOPY_WINDOW(dest, src, n) memcpy(dest, src, n)
# define ZFREE_WINDOW(strm, addr) ZFREE(strm, addr)
/* Invoked at the end of inflateResetKeep(). Useful for initializing arch-specific extension blocks. */
# define INFLATE_RESET_KEEP_HOOK(strm) do {} while (0)
/* Invoked at the beginning of inflatePrime(). Useful for updating arch-specific buffers. */
# define INFLATE_PRIME_HOOK(strm, bits, value) do {} while (0)
/* Invoked at the beginning of each block. Useful for plugging arch-specific inflation code. */
# define INFLATE_TYPEDO_HOOK(strm, flush) do {} while (0)
/* Returns whether zlib-ng should compute a checksum. Set to 0 if arch-specific inflation code already does that. */
# define INFLATE_NEED_CHECKSUM(strm) 1
/* Returns whether zlib-ng should update a window. Set to 0 if arch-specific inflation code already does that. */
# define INFLATE_NEED_UPDATEWINDOW(strm) 1
/* Invoked at the beginning of inflateMark(). Useful for updating arch-specific pointers and offsets. */
# define INFLATE_MARK_HOOK(strm) do {} while (0)
/* Invoked at the beginning of inflateSyncPoint(). Useful for performing arch-specific state checks. */
# define INFLATE_SYNC_POINT_HOOK(strm) do {} while (0)
/* Invoked at the beginning of inflateSetDictionary(). Useful for checking arch-specific window data. */
# define INFLATE_SET_DICTIONARY_HOOK(strm, dict, dict_len) do {} while (0)
/* Invoked at the beginning of inflateGetDictionary(). Useful for adjusting arch-specific window data. */
# define INFLATE_GET_DICTIONARY_HOOK(strm, dict, dict_len) do {} while (0)
#endif
/*
* Macros shared by inflate() and inflateBack()
*/
/* check function to use adler32() for zlib or crc32() for gzip */
#ifdef GUNZIP
# define UPDATE(check, buf, len) \
(state->flags ? PREFIX(crc32)(check, buf, len) : functable.adler32(check, buf, len))
#else
# define UPDATE(check, buf, len) functable.adler32(check, buf, len)
#endif
/* check macros for header crc */
#ifdef GUNZIP
# define CRC2(check, word) \
do { \
hbuf[0] = (unsigned char)(word); \
hbuf[1] = (unsigned char)((word) >> 8); \
check = PREFIX(crc32)(check, hbuf, 2); \
} while (0)
# define CRC4(check, word) \
do { \
hbuf[0] = (unsigned char)(word); \
hbuf[1] = (unsigned char)((word) >> 8); \
hbuf[2] = (unsigned char)((word) >> 16); \
hbuf[3] = (unsigned char)((word) >> 24); \
check = PREFIX(crc32)(check, hbuf, 4); \
} while (0)
#endif
/* Load registers with state in inflate() for speed */
#define LOAD() \
do { \
put = strm->next_out; \
left = strm->avail_out; \
next = strm->next_in; \
have = strm->avail_in; \
hold = state->hold; \
bits = state->bits; \
} while (0)
/* Restore state from registers in inflate() */
#define RESTORE() \
do { \
strm->next_out = put; \
strm->avail_out = left; \
strm->next_in = (z_const unsigned char *)next; \
strm->avail_in = have; \
state->hold = hold; \
state->bits = bits; \
} while (0)
/* Clear the input bit accumulator */
#define INITBITS() \
do { \
hold = 0; \
bits = 0; \
} while (0)
/* Ensure that there is at least n bits in the bit accumulator. If there is
not enough available input to do that, then return from inflate()/inflateBack(). */
#define NEEDBITS(n) \
do { \
while (bits < (unsigned)(n)) \
PULLBYTE(); \
} while (0)
/* Return the low n bits of the bit accumulator (n < 16) */
#define BITS(n) \
(hold & ((1U << (unsigned)(n)) - 1))
/* Remove n bits from the bit accumulator */
#define DROPBITS(n) \
do { \
hold >>= (n); \
bits -= (unsigned)(n); \
} while (0)
/* Remove zero to seven bits as needed to go to a byte boundary */
#define BYTEBITS() \
do { \
hold >>= bits & 7; \
bits -= bits & 7; \
} while (0)
/* Set mode=BAD and prepare error message */
#define SET_BAD(errmsg) \
do { \
state->mode = BAD; \
strm->msg = (char *)errmsg; \
} while (0)
#define INFLATE_FAST_MIN_HAVE 15
#define INFLATE_FAST_MIN_LEFT 260
/* Load 64 bits from IN and place the bytes at offset BITS in the result. */
static inline uint64_t load_64_bits(const unsigned char *in, unsigned bits) {
uint64_t chunk;
memcpy(&chunk, in, sizeof(chunk));
#if BYTE_ORDER == LITTLE_ENDIAN
return chunk << bits;
#else
return ZSWAP64(chunk) << bits;
#endif
}
/* Behave like chunkcopy, but avoid writing beyond of legal output. */
static inline uint8_t* chunkcopy_safe(uint8_t *out, uint8_t *from, uint64_t len, uint8_t *safe) {
uint64_t safelen = (safe - out) + 1;
len = MIN(len, safelen);
int32_t olap_src = from >= out && from < out + len;
int32_t olap_dst = out >= from && out < from + len;
uint64_t tocopy;
/* For all cases without overlap, memcpy is ideal */
if (!(olap_src || olap_dst)) {
memcpy(out, from, (size_t)len);
return out + len;
}
/* Complete overlap: Source == destination */
if (out == from) {
return out + len;
}
/* We are emulating a self-modifying copy loop here. To do this in a way that doesn't produce undefined behavior,
* we have to get a bit clever. First if the overlap is such that src falls between dst and dst+len, we can do the
* initial bulk memcpy of the nonoverlapping region. Then, we can leverage the size of this to determine the safest
* atomic memcpy size we can pick such that we have non-overlapping regions. This effectively becomes a safe look
* behind or lookahead distance. */
uint64_t non_olap_size = llabs(from - out); // llabs vs labs for compatibility with windows
memcpy(out, from, (size_t)non_olap_size);
out += non_olap_size;
from += non_olap_size;
len -= non_olap_size;
/* So this doesn't give use a worst case scenario of function calls in a loop,
* we want to instead break this down into copy blocks of fixed lengths */
while (len) {
tocopy = MIN(non_olap_size, len);
len -= tocopy;
while (tocopy >= 32) {
memcpy(out, from, 32);
out += 32;
from += 32;
tocopy -= 32;
}
if (tocopy >= 16) {
memcpy(out, from, 16);
out += 16;
from += 16;
tocopy -= 16;
}
if (tocopy >= 8) {
memcpy(out, from, 8);
out += 8;
from += 8;
tocopy -= 8;
}
if (tocopy >= 4) {
memcpy(out, from, 4);
out += 4;
from += 4;
tocopy -= 4;
}
if (tocopy >= 2) {
memcpy(out, from, 2);
out += 2;
from += 2;
tocopy -= 2;
}
if (tocopy) {
*out++ = *from++;
}
}
return out;
}
#endif