-
Notifications
You must be signed in to change notification settings - Fork 0
/
Performance Analysis
6332 lines (5545 loc) · 429 KB
/
Performance Analysis
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Parse numerals in Arabic
Arabic has 17 number functions and 22 irreducible numbers.
The number functions are:
_ ‘ashar: x -> [1]*x+10, e.g. 13 is thalatha ‘ashar
_e wa-‘ishrun: x -> [0]*x+22, e.g. 22 is ithnane wa-‘ishrun
_ wa-‘ishrun: x -> [1]*x+20, e.g. 23 is thalatha wa-‘ishrun
_ wa-thalathun: x -> [1]*x+30, e.g. 31 is wahid wa-thalathun
_ wa-arba’un: x -> [1]*x+40, e.g. 41 is wahid wa-arba’un
_ wa-khamsun: x -> [1]*x+50, e.g. 51 is wahid wa-khamsun
_ wa-sittun: x -> [1]*x+60, e.g. 61 is wahid wa-sittun
_ wa-sab’un: x -> [1]*x+70, e.g. 71 is wahid wa-sab’un
_ wa-thamanun: x -> [1]*x+80, e.g. 81 is wahid wa-thamanun
_ wa-tis’un: x -> [1]*x+90, e.g. 91 is wahid wa-tis’un
mi’a _: x -> [1]*x+100, e.g. 101 is mi’a wahid
mi’a _ wa-_: x -> [6, 1]*x+0, e.g. 121 is mi’a ‘ishrun wa-wahid
mi’a wa-_: x -> [1]*x+100, e.g. 131 is mi’a wa-wahid wa-thalathun
_ mi’a: x -> [100]*x+0, e.g. 200 is ithnan mi’a
_ mi’a _: x -> [100, 1]*x+0, e.g. 201 is ithnan mi’a wahid
_ mi’a _ wa-_: x -> [100, 1, 1]*x+0, e.g. 221 is ithnan mi’a ‘ishrun wa-wahid
_ mi’a wa-_: x -> [100, 1]*x+0, e.g. 231 is ithnan mi’a wa-wahid wa-thalathun
The irreducibles are: wahid (1), ithnan (2), thalatha (3), arba’a (4), khamsa (5), sitta (6), sab’a (7), thamaniya (8), tis’a (9), ‘ashra (10), ahada ‘ashar (11), ithna ‘ashar (12), ‘ishrun (20), wahed wa-‘ishrun (21), thalathun (30), arba’un (40), khamsun (50), sittun (60), sab’un (70), thamanun (80), tis’un (90), mi’a (100)
The old parser had structured Arabic into 17 number functions and 22 irreducible numbers.
Parse numerals in Alsatian
Alsatian has 13 number functions and 30 irreducible numbers.
The number functions are:
_ze: x -> [1]*x+10, e.g. 14 is viarze
_azwånzig: x -> [1]*x+20, e.g. 22 is zweiazwånzig
_adrissig: x -> [1]*x+30, e.g. 32 is zweiadrissig
_zig: x -> [10]*x+0, e.g. 40 is viarzig
eina_zig: x -> [10]*x+1, e.g. 41 is einaviarzig
_a_zig: x -> [1, 10]*x+0, e.g. 42 is zweiaviarzig
_afùffzig: x -> [1]*x+50, e.g. 52 is zweiafùffzig
_asæchzig: x -> [1]*x+60, e.g. 62 is zweiasæchzig
_asewwezig: x -> [1]*x+70, e.g. 72 is zweiasewwezig
_aåchtzig: x -> [1]*x+80, e.g. 82 is zweiaåchtzig
hùnd’rt_: x -> [1]*x+100, e.g. 101 is hùnd’rteins
_hùnd’rt: x -> [100]*x+0, e.g. 200 is zweihùnd’rt
_hùnd’rt_: x -> [100, 1]*x+0, e.g. 201 is zweihùnd’rteins
The irreducibles are: eins (1), zwei (2), drèï (3), viar (4), femf (5), sex (6), sewwa (7), ååcht (8), nîn (9), zeh (10), elf (11), zwelf (12), drize (13), fùffze (15), sæchze (16), sewweze (17), åchtze (18), zwånzig (20), einazwånzig (21), drissig (30), einadrissig (31), fùffzig (50), einafùffzig (51), sæchzig (60), einasæchzig (61), sewwezig (70), einasewwezig (71), åchtzig (80), einaåchtzig (81), hùnd’rt (100)
The old parser had structured Alsatian into 13 number functions and 30 irreducible numbers.
Parse numerals in Jaqaru
Jaqaru has 15 number functions and 16 irreducible numbers.
The number functions are:
trunka _ ni: x -> [1]*x+10, e.g. 11 is trunka maya ni
paj trunka _ ni: x -> [1]*x+20, e.g. 21 is paj trunka maya ni
_ trunka: x -> [10]*x+0, e.g. 30 is kimsa trunka
_ trunka _ ni: x -> [10, 1]*x+0, e.g. 31 is kimsa trunka maya ni
pusaq trunka _ ni: x -> [1]*x+80, e.g. 81 is pusaq trunka maya ni
isquñ trunka _ ni: x -> [1]*x+90, e.g. 91 is isquñ trunka maya ni
patraka _ ni: x -> [1]*x+100, e.g. 101 is patraka maya ni
patraka _: x -> [1]*x+100, e.g. 111 is patraka trunka maya ni
paj patraka _ ni: x -> [1]*x+200, e.g. 201 is paj patraka maya ni
paj patraka _: x -> [1]*x+200, e.g. 211 is paj patraka trunka maya ni
_ patraka: x -> [100]*x+0, e.g. 300 is kimsa patraka
_ patraka _ ni: x -> [100, 1]*x+0, e.g. 301 is kimsa patraka maya ni
_ patraka _: x -> [100, 1]*x+0, e.g. 311 is kimsa patraka trunka maya ni
isquñ patraka _ ni: x -> [1]*x+900, e.g. 901 is isquñ patraka maya ni
isquñ patraka _: x -> [1]*x+900, e.g. 911 is isquñ patraka trunka maya ni
The irreducibles are: maya (1), paja (2), kimsa (3), pushi (4), pichqa (5), sujta (6), qantrisi (7), pusaqa (8), isquña (9), trunka (10), paj trunka (20), pusaq trunka (80), isquñ trunka (90), patraka (100), paj patraka (200), isquñ patraka (900)
The old parser had structured Jaqaru into 15 number functions and 16 irreducible numbers.
Parse numerals in Ingrian
Ingrian has 3 number functions and 12 irreducible numbers.
The number functions are:
_toist: x -> [1]*x+10, e.g. 12 is kakstoist
_kümmend: x -> [10]*x+0, e.g. 20 is kakskümmend
_kümmend _: x -> [10, 1]*x+0, e.g. 21 is kakskümmend üks
The irreducibles are: üks (1), kaks (2), kold (3), neljä (4), viis (5), kuus (6), seitsemän (7), kaheksan (8), üheksän (9), kümmenän (10), yksitoista (11), sada (100)
The old parser had structured Ingrian into 3 number functions and 12 irreducible numbers.
Parse numerals in Kalina
Kalina has 6 number functions and 8 irreducible numbers.
The number functions are:
_-tòima: x -> [1]*x+5, e.g. 6 is òwin-tòima
ainapatoro itùponaka _: x -> [1]*x+10, e.g. 11 is ainapatoro itùponaka òwin
_-karìna: x -> [20]*x+0, e.g. 20 is òwin-karìna
_-karìna itùponaka _: x -> [20, 1]*x+0, e.g. 21 is òwin-karìna itùponaka òwin
_-itùponaka-_-karìna: x -> [20, 20]*x+0, e.g. 220 is ainapatoro-itùponaka-òwin-karìna
_-itùponaka-_-karìna itùponaka _: x -> [20, 20, 1]*x+0, e.g. 221 is ainapatoro-itùponaka-òwin-karìna itùponaka òwin
The irreducibles are: òwin (1), oko (2), oruwa (3), okupàen (4), ainatone (5), ainapatoro (10), atonèpu (15), karìna-karìna (400)
The old parser had structured Kalina into 6 number functions and 8 irreducible numbers.
Parse numerals in Siletz-Dee-Ni
Siletz-Dee-Ni has 36 number functions and 12 irreducible numbers.
The number functions are:
_-duy: x -> [0]*x+9, e.g. 9 is lha’-duy
nee-san-_-ch’aa-ta: x -> [1]*x+10, e.g. 11 is nee-san-lha’-ch’aa-ta
nee-san-_e-ch’aa-ta: x -> [0]*x+17, e.g. 17 is nee-san-srch’ee-t’ee-ch’aa-ta
naa-tvn-nee-san-_-ch’aa-ta: x -> [1]*x+20, e.g. 21 is naa-tvn-nee-san-lha’-ch’aa-ta
naa-tvn-nee-san-_e-ch’aa-ta: x -> [1]*x+20, e.g. 22 is naa-tvn-nee-san-naa-xee-ch’aa-ta
naa-tvn-nee-san-_i-ch’aa-ta: x -> [0]*x+26, e.g. 26 is naa-tvn-nee-san-k’wee-staa-nii-ch’aa-ta
naa-tvn-nee-san-_a-ch’aa-ta: x -> [0]*x+28, e.g. 28 is naa-tvn-nee-san-laa-nii-srvt-naa-taa-ch’aa-ta
taa-tvn-nee-san-_-ch’aa-ta: x -> [1]*x+30, e.g. 31 is taa-tvn-nee-san-lha’-ch’aa-ta
taa-tvn-nee-san-_e-ch’aa-ta: x -> [1]*x+30, e.g. 32 is taa-tvn-nee-san-naa-xee-ch’aa-ta
taa-tvn-nee-san-_i-ch’aa-ta: x -> [0]*x+36, e.g. 36 is taa-tvn-nee-san-k’wee-staa-nii-ch’aa-ta
taa-tvn-nee-san-_a-ch’aa-ta: x -> [0]*x+38, e.g. 38 is taa-tvn-nee-san-laa-nii-srvt-naa-taa-ch’aa-ta
dinch-tvn-nee-san-_-ch’aa-ta: x -> [1]*x+40, e.g. 41 is dinch-tvn-nee-san-lha’-ch’aa-ta
dinch-tvn-nee-san-_e-ch’aa-ta: x -> [1]*x+40, e.g. 42 is dinch-tvn-nee-san-naa-xee-ch’aa-ta
dinch-tvn-nee-san-_i-ch’aa-ta: x -> [0]*x+46, e.g. 46 is dinch-tvn-nee-san-k’wee-staa-nii-ch’aa-ta
dinch-tvn-nee-san-_a-ch’aa-ta: x -> [0]*x+48, e.g. 48 is dinch-tvn-nee-san-laa-nii-srvt-naa-taa-ch’aa-ta
_-tvn-nee-san: x -> [10]*x+0, e.g. 50 is srwee-la’-tvn-nee-san
_-tvn-nee-san-_-ch’aa-ta: x -> [10, 1]*x+0, e.g. 51 is srwee-la’-tvn-nee-san-lha’-ch’aa-ta
_-tvn-nee-san-_e-ch’aa-ta: x -> [10, 1]*x+0, e.g. 52 is srwee-la’-tvn-nee-san-naa-xee-ch’aa-ta
_-tvn-nee-san-_i-ch’aa-ta: x -> [10, 1]*x+0, e.g. 56 is srwee-la’-tvn-nee-san-k’wee-staa-nii-ch’aa-ta
_-tvn-nee-san-_a-ch’aa-ta: x -> [10, 1]*x+0, e.g. 58 is srwee-la’-tvn-nee-san-laa-nii-srvt-naa-taa-ch’aa-ta
_i-tvn-nee-san: x -> [0]*x+60, e.g. 60 is k’wee-staa-nii-tvn-nee-san
_i-tvn-nee-san-_-ch’aa-ta: x -> [10, 1]*x+0, e.g. 61 is k’wee-staa-nii-tvn-nee-san-lha’-ch’aa-ta
_i-tvn-nee-san-_e-ch’aa-ta: x -> [10, 1]*x+0, e.g. 62 is k’wee-staa-nii-tvn-nee-san-naa-xee-ch’aa-ta
_i-tvn-nee-san-_i-ch’aa-ta: x -> [0, 0]*x+66, e.g. 66 is k’wee-staa-nii-tvn-nee-san-k’wee-staa-nii-ch’aa-ta
_i-tvn-nee-san-_a-ch’aa-ta: x -> [0, 0]*x+68, e.g. 68 is k’wee-staa-nii-tvn-nee-san-laa-nii-srvt-naa-taa-ch’aa-ta
_e-tvn-nee-san: x -> [0]*x+70, e.g. 70 is srch’ee-t’ee-tvn-nee-san
_e-tvn-nee-san-_-ch’aa-ta: x -> [10, 1]*x+0, e.g. 71 is srch’ee-t’ee-tvn-nee-san-lha’-ch’aa-ta
_e-tvn-nee-san-_e-ch’aa-ta: x -> [10, 1]*x+0, e.g. 72 is srch’ee-t’ee-tvn-nee-san-naa-xee-ch’aa-ta
_e-tvn-nee-san-_i-ch’aa-ta: x -> [0, 0]*x+76, e.g. 76 is srch’ee-t’ee-tvn-nee-san-k’wee-staa-nii-ch’aa-ta
_e-tvn-nee-san-_a-ch’aa-ta: x -> [0, 0]*x+78, e.g. 78 is srch’ee-t’ee-tvn-nee-san-laa-nii-srvt-naa-taa-ch’aa-ta
_a-tvn-nee-san: x -> [0]*x+80, e.g. 80 is laa-nii-srvt-naa-taa-tvn-nee-san
_a-tvn-nee-san-_-ch’aa-ta: x -> [10, 1]*x+0, e.g. 81 is laa-nii-srvt-naa-taa-tvn-nee-san-lha’-ch’aa-ta
_a-tvn-nee-san-_e-ch’aa-ta: x -> [10, 1]*x+0, e.g. 82 is laa-nii-srvt-naa-taa-tvn-nee-san-naa-xee-ch’aa-ta
_a-tvn-nee-san-_i-ch’aa-ta: x -> [0, 0]*x+86, e.g. 86 is laa-nii-srvt-naa-taa-tvn-nee-san-k’wee-staa-nii-ch’aa-ta
_a-tvn-nee-san-_a-ch’aa-ta: x -> [0, 0]*x+88, e.g. 88 is laa-nii-srvt-naa-taa-tvn-nee-san-laa-nii-srvt-naa-taa-ch’aa-ta
_-chvn: x -> [0]*x+100, e.g. 100 is lha’-chvn
The irreducibles are: lha’ (1), naa-xe (2), taa-xe (3), dvn-chi’ (4), srwee-la’ (5), k’wee-staa-ni (6), srch’ee-t’e (7), laa-nii-srvt-naa-ta (8), nee-san (10), naa-tvn-nee-san (20), taa-tvn-nee-san (30), dinch-tvn-nee-san (40)
The old parser had structured Siletz-Dee-Ni into 36 number functions and 12 irreducible numbers.
Parse numerals in Copala-Triqui
Copala-Triqui has 23 number functions and 41 irreducible numbers.
The number functions are:
xì_j: x -> [0]*x+14, e.g. 14 is xìgàhanj
xìnùnh _j: x -> [0]*x+19, e.g. 19 is xìnùnh gàhanj
kò _j: x -> [0]*x+24, e.g. 24 is kò gàhanj
kò _: x -> [1]*x+20, e.g. 27 is kò txìj
wìj xxìyà _j: x -> [0]*x+44, e.g. 44 is wìj xxìyà gàhanj
wìj xxìyà _: x -> [1]*x+40, e.g. 47 is wìj xxìyà txìj
wwìj xxìyà _: x -> [1]*x+40, e.g. 50 is wwìj xxìyà txìh
wàhnìnj xxìyà _j: x -> [0]*x+64, e.g. 64 is wàhnìnj xxìyà gàhanj
wàhnìnj xxìyà _: x -> [1]*x+60, e.g. 67 is wàhnìnj xxìyà txìj
_j xxìyà: x -> [0]*x+80, e.g. 80 is gàhanj xxìyà
_j xxìyà yàn: x -> [0]*x+81, e.g. 81 is gàhanj xxìyà yàn
_j xxìyà wwìj: x -> [0]*x+82, e.g. 82 is gàhanj xxìyà wwìj
_j xxìyà wàhnìnj: x -> [0]*x+83, e.g. 83 is gàhanj xxìyà wàhnìnj
_j xxìyà _j: x -> [0, 0]*x+84, e.g. 84 is gàhanj xxìyà gàhanj
_j xxìyà hùnh: x -> [0]*x+85, e.g. 85 is gàhanj xxìyà hùnh
_j xxìyà wàtành: x -> [0]*x+86, e.g. 86 is gàhanj xxìyà wàtành
_j xxìyà _: x -> [19, 1]*x+4, e.g. 87 is gàhanj xxìyà txìj
hngò syéntu taá _: x -> [1]*x+100, e.g. 103 is hngò syéntu taá wàhnin
wwìj syéntu taá _: x -> [1]*x+200, e.g. 203 is wwìj syéntu taá wàhnin
_ syéntu: x -> [100]*x+0, e.g. 300 is wàhnin syéntu
_ syéntu taá hngò: x -> [100]*x+1, e.g. 301 is wàhnin syéntu taá hngò
_ syéntu taá wwìj: x -> [100]*x+2, e.g. 302 is wàhnin syéntu taá wwìj
_ syéntu taá _: x -> [100, 1]*x+0, e.g. 303 is wàhnin syéntu taá wàhnin
The irreducibles are: hngòoj (1), wwìi (2), wàhnin (3), gàhan (4), ùhunj (5), wàtanj (6), txìj (7), tìnj (8), hìn (9), txìh (10), xàn (11), xùwìj (12), xàhnìnj (13), xìnùnh (15), xìnùnh yàn (16), xìnùnh wwìj (17), xìnùnh wàhnìnj (18), kò (20), kò yàn (21), kò wwìj (22), kò wàhnìnj (23), kò hùnh (25), kò wàtành (26), wìj xxìyà (40), wìj xxìyà yàn (41), wìj xxìyà wwìj (42), wìj xxìyà wàhnìnj (43), wìj xxìyà hùnh (45), wìj xxìyà wàtành (46), wàhnìnj xxìyà (60), wàhnìnj xxìyà yàn (61), wàhnìnj xxìyà wwìj (62), wàhnìnj xxìyà wàhnìnj (63), wàhnìnj xxìyà hùnh (65), wàhnìnj xxìyà wàtành (66), hngò syéntu (100), hngò syéntu taá hngò (101), hngò syéntu taá wwìj (102), wwìj syéntu (200), wwìj syéntu taá hngò (201), wwìj syéntu taá wwìj (202)
The old parser had structured Copala-Triqui into 23 number functions and 41 irreducible numbers.
Parse numerals in Kalderash-Romani
Kalderash-Romani has 13 number functions and 15 irreducible numbers.
The number functions are:
dešu_: x -> [1]*x+10, e.g. 11 is dešujek
deš_: x -> [1]*x+10, e.g. 17 is dešjefta
biš taj _: x -> [1]*x+20, e.g. 21 is biš taj jek
tranda taj _: x -> [1]*x+30, e.g. 31 is tranda taj jek
saranda taj _: x -> [1]*x+40, e.g. 41 is saranda taj jek
pinda taj _: x -> [1]*x+50, e.g. 51 is pinda taj jek
_ardeš: x -> [0]*x+60, e.g. 60 is šovardeš
_ardeš taj _: x -> [10, 1]*x+0, e.g. 61 is šovardeš taj jek
_vardeš: x -> [10]*x+0, e.g. 70 is jeftavardeš
_vardeš taj _: x -> [10, 1]*x+0, e.g. 71 is jeftavardeš taj jek
šêl _: x -> [1]*x+100, e.g. 101 is šêl jek
_ šêla: x -> [100]*x+0, e.g. 200 is duj šêla
_ šêla _: x -> [100, 1]*x+0, e.g. 201 is duj šêla jek
The irreducibles are: jek (1), duj (2), trin (3), štar (4), panź (5), šov (6), jefta (7), oxto (8), iňa (9), deš (10), biš (20), tranda (30), saranda (40), pinda (50), šêl (100)
The old parser had structured Kalderash-Romani into 13 number functions and 15 irreducible numbers.
Parse numerals in Kristang
Kristang has 30 number functions and 24 irreducible numbers.
The number functions are:
di_: x -> [0]*x+17, e.g. 17 is diseti
dis_: x -> [1]*x+10, e.g. 18 is disoitu
binti _: x -> [1]*x+20, e.g. 21 is binti ngua
trinta _: x -> [1]*x+30, e.g. 31 is trinta ngua
korenta _: x -> [1]*x+40, e.g. 41 is korenta ngua
_enta: x -> [0]*x+50, e.g. 50 is singkuenta
_enta _: x -> [10, 1]*x+0, e.g. 51 is singkuenta ngua
sesenta _: x -> [1]*x+60, e.g. 61 is sesenta ngua
satenta _: x -> [1]*x+70, e.g. 71 is satenta ngua
oitenta _: x -> [1]*x+80, e.g. 81 is oitenta ngua
noventa _: x -> [1]*x+90, e.g. 91 is noventa ngua
nsentu _: x -> [1]*x+100, e.g. 101 is nsentu ngua
_ sentu: x -> [100]*x+0, e.g. 200 is dos sentu
_ nsentu _: x -> [100, 1]*x+0, e.g. 201 is dos nsentu ngua
_ n_ di_: x -> [0, 0, 0]*x+217, e.g. 217 is dos nsentu diseti
_ n_ dis_: x -> [100, 0, 1]*x+10, e.g. 218 is dos nsentu disoitu
_ n_ binti: x -> [100, 0]*x+20, e.g. 220 is dos nsentu binti
_ n_ binti _: x -> [100, 0, 1]*x+20, e.g. 221 is dos nsentu binti ngua
_ n_ korenta: x -> [100, 0]*x+40, e.g. 240 is dos nsentu korenta
_ n_ korenta _: x -> [100, 0, 1]*x+40, e.g. 241 is dos nsentu korenta ngua
_ n_ trinta: x -> [100, 0]*x+30, e.g. 330 is tres nsentu trinta
_ n_ trinta _: x -> [100, 0, 1]*x+30, e.g. 331 is tres nsentu trinta ngua
_ n_ sesenta: x -> [100, 1]*x+-40, e.g. 360 is tres nsentu sesenta
_ n_ sesenta _: x -> [100, 1, 1]*x+-40, e.g. 361 is tres nsentu sesenta ngua
_ n_ oitenta: x -> [100, 1]*x+-20, e.g. 480 is kuatu nsentu oitenta
_ n_ oitenta _: x -> [100, 1, 1]*x+-20, e.g. 481 is kuatu nsentu oitenta ngua
_ n_ satenta: x -> [0, 0]*x+770, e.g. 770 is seti nsentu satenta
_ n_ satenta _: x -> [-4, 8, 1]*x+-2, e.g. 771 is seti nsentu satenta ngua
_ n_ noventa: x -> [0, 0]*x+990, e.g. 990 is novi nsentu noventa
_ n_ noventa _: x -> [-1, 10, 1]*x+-1, e.g. 991 is novi nsentu noventa ngua
The irreducibles are: ngua (1), dos (2), tres (3), kuatu (4), singku (5), sez (6), seti (7), oitu (8), novi (9), des (10), onzi (11), dozi (12), trezi (13), katorzi (14), kinzi (15), dises (16), binti (20), trinta (30), korenta (40), sesenta (60), satenta (70), oitenta (80), noventa (90), sentu (100)
The old parser had structured Kristang into 46 number functions and 27 irreducible numbers.
Parse numerals in Calo
Calo has 16 number functions and 16 irreducible numbers.
The number functions are:
_deque: x -> [1]*x+10, e.g. 12 is duideque
bin_: x -> [1]*x+20, e.g. 21 is binyeque
trianda_: x -> [1]*x+30, e.g. 31 is triandayeque
_dí: x -> [10]*x+0, e.g. 40 is ostardí
_dí_: x -> [10, 1]*x+0, e.g. 41 is ostardíyeque
panchardí_: x -> [1]*x+50, e.g. 51 is panchardíyeque
_nta: x -> [0]*x+60, e.g. 60 is jobenta
_nta_: x -> [10, 1]*x+0, e.g. 61 is jobentayeque
_enta: x -> [0]*x+80, e.g. 80 is otorenta
_enta_: x -> [10, 1]*x+0, e.g. 81 is otorentayeque
esnete_: x -> [1]*x+90, e.g. 91 is esneteyeque
_ gres _: x -> [50, 1]*x+50, e.g. 101 is yeque gres yeque
_sgrés: x -> [0]*x+200, e.g. 200 is duisgrés
_sgrés _: x -> [80, 1]*x+40, e.g. 201 is duisgrés yeque
_grés: x -> [100]*x+0, e.g. 300 is tringrés
_grés _: x -> [100, 1]*x+0, e.g. 301 is tringrés yeque
The irreducibles are: yeque (1), dui (2), trin (3), ostar (4), panche (5), jobe (6), ester (7), otor (8), nebel (9), deque (10), yedeque (11), bin (20), trianda (30), panchardí (50), esnete (90), gres (100)
The old parser had structured Calo into 16 number functions and 16 irreducible numbers.
Parse numerals in Bambara
Bambara has 12 number functions and 13 irreducible numbers.
The number functions are:
tán ní _: x -> [1]*x+10, e.g. 11 is tán ní kélen
mùgan ní _: x -> [1]*x+20, e.g. 21 is mùgan ní kélen
bí_: x -> [10]*x+0, e.g. 30 is bísàba
bí_ ní _: x -> [10, 1]*x+0, e.g. 31 is bísàba ní kélen
bínaani ní _: x -> [1]*x+40, e.g. 41 is bínaani ní kélen
bíwolon_: x -> [0]*x+70, e.g. 70 is bíwolonfila
bíwolon_ ní _: x -> [28, 1]*x+14, e.g. 71 is bíwolonfila ní kélen
k̀ɛmɛ ní _: x -> [1]*x+100, e.g. 101 is k̀ɛmɛ ní kélen
k̀ɛmɛ _: x -> [100]*x+0, e.g. 200 is k̀ɛmɛ fila
k̀ɛmɛ _ ní _: x -> [100, 1]*x+0, e.g. 201 is k̀ɛmɛ fila ní kélen
_ k̀ɛmɛ: x -> [100]*x+0, e.g. 700 is wólonwula k̀ɛmɛ
_ k̀ɛmɛ ní _: x -> [100, 1]*x+0, e.g. 701 is wólonwula k̀ɛmɛ ní kélen
The irreducibles are: kélen (1), fila (2), sàba (3), náani (4), dúuru (5), wɔɔrɔ (6), wólonwula (7), séegin (8), k̀ɔnɔntɔn (9), tán (10), mùgan (20), bínaani (40), k̀ɛmɛ (100)
The old parser had structured Bambara into 22 number functions and 19 irreducible numbers.
Parse numerals in Maltese
Maltese has 18 number functions and 35 irreducible numbers.
The number functions are:
_x: x -> [0]*x+16, e.g. 16 is sittax
_ u għoxrin: x -> [1]*x+20, e.g. 21 is wieħed u għoxrin
_ u tletin: x -> [1]*x+30, e.g. 31 is wieħed u tletin
_ u erbgħin: x -> [1]*x+40, e.g. 41 is wieħed u erbgħin
_ u ħamsin: x -> [1]*x+50, e.g. 51 is wieħed u ħamsin
_ u sittin: x -> [1]*x+60, e.g. 61 is wieħed u sittin
_ u sebgħin: x -> [1]*x+70, e.g. 71 is wieħed u sebgħin
_ u tmenin: x -> [1]*x+80, e.g. 81 is wieħed u tmenin
_ u disgħin: x -> [1]*x+90, e.g. 91 is wieħed u disgħin
mija u _: x -> [1]*x+100, e.g. 101 is mija u wieħed
mitejn u _: x -> [1]*x+200, e.g. 201 is mitejn u wieħed
tliet mija u _: x -> [1]*x+300, e.g. 301 is tliet mija u wieħed
erba’ mija u _: x -> [1]*x+400, e.g. 401 is erba’ mija u wieħed
hames mija u _: x -> [1]*x+500, e.g. 501 is hames mija u wieħed
sitt mija u _: x -> [1]*x+600, e.g. 601 is sitt mija u wieħed
seba’ mija u _: x -> [1]*x+700, e.g. 701 is seba’ mija u wieħed
tminn mija u _: x -> [1]*x+800, e.g. 801 is tminn mija u wieħed
disa’ mija u _: x -> [1]*x+900, e.g. 901 is disa’ mija u wieħed
The irreducibles are: wieħed (1), tnejn (2), tlieta (3), erbgħa (4), ħamsa (5), sitta (6), sebgħa (7), tmienja (8), disgħa (9), għaxra (10), ħdax (11), tnax (12), tlettax (13), erbatax (14), ħmistax (15), sbatax (17), tmintax (18), dsatax (19), għoxrin (20), tletin (30), erbgħin (40), ħamsin (50), sittin (60), sebgħin (70), tmenin (80), disgħin (90), mija (100), mitejn (200), tliet mija (300), erba’ mija (400), hames mija (500), sitt mija (600), seba’ mija (700), tminn mija (800), disa’ mija (900)
The old parser had structured Maltese into 18 number functions and 35 irreducible numbers.
Parse numerals in Nelemwa
Nelemwa has 4 number functions and 60 irreducible numbers.
The number functions are:
aaxi ak xa bwaat _: x -> [1]*x+20, e.g. 30 is aaxi ak xa bwaat tujic
aaru ak xa bwaat _: x -> [1]*x+40, e.g. 50 is aaru ak xa bwaat tujic
aaxan ak xa bwaat _: x -> [1]*x+60, e.g. 70 is aaxan ak xa bwaat tujic
aavaak ak xa bwaat _: x -> [1]*x+80, e.g. 90 is aavaak ak xa bwaat tujic
The irreducibles are: pwa-giik (1), pwa-du (2), pwa-gan (3), pwa-baak (4), pwa-nem (5), pwa-nem-giik (6), pwa-nem-du (7), pwa-nem-gan (8), pwa-nem-baak (9), tujic (10), tujic xa bwaat pwagiik (11), tujic xa bwaat pwadu (12), tujic xa bwaat pwagan (13), tujic xa bwaat pwabaak (14), tujic xa bwaat pwanem (15), tujic xa bwaat pwanemgiik (16), tujic xa bwaat pwanemdu (17), tujic xa bwaat pwanemgan (18), tujic xa bwaat pwanembaak (19), aaxi ak (20), aaxi ak xa bwaat pwagiik (21), aaxi ak xa bwaat pwadu (22), aaxi ak xa bwaat pwagan (23), aaxi ak xa bwaat pwabaak (24), aaxi ak xa bwaat pwanem (25), aaxi ak xa bwaat pwanemgiik (26), aaxi ak xa bwaat pwanemdu (27), aaxi ak xa bwaat pwanemgan (28), aaxi ak xa bwaat pwanembaak (29), aaru ak (40), aaru ak xa bwaat pwagiik (41), aaru ak xa bwaat pwadu (42), aaru ak xa bwaat pwagan (43), aaru ak xa bwaat pwabaak (44), aaru ak xa bwaat pwanem (45), aaru ak xa bwaat pwanemgiik (46), aaru ak xa bwaat pwanemdu (47), aaru ak xa bwaat pwanemgan (48), aaru ak xa bwaat pwanembaak (49), aaxan ak (60), aaxan ak xa bwaat pwagiik (61), aaxan ak xa bwaat pwadu (62), aaxan ak xa bwaat pwagan (63), aaxan ak xa bwaat pwabaak (64), aaxan ak xa bwaat pwanem (65), aaxan ak xa bwaat pwanemgiik (66), aaxan ak xa bwaat pwanemdu (67), aaxan ak xa bwaat pwanemgan (68), aaxan ak xa bwaat pwanembaak (69), aavaak ak (80), aavaak ak xa bwaat pwagiik (81), aavaak ak xa bwaat pwadu (82), aavaak ak xa bwaat pwagan (83), aavaak ak xa bwaat pwabaak (84), aavaak ak xa bwaat pwanem (85), aavaak ak xa bwaat pwanemgiik (86), aavaak ak xa bwaat pwanemdu (87), aavaak ak xa bwaat pwanemgan (88), aavaak ak xa bwaat pwanembaak (89), aanem ak (100)
The old parser had structured Nelemwa into 4 number functions and 60 irreducible numbers.
Parse numerals in Ladin
Ladin has 24 number functions and 23 irreducible numbers.
The number functions are:
_desc: x -> [0]*x+11, e.g. 11 is undesc
dejes_: x -> [0]*x+17, e.g. 17 is dejesset
dejed_: x -> [0]*x+18, e.g. 18 is dejedot
deje_: x -> [0]*x+19, e.g. 19 is dejenuef
vint_: x -> [1]*x+20, e.g. 21 is vintun
vinte_: x -> [1]*x+20, e.g. 22 is vintedoi
trent_: x -> [1]*x+30, e.g. 31 is trentun
trente_: x -> [1]*x+30, e.g. 32 is trentedoi
carant_: x -> [0]*x+41, e.g. 41 is carantun
carante_: x -> [1]*x+40, e.g. 42 is carantedoi
cincant_: x -> [1]*x+50, e.g. 51 is cincantun
cincante_: x -> [1]*x+50, e.g. 52 is cincantedoi
sessant_: x -> [1]*x+60, e.g. 61 is sessantun
sessante_: x -> [1]*x+60, e.g. 62 is sessantedoi
_anta: x -> [10]*x+0, e.g. 70 is setanta
_ant_: x -> [10, 1]*x+0, e.g. 71 is setantun
_ante_: x -> [10, 1]*x+0, e.g. 72 is setantedoi
nonant_: x -> [1]*x+90, e.g. 91 is nonantun
nonante_: x -> [1]*x+90, e.g. 92 is nonantedoi
cente_: x -> [1]*x+100, e.g. 101 is centeun
_cent: x -> [100]*x+0, e.g. 200 is doicent
_cente_: x -> [100, 1]*x+0, e.g. 201 is doicenteun
_çent: x -> [0]*x+600, e.g. 600 is siesçent
_çente_: x -> [97, 1]*x+18, e.g. 601 is siesçenteun
The irreducibles are: un (1), doi (2), trei (3), cater (4), cinch (5), sies (6), set (7), ot (8), nuef (9), diesc (10), dodesc (12), tredesc (13), catordesc (14), chindesc (15), seidesc (16), vint (20), trenta (30), caranta (40), carantot (48), cincanta (50), sessanta (60), nonanta (90), cent (100)
The old parser had structured Ladin into 18 number functions and 70 irreducible numbers.
Parse numerals in Arberesh
Arberesh has 3 number functions and 11 irreducible numbers.
The number functions are:
_mbëdhjetë: x -> [1]*x+10, e.g. 11 is njëmbëdhjetë
_mbëdhetë: x -> [0]*x+12, e.g. 12 is dimbëdhetë
_zet: x -> [0]*x+20, e.g. 20 is njëzet
The irreducibles are: një (1), di (2), tre (3), kartë (4), pesë (5), gjashtë (6), shtatë (7), tetë (8), nëntë (9), dhjetë (10), trimbëdhjetë (13)
The old parser had structured Arberesh into 3 number functions and 11 irreducible numbers.
Parse numerals in Hupa
Hupa has 14 number functions and 15 irreducible numbers.
The number functions are:
minłung-miwah-na:_: x -> [1]*x+10, e.g. 11 is minłung-miwah-na:ła’
nahdiminłung-miwah-na:_: x -> [1]*x+20, e.g. 21 is nahdiminłung-miwah-na:ła’
_idiminłung: x -> [10]*x+0, e.g. 30 is ta:q’idiminłung
_idiminłung-miwah-na:_: x -> [10, 1]*x+0, e.g. 31 is ta:q’idiminłung-miwah-na:ła’
_diminłung: x -> [10]*x+0, e.g. 50 is chwola’diminłung
_diminłung-miwah-na:_: x -> [10, 1]*x+0, e.g. 51 is chwola’diminłung-miwah-na:ła’
xohk’e:diminłung-miwah-na:_: x -> [1]*x+70, e.g. 71 is xohk’e:diminłung-miwah-na:ła’
miq’ost’ahdiminłung-miwah-na:_: x -> [1]*x+90, e.g. 91 is miq’ost’ahdiminłung-miwah-na:ła’
_-dikin: x -> [100]*x+0, e.g. 100 is ła’-dikin
_ -dikin-miwah-na:_: x -> [100, 1]*x+0, e.g. 101 is ła’ -dikin-miwah-na:ła’
_ -dikin-miwah-na:nahdi_: x -> [100, 1]*x+10, e.g. 120 is ła’ -dikin-miwah-na:nahdiminłung
_ -dikin-miwah-na:xohk’e:di_: x -> [100, 1]*x+60, e.g. 170 is ła’ -dikin-miwah-na:xohk’e:diminłung
_ -dikin-miwah-na:miq’ost’ahdi_: x -> [100, 1]*x+80, e.g. 190 is ła’ -dikin-miwah-na:miq’ost’ahdiminłung
_i-dikin: x -> [100]*x+0, e.g. 300 is ta:q’i-dikin
The irreducibles are: ła’ (1), nahx (2), ta:q’ (3), dink’ (4), chwola’ (5), xosta:n (6), xohk’it (7), ke:nim (8), miq’os-t’aw (9), minłung (10), nahdiminłung (20), xohk’e:diminłung (70), miq’ost’ahdiminłung (90), xohk’e-dikin (700), miq’ost’ah-dikin (900)
The old parser had structured Hupa into 32 number functions and 15 irreducible numbers.
Parse numerals in Indonesian
Indonesian has 8 number functions and 12 irreducible numbers.
The number functions are:
_ belas: x -> [1]*x+10, e.g. 12 is dua belas
_ puluh: x -> [10]*x+0, e.g. 20 is dua puluh
_ puluh _: x -> [10, 1]*x+0, e.g. 21 is dua puluh satu
seratus _: x -> [1]*x+100, e.g. 101 is seratus satu
seratus belas _: x -> [1]*x+110, e.g. 112 is seratus belas dua
_ ratus: x -> [100]*x+0, e.g. 200 is dua ratus
_ ratus _: x -> [100, 1]*x+0, e.g. 201 is dua ratus satu
_ ratus belas _: x -> [100, 1]*x+10, e.g. 212 is dua ratus belas dua
The irreducibles are: satu (1), dua (2), tiga (3), empat (4), lima (5), enam (6), tujuh (7), delapan (8), sembilan (9), sepuluh (10), sebelas (11), seratus (100)
The old parser had structured Indonesian into 8 number functions and 12 irreducible numbers.
Parse numerals in Garifuna
Garifuna has 14 number functions and 28 irreducible numbers.
The number functions are:
dî_: x -> [0]*x+17, e.g. 17 is dîsedü
dísi_: x -> [1]*x+10, e.g. 18 is dísiwidü
wein _: x -> [1]*x+20, e.g. 21 is wein aban
darandi _: x -> [1]*x+30, e.g. 31 is darandi aban
biama wein _: x -> [1]*x+40, e.g. 41 is biama wein aban
dimí san _: x -> [1]*x+50, e.g. 51 is dimí san aban
_ wein: x -> [20]*x+0, e.g. 60 is ürüwa wein
_ wein _: x -> [20, 1]*x+0, e.g. 61 is ürüwa wein aban
_ wein biama: x -> [20]*x+2, e.g. 62 is ürüwa wein biama
san _: x -> [1]*x+100, e.g. 101 is san aban
biama san _: x -> [1]*x+200, e.g. 201 is biama san aban
_ san: x -> [100]*x+0, e.g. 300 is ürüwa san
_ san _: x -> [100, 1]*x+0, e.g. 301 is ürüwa san aban
_ san biama: x -> [100]*x+2, e.g. 302 is ürüwa san biama
The irreducibles are: aban (1), biñá (2), ürüwa (3), gádürü (4), seingü (5), sisi (6), sedü (7), widü (8), nefu (9), dîsi (10), ûnsu (11), dûsu (12), tareisi (13), katorsu (14), keinsi (15), dîsisi (16), wein (20), wein biama (22), darandi (30), darandi biama (32), biama wein (40), biama wein biama (42), dimí san (50), dimí san biama (52), san (100), san biama (102), biama san (200), biama san biama (202)
The old parser had structured Garifuna into 12 number functions and 31 irreducible numbers.
Parse numerals in Lowland-Oaxaca-Chontal
Lowland-Oaxaca-Chontal has 48 number functions and 33 irreducible numbers.
The number functions are:
mbamaj _: x -> [1]*x+10, e.g. 11 is mbamaj ñulyi
ñuxans’ _: x -> [1]*x+20, e.g. 22 is ñuxans’ ukwe’
_ jmbama’: x -> [0]*x+30, e.g. 30 is fane’ jmbama’
_ mbamaj_: x -> [10, 0]*x+1, e.g. 31 is fane’ mbamajñulyi
_ mbamajukwe: x -> [10]*x+2, e.g. 32 is fane’ mbamajukwe
_ mbamajfane: x -> [0]*x+33, e.g. 33 is fane’ mbamajfane
_ mbamajmalpu: x -> [0]*x+34, e.g. 34 is fane’ mbamajmalpu
_ mbamajmague: x -> [0]*x+35, e.g. 35 is fane’ mbamajmague
_ mbamajkanchux: x -> [10]*x+6, e.g. 36 is fane’ mbamajkanchux
_ mbamajkote: x -> [0]*x+37, e.g. 37 is fane’ mbamajkote
_ mbamaj malfa: x -> [10]*x+8, e.g. 38 is fane’ mbamaj malfa
_ mbamaj penla: x -> [0]*x+39, e.g. 39 is fane’ mbamaj penla
ukwej _’ _: x -> [0, 0]*x+41, e.g. 41 is ukwej ñuxans’ ñulyi
ukwej _’ ukwe: x -> [0]*x+42, e.g. 42 is ukwej ñuxans’ ukwe
ukwej _’ fane: x -> [0]*x+43, e.g. 43 is ukwej ñuxans’ fane
ukwej _’ malpu: x -> [0]*x+44, e.g. 44 is ukwej ñuxans’ malpu
ukwej _’ mague: x -> [0]*x+45, e.g. 45 is ukwej ñuxans’ mague
ukwej _’ kanchux: x -> [0]*x+46, e.g. 46 is ukwej ñuxans’ kanchux
ukwej _’ kote: x -> [0]*x+47, e.g. 47 is ukwej ñuxans’ kote
ukwej _’ malfa: x -> [0]*x+48, e.g. 48 is ukwej ñuxans’ malfa
ukwej _’ penla: x -> [0]*x+49, e.g. 49 is ukwej ñuxans’ penla
_ mbamaj fane: x -> [0]*x+53, e.g. 53 is mague’ mbamaj fane
_ mbamaj malpu: x -> [0]*x+54, e.g. 54 is mague’ mbamaj malpu
_ mbamaj mague: x -> [0]*x+55, e.g. 55 is mague’ mbamaj mague
_ mbamaj kote: x -> [0]*x+57, e.g. 57 is mague’ mbamaj kote
_ mbamajpenla: x -> [0]*x+59, e.g. 59 is mague’ mbamajpenla
fanej _’: x -> [0]*x+60, e.g. 60 is fanej ñuxans’
fanej _’ _: x -> [0, 0]*x+61, e.g. 61 is fanej ñuxans’ ñulyi
fanej _’ ukwe: x -> [0]*x+62, e.g. 62 is fanej ñuxans’ ukwe
fanej _’ fane: x -> [0]*x+63, e.g. 63 is fanej ñuxans’ fane
fanej _’ malpu: x -> [0]*x+64, e.g. 64 is fanej ñuxans’ malpu
fanej _’ mague: x -> [0]*x+65, e.g. 65 is fanej ñuxans’ mague
fanej _’ kanchux: x -> [0]*x+66, e.g. 66 is fanej ñuxans’ kanchux
fanej _’ kote: x -> [0]*x+67, e.g. 67 is fanej ñuxans’ kote
fanej _’ malfa: x -> [0]*x+68, e.g. 68 is fanej ñuxans’ malfa
fanej _’ penla: x -> [0]*x+69, e.g. 69 is fanej ñuxans’ penla
fanej _ mbamaj: x -> [0]*x+70, e.g. 70 is fanej ñuxans mbamaj
fanej _ mbamaj _: x -> [0, 0]*x+71, e.g. 71 is fanej ñuxans mbamaj ñulyi
fanej _ mbamaj ukwe: x -> [0]*x+72, e.g. 72 is fanej ñuxans mbamaj ukwe
fanej _ mbamaj fane: x -> [0]*x+73, e.g. 73 is fanej ñuxans mbamaj fane
fanej _ mbamaj malpu: x -> [0]*x+74, e.g. 74 is fanej ñuxans mbamaj malpu
fanej _ mbamaj mague: x -> [0]*x+75, e.g. 75 is fanej ñuxans mbamaj mague
fanej _ mbamaj kanchux: x -> [0]*x+76, e.g. 76 is fanej ñuxans mbamaj kanchux
fanej _ mbamaj kote: x -> [0]*x+77, e.g. 77 is fanej ñuxans mbamaj kote
fanej _ mbamaj malfa: x -> [0]*x+78, e.g. 78 is fanej ñuxans mbamaj malfa
fanej _ mbamaj penla: x -> [0]*x+79, e.g. 79 is fanej ñuxans mbamaj penla
malpuj ñuxans’ _: x -> [0]*x+81, e.g. 81 is malpuj ñuxans’ ñulyi
malpuj ñuxans _: x -> [1]*x+80, e.g. 91 is malpuj ñuxans mbamaj ñulyi
The irreducibles are: ñulyi (1), ukwe’ (2), fane’ (3), malpu’ (4), mague’ (5), k’anchux (6), kote’ (7), malfa’ (8), penla’ (9), mbama’ (10), mbamaj mague’ (15), ñuxans (20), ñuxans’ nulyi’ (21), ukwej ñuxans’ (40), maguej mbama’ (50), malpuj ñuxans (80), malpuj ñuxans’ ukwe (82), malpuj ñuxans’ fane (83), malpuj ñuxans’ malpu (84), malpuj ñuxans’ mague (85), malpuj ñuxans’ kanchux (86), malpuj ñuxans’ kote (87), malpuj ñuxans’ malfa (88), malpuj ñuxans’ penla (89), malpuj ñuxans mbama (90), malpuj ñuxans mbamaj ukwe (92), malpuj ñuxans mbamaj fane (93), malpuj ñuxans mbamaj malpu (94), malpuj ñuxans mbamaj mague (95), malpuj ñuxans mbamaj kote (97), malpuj ñuxans mbamaj malfa (98), malpuj ñuxans mbamaj penla (99), maxñu (100)
The old parser had structured Lowland-Oaxaca-Chontal into 48 number functions and 40 irreducible numbers.
Parse numerals in Oneida
Oneida has 8 number functions and 14 irreducible numbers.
The number functions are:
_ yawʌ·lé: x -> [1]*x+10, e.g. 11 is úskah yawʌ·lé
tewáshʌ _: x -> [1]*x+20, e.g. 21 is tewáshʌ úskah
_ niwáshʌ: x -> [10]*x+0, e.g. 30 is áhsʌ niwáshʌ
_ niwáshʌ _: x -> [10, 1]*x+0, e.g. 31 is áhsʌ niwáshʌ úskah
tewʌˀnyáwelu ok _: x -> [1]*x+100, e.g. 101 is tewʌˀnyáwelu ok úskah
tékni tewʌˀnyáwelu ok _: x -> [1]*x+200, e.g. 201 is tékni tewʌˀnyáwelu ok úskah
_ tewʌˀnyáwelu: x -> [100]*x+0, e.g. 300 is áhsʌ tewʌˀnyáwelu
_ tewʌˀnyáwelu ok _: x -> [100, 1]*x+0, e.g. 301 is áhsʌ tewʌˀnyáwelu ok úskah
The irreducibles are: úskah (1), téken (2), áhsʌ (3), kayé (4), wisk (5), yá·yahk (6), tsya·ták (7), tékluˀ (8), wá·tlu (9), oye·lí (10), tékni yawʌ·lé (12), tewáshʌ (20), tewʌˀnyáwelu (100), tékni tewʌˀnyáwelu (200)
The old parser had structured Oneida into 8 number functions and 14 irreducible numbers.
Parse numerals in Innu
Innu has 14 number functions and 15 irreducible numbers.
The number functions are:
kutunnu ashu _: x -> [1]*x+10, e.g. 11 is kutunnu ashu peikᵘ
nishunnu ashu _: x -> [1]*x+20, e.g. 21 is nishunnu ashu peikᵘ
nishtunnu ashu _: x -> [1]*x+30, e.g. 31 is nishtunnu ashu peikᵘ
_nnu: x -> [0]*x+40, e.g. 40 is neunnu
_nnu ashu _: x -> [9, 1]*x+4, e.g. 41 is neunnu ashu peikᵘ
_-tatunnu: x -> [10]*x+0, e.g. 50 is patetat-tatunnu
_-tatunnu ashu _: x -> [10, 1]*x+0, e.g. 51 is patetat-tatunnu ashu peikᵘ
peikumitashumitannu ashu _: x -> [1]*x+100, e.g. 101 is peikumitashumitannu ashu peikᵘ
nishumitashumitannu ashu _: x -> [1]*x+200, e.g. 201 is nishumitashumitannu ashu peikᵘ
nishtumitashumitannu ashu _: x -> [1]*x+300, e.g. 301 is nishtumitashumitannu ashu peikᵘ
_mitashumitannu: x -> [0]*x+400, e.g. 400 is neumitashumitannu
_mitashumitannu ashu _: x -> [94, 1]*x+24, e.g. 401 is neumitashumitannu ashu peikᵘ
_-tatumitashumitannu: x -> [100]*x+0, e.g. 500 is patetat-tatumitashumitannu
_-tatumitashumitannu ashu _: x -> [100, 1]*x+0, e.g. 501 is patetat-tatumitashumitannu ashu peikᵘ
The irreducibles are: peikᵘ (1), nishᵘ (2), nishtᵘ (3), neu (4), patetat (5), kutuasht (6), nishuasht (7), nishuaush (8), peikushteu (9), kutunnu (10), nishunnu (20), nishtunnu (30), peikumitashumitannu (100), nishumitashumitannu (200), nishtumitashumitannu (300)
The old parser had structured Innu into 14 number functions and 15 irreducible numbers.
Parse numerals in Chuvash
Chuvash has 20 number functions and 44 irreducible numbers.
The number functions are:
вун _: x -> [1]*x+10, e.g. 12 is вун иккĕ
çирĕм _: x -> [1]*x+20, e.g. 22 is çирĕм иккĕ
вăтăр _: x -> [1]*x+30, e.g. 32 is вăтăр иккĕ
хĕрĕх _: x -> [1]*x+40, e.g. 42 is хĕрĕх иккĕ
аллă _: x -> [1]*x+50, e.g. 52 is аллă иккĕ
утмăл _: x -> [1]*x+60, e.g. 62 is утмăл иккĕ
çитмĕль _: x -> [1]*x+70, e.g. 72 is çитмĕль иккĕ
сакăр _: x -> [0]*x+81, e.g. 81 is сакăр вун пĕр
сакăр вун _: x -> [1]*x+80, e.g. 82 is сакăр вун иккĕ
тăхăр _: x -> [0]*x+91, e.g. 91 is тăхăр вун пĕр
тăхăр вун _: x -> [1]*x+90, e.g. 92 is тăхăр вун иккĕ
çĕр _: x -> [1]*x+100, e.g. 102 is çĕр иккĕ
ик çĕр _: x -> [1]*x+200, e.g. 202 is ик çĕр иккĕ
виç çĕр _: x -> [1]*x+300, e.g. 302 is виç çĕр иккĕ
тăватă çĕр _: x -> [1]*x+400, e.g. 402 is тăватă çĕр иккĕ
пилĕк çĕр _: x -> [1]*x+500, e.g. 502 is пилĕк çĕр иккĕ
ултă çĕр _: x -> [1]*x+600, e.g. 602 is ултă çĕр иккĕ
çичĕ çĕр _: x -> [1]*x+700, e.g. 702 is çичĕ çĕр иккĕ
сакăр çĕр _: x -> [1]*x+800, e.g. 802 is сакăр çĕр иккĕ
тăхăр çĕр _: x -> [1]*x+900, e.g. 902 is тăхăр çĕр иккĕ
The irreducibles are: пĕрре (1), иккĕ (2), виççĕ (3), тăваттă (4), пиллĕк (5), улттă (6), çиччĕ (7), саккăр (8), тăххăр (9), вуннă (10), вун пĕр (11), вун пиллĕк (15), çирĕм (20), çирĕм пĕр (21), вăтăр (30), вăтăр пĕр (31), хĕрĕх (40), хĕрĕх пĕр (41), аллă (50), аллă пĕр (51), утмăл (60), утмăл пĕр (61), çитмĕль (70), çитмĕль пĕр (71), сакăр вуннă (80), тăхăр вуннă (90), çĕр (100), çĕр пĕр (101), ик çĕр (200), ик çĕр пĕр (201), виç çĕр (300), виç çĕр пĕр (301), тăватă çĕр (400), тăватă çĕр пĕр (401), пилĕк çĕр (500), пилĕк çĕр пĕр (501), ултă çĕр (600), ултă çĕр пĕр (601), çичĕ çĕр (700), çичĕ çĕр пĕр (701), сакăр çĕр (800), сакăр çĕр пĕр (801), тăхăр çĕр (900), тăхăр çĕр пĕр (901)
The old parser had structured Chuvash into 15 number functions and 69 irreducible numbers.
Parse numerals in Laz
Laz has 13 number functions and 12 irreducible numbers.
The number functions are:
vito_: x -> [1]*x+10, e.g. 11 is vitoar
vit_: x -> [0]*x+14, e.g. 14 is vitotxo
eçido_: x -> [1]*x+20, e.g. 21 is eçidoar
eçid_: x -> [0]*x+24, e.g. 24 is eçidotxo
_neçi: x -> [20]*x+0, e.g. 40 is jurneçi
_neçido_: x -> [20, 1]*x+0, e.g. 41 is jurneçidoar
_neçid_: x -> [20, 1]*x+0, e.g. 44 is jurneçidotxo
_eneçi: x -> [0]*x+60, e.g. 60 is sumeneçi
_eneçido_: x -> [18, 1]*x+6, e.g. 61 is sumeneçidoar
_eneçid_: x -> [0, 0]*x+64, e.g. 64 is sumeneçidotxo
oşi do _: x -> [1]*x+100, e.g. 101 is oşi do ar
_ oşi: x -> [100]*x+0, e.g. 200 is jur oşi
_ oşi do _: x -> [100, 1]*x+0, e.g. 201 is jur oşi do ar
The irreducibles are: ar (1), jur (2), sum (3), otxo (4), xut (5), aşi (6), şkvit (7), ovro (8), çxoro (9), vit (10), eçi (20), oşi (100)
The old parser had structured Laz into 13 number functions and 12 irreducible numbers.
Parse numerals in Makhuwa
Makhuwa has 129 number functions and 13 irreducible numbers.
The number functions are:
thanu na _: x -> [1]*x+5, e.g. 6 is thanu na mosa
mulokó na _: x -> [1]*x+10, e.g. 11 is mulokó na mosa
miloko mili na _: x -> [1]*x+20, e.g. 21 is miloko mili na mosa
miloko miraru na _: x -> [1]*x+30, e.g. 31 is miloko miraru na mosa
miloko mi_: x -> [10]*x+0, e.g. 40 is miloko misheshe
miloko mi_ na _: x -> [9, 1]*x+4, e.g. 41 is miloko misheshe na mosa
miloko mi_ ni _: x -> [10, 1]*x+0, e.g. 51 is miloko mithanu ni mosa
miloko mi_ na mili: x -> [0]*x+70, e.g. 70 is miloko mithanu na mili
miloko mi_ na mili ni _: x -> [13, 1]*x+5, e.g. 71 is miloko mithanu na mili ni mosa
miloko mi_ na miraru: x -> [0]*x+80, e.g. 80 is miloko mithanu na miraru
miloko mi_ na miraru ni _: x -> [15, 1]*x+5, e.g. 81 is miloko mithanu na miraru ni mosa
miloko mi_ na mi_: x -> [0, 0]*x+90, e.g. 90 is miloko mithanu na misheshe
miloko mi_ na mi_ ni _: x -> [11, 8, 1]*x+3, e.g. 91 is miloko mithanu na misheshe ni mosa
miloko muloko na _: x -> [1]*x+100, e.g. 101 is miloko muloko na mosa
miloko muloko na muloko na _: x -> [1]*x+110, e.g. 111 is miloko muloko na muloko na mosa
miloko muloko na muloko mili na _: x -> [1]*x+120, e.g. 121 is miloko muloko na muloko mili na mosa
miloko muloko na muloko miraru na _: x -> [1]*x+130, e.g. 131 is miloko muloko na muloko miraru na mosa
miloko muloko na muloko mi_: x -> [10]*x+100, e.g. 140 is miloko muloko na muloko misheshe
miloko muloko na muloko mi_ na _: x -> [33, 1]*x+8, e.g. 141 is miloko muloko na muloko misheshe na mosa
miloko muloko na muloko mi_ ni _: x -> [10, 1]*x+100, e.g. 151 is miloko muloko na muloko mithanu ni mosa
miloko muloko na muloko mi_ na mili: x -> [0]*x+170, e.g. 170 is miloko muloko na muloko mithanu na mili
miloko muloko na muloko mi_ na mili ni _: x -> [33, 1]*x+5, e.g. 171 is miloko muloko na muloko mithanu na mili ni mosa
miloko muloko na muloko mi_ na miraru: x -> [0]*x+180, e.g. 180 is miloko muloko na muloko mithanu na miraru
miloko muloko na muloko mi_ na miraru ni _: x -> [35, 1]*x+5, e.g. 181 is miloko muloko na muloko mithanu na miraru ni mosa
miloko muloko na muloko mi_ na mi_: x -> [0, 0]*x+190, e.g. 190 is miloko muloko na muloko mithanu na misheshe
miloko muloko na muloko mi_ na mi_ ni _: x -> [22, 19, 1]*x+4, e.g. 191 is miloko muloko na muloko mithanu na misheshe ni mosa
_ mili na _: x -> [2, 1]*x+0, e.g. 201 is miloko muloko mili na mosa
_ mili na muloko: x -> [0]*x+210, e.g. 210 is miloko muloko mili na muloko
_ mili na muloko na _: x -> [2, 1]*x+10, e.g. 211 is miloko muloko mili na muloko na mosa
_ mili na muloko mili: x -> [0]*x+220, e.g. 220 is miloko muloko mili na muloko mili
_ mili na muloko mili na _: x -> [2, 1]*x+20, e.g. 221 is miloko muloko mili na muloko mili na mosa
_ mili na muloko miraru: x -> [0]*x+230, e.g. 230 is miloko muloko mili na muloko miraru
_ mili na muloko miraru na _: x -> [2, 1]*x+30, e.g. 231 is miloko muloko mili na muloko miraru na mosa
_ mili na muloko mi_: x -> [2, 10]*x+0, e.g. 240 is miloko muloko mili na muloko misheshe
_ mili na muloko mi_ na _: x -> [2, 9, 1]*x+4, e.g. 241 is miloko muloko mili na muloko misheshe na mosa
_ mili na muloko mi_ ni _: x -> [2, 10, 1]*x+0, e.g. 251 is miloko muloko mili na muloko mithanu ni mosa
_ mili na muloko mi_ na mili: x -> [0, 0]*x+270, e.g. 270 is miloko muloko mili na muloko mithanu na mili
_ mili na muloko mi_ na mili ni _: x -> [3, -6, 1]*x+0, e.g. 271 is miloko muloko mili na muloko mithanu na mili ni mosa
_ mili na muloko mi_ na miraru: x -> [0, 0]*x+280, e.g. 280 is miloko muloko mili na muloko mithanu na miraru
_ mili na muloko mi_ na miraru ni _: x -> [3, -4, 1]*x+0, e.g. 281 is miloko muloko mili na muloko mithanu na miraru ni mosa
_ mili na muloko mi_ na mi_: x -> [0, 0, 0]*x+290, e.g. 290 is miloko muloko mili na muloko mithanu na misheshe
_ mili na muloko mi_ na mi_ ni _: x -> [3, -1, -1, 1]*x+-1, e.g. 291 is miloko muloko mili na muloko mithanu na misheshe ni mosa
_ miraru: x -> [0]*x+300, e.g. 300 is miloko muloko miraru
_ miraru na _: x -> [3, 1]*x+0, e.g. 301 is miloko muloko miraru na mosa
_ miraru na muloko: x -> [0]*x+310, e.g. 310 is miloko muloko miraru na muloko
_ miraru na muloko na _: x -> [3, 1]*x+10, e.g. 311 is miloko muloko miraru na muloko na mosa
_ miraru na muloko mili: x -> [0]*x+320, e.g. 320 is miloko muloko miraru na muloko mili
_ miraru na muloko mili na _: x -> [3, 1]*x+20, e.g. 321 is miloko muloko miraru na muloko mili na mosa
_ miraru na muloko miraru: x -> [0]*x+330, e.g. 330 is miloko muloko miraru na muloko miraru
_ miraru na muloko miraru na _: x -> [3, 1]*x+30, e.g. 331 is miloko muloko miraru na muloko miraru na mosa
_ miraru na muloko mi_: x -> [3, 10]*x+0, e.g. 340 is miloko muloko miraru na muloko misheshe
_ miraru na muloko mi_ na _: x -> [3, 9, 1]*x+4, e.g. 341 is miloko muloko miraru na muloko misheshe na mosa
_ miraru na muloko mi_ ni _: x -> [3, 10, 1]*x+0, e.g. 351 is miloko muloko miraru na muloko mithanu ni mosa
_ miraru na muloko mi_ na mili: x -> [0, 0]*x+370, e.g. 370 is miloko muloko miraru na muloko mithanu na mili
_ miraru na muloko mi_ na mili ni _: x -> [4, -6, 1]*x+0, e.g. 371 is miloko muloko miraru na muloko mithanu na mili ni mosa
_ miraru na muloko mi_ na miraru: x -> [0, 0]*x+380, e.g. 380 is miloko muloko miraru na muloko mithanu na miraru
_ miraru na muloko mi_ na miraru ni _: x -> [4, -4, 1]*x+0, e.g. 381 is miloko muloko miraru na muloko mithanu na miraru ni mosa
_ miraru na muloko mi_ na mi_: x -> [0, 0, 0]*x+390, e.g. 390 is miloko muloko miraru na muloko mithanu na misheshe
_ miraru na muloko mi_ na mi_ ni _: x -> [4, -1, -1, 1]*x+-1, e.g. 391 is miloko muloko miraru na muloko mithanu na misheshe ni mosa
miloko muloko mi_: x -> [100]*x+0, e.g. 400 is miloko muloko misheshe
miloko muloko mi_ na _: x -> [100, 1]*x+0, e.g. 401 is miloko muloko misheshe na mosa
_ mi_ na muloko: x -> [0, 100]*x+10, e.g. 410 is miloko muloko misheshe na muloko
_ mi_ na muloko na _: x -> [0, 100, 1]*x+10, e.g. 411 is miloko muloko misheshe na muloko na mosa
_ mi_ na muloko mili: x -> [0, 100]*x+20, e.g. 420 is miloko muloko misheshe na muloko mili
_ mi_ na muloko mili na _: x -> [0, 100, 1]*x+20, e.g. 421 is miloko muloko misheshe na muloko mili na mosa
_ mi_ na muloko miraru: x -> [0, 100]*x+30, e.g. 430 is miloko muloko misheshe na muloko miraru
_ mi_ na muloko miraru na _: x -> [0, 100, 1]*x+30, e.g. 431 is miloko muloko misheshe na muloko miraru na mosa
_ mi_ na muloko mi_: x -> [0, 100, 10]*x+0, e.g. 440 is miloko muloko misheshe na muloko misheshe
_ mi_ na muloko mi_ na _: x -> [0, 100, 9, 1]*x+4, e.g. 441 is miloko muloko misheshe na muloko misheshe na mosa
_ mi_ na muloko mi_ ni _: x -> [0, 100, 10, 1]*x+0, e.g. 451 is miloko muloko misheshe na muloko mithanu ni mosa
_ mi_ na muloko mi_ na mili: x -> [1, 100, -6]*x+0, e.g. 470 is miloko muloko misheshe na muloko mithanu na mili
_ mi_ na muloko mi_ na mili ni _: x -> [1, 100, -6, 1]*x+0, e.g. 471 is miloko muloko misheshe na muloko mithanu na mili ni mosa
_ mi_ na muloko mi_ na miraru: x -> [1, 100, -4]*x+0, e.g. 480 is miloko muloko misheshe na muloko mithanu na miraru
_ mi_ na muloko mi_ na miraru ni _: x -> [1, 100, -4, 1]*x+0, e.g. 481 is miloko muloko misheshe na muloko mithanu na miraru ni mosa
_ mi_ na muloko mi_ na mi_: x -> [1, 100, -1, -1]*x+-1, e.g. 490 is miloko muloko misheshe na muloko mithanu na misheshe
_ mi_ na muloko mi_ na mi_ ni _: x -> [1, 100, -1, -1, 1]*x+-1, e.g. 491 is miloko muloko misheshe na muloko mithanu na misheshe ni mosa
_ mi_: x -> [5, 1]*x+-5, e.g. 501 is miloko muloko mithanu na mosa
_ mi_ na mili: x -> [0, 0]*x+700, e.g. 700 is miloko muloko mithanu na mili
_ mi_ na mili na _: x -> [7, 0, 1]*x+0, e.g. 701 is miloko muloko mithanu na mili na mosa
_ mi_ na mili na muloko: x -> [0, 0]*x+710, e.g. 710 is miloko muloko mithanu na mili na muloko
_ mi_ na mili na muloko na _: x -> [7, 2, 1]*x+0, e.g. 711 is miloko muloko mithanu na mili na muloko na mosa
_ mi_ na mili na muloko mili: x -> [0, 0]*x+720, e.g. 720 is miloko muloko mithanu na mili na muloko mili
_ mi_ na mili na muloko mili na _: x -> [7, 4, 1]*x+0, e.g. 721 is miloko muloko mithanu na mili na muloko mili na mosa
_ mi_ na mili na muloko miraru: x -> [0, 0]*x+730, e.g. 730 is miloko muloko mithanu na mili na muloko miraru
_ mi_ na mili na muloko miraru na _: x -> [7, 6, 1]*x+0, e.g. 731 is miloko muloko mithanu na mili na muloko miraru na mosa
_ mi_ na mili na muloko mi_: x -> [7, 0, 10]*x+0, e.g. 740 is miloko muloko mithanu na mili na muloko misheshe
_ mi_ na mili na muloko mi_ na _: x -> [7, 4, 5, 1]*x+0, e.g. 741 is miloko muloko mithanu na mili na muloko misheshe na mosa
_ mi_ na mili na muloko mi_ ni _: x -> [7, 0, 10, 1]*x+0, e.g. 751 is miloko muloko mithanu na mili na muloko mithanu ni mosa
_ mi_ na mili na muloko mi_ na mili: x -> [0, 0, 0]*x+770, e.g. 770 is miloko muloko mithanu na mili na muloko mithanu na mili
_ mi_ na mili na muloko mi_ na mili ni _: x -> [8, -3, -3, 1]*x+0, e.g. 771 is miloko muloko mithanu na mili na muloko mithanu na mili ni mosa
_ mi_ na mili na muloko mi_ na miraru: x -> [0, 0, 0]*x+780, e.g. 780 is miloko muloko mithanu na mili na muloko mithanu na miraru
_ mi_ na mili na muloko mi_ na miraru ni _: x -> [8, -2, -2, 1]*x+0, e.g. 781 is miloko muloko mithanu na mili na muloko mithanu na miraru ni mosa
_ mi_ na mili na muloko mi_ na mi_: x -> [0, 0, 0, 0]*x+790, e.g. 790 is miloko muloko mithanu na mili na muloko mithanu na misheshe
_ mi_ na mili na muloko mi_ na mi_ ni _: x -> [8, -1, -1, 0, 1]*x+0, e.g. 791 is miloko muloko mithanu na mili na muloko mithanu na misheshe ni mosa
_ mi_ na miraru: x -> [0, 0]*x+800, e.g. 800 is miloko muloko mithanu na miraru
_ mi_ na miraru na _: x -> [8, 0, 1]*x+0, e.g. 801 is miloko muloko mithanu na miraru na mosa
_ mi_ na miraru na muloko: x -> [0, 0]*x+810, e.g. 810 is miloko muloko mithanu na miraru na muloko
_ mi_ na miraru na muloko na _: x -> [8, 2, 1]*x+0, e.g. 811 is miloko muloko mithanu na miraru na muloko na mosa
_ mi_ na miraru na muloko mili: x -> [0, 0]*x+820, e.g. 820 is miloko muloko mithanu na miraru na muloko mili
_ mi_ na miraru na muloko mili na _: x -> [8, 4, 1]*x+0, e.g. 821 is miloko muloko mithanu na miraru na muloko mili na mosa
_ mi_ na miraru na muloko miraru: x -> [0, 0]*x+830, e.g. 830 is miloko muloko mithanu na miraru na muloko miraru
_ mi_ na miraru na muloko miraru na _: x -> [8, 6, 1]*x+0, e.g. 831 is miloko muloko mithanu na miraru na muloko miraru na mosa
_ mi_ na miraru na muloko mi_: x -> [8, 0, 10]*x+0, e.g. 840 is miloko muloko mithanu na miraru na muloko misheshe
_ mi_ na miraru na muloko mi_ na _: x -> [8, 4, 5, 1]*x+0, e.g. 841 is miloko muloko mithanu na miraru na muloko misheshe na mosa
_ mi_ na miraru na muloko mi_ ni _: x -> [8, 0, 10, 1]*x+0, e.g. 851 is miloko muloko mithanu na miraru na muloko mithanu ni mosa
_ mi_ na miraru na muloko mi_ na mili: x -> [0, 0, 0]*x+870, e.g. 870 is miloko muloko mithanu na miraru na muloko mithanu na mili
_ mi_ na miraru na muloko mi_ na mili ni _: x -> [9, -3, -3, 1]*x+0, e.g. 871 is miloko muloko mithanu na miraru na muloko mithanu na mili ni mosa
_ mi_ na miraru na muloko mi_ na miraru: x -> [0, 0, 0]*x+880, e.g. 880 is miloko muloko mithanu na miraru na muloko mithanu na miraru
_ mi_ na miraru na muloko mi_ na miraru ni _: x -> [9, -2, -2, 1]*x+0, e.g. 881 is miloko muloko mithanu na miraru na muloko mithanu na miraru ni mosa
_ mi_ na miraru na muloko mi_ na mi_: x -> [0, 0, 0, 0]*x+890, e.g. 890 is miloko muloko mithanu na miraru na muloko mithanu na misheshe
_ mi_ na miraru na muloko mi_ na mi_ ni _: x -> [9, -1, -1, 0, 1]*x+0, e.g. 891 is miloko muloko mithanu na miraru na muloko mithanu na misheshe ni mosa
_ mi_ na mi_: x -> [0, 0, 0]*x+900, e.g. 900 is miloko muloko mithanu na misheshe
_ mi_ na mi_ na _: x -> [9, 0, 0, 1]*x+0, e.g. 901 is miloko muloko mithanu na misheshe na mosa
miloko muloko mi_ na mi_ na _: x -> [0, 0, 0]*x+909, e.g. 909 is miloko muloko mithanu na misheshe na thanu na sheshe
_ mi_ na mi_ na muloko: x -> [0, 0, 0]*x+910, e.g. 910 is miloko muloko mithanu na misheshe na muloko
_ mi_ na mi_ na muloko na _: x -> [9, 1, 1, 1]*x+1, e.g. 911 is miloko muloko mithanu na misheshe na muloko na mosa
_ mi_ na mi_ na muloko mili: x -> [0, 0, 0]*x+920, e.g. 920 is miloko muloko mithanu na misheshe na muloko mili
_ mi_ na mi_ na muloko mili na _: x -> [9, 3, 1, 1]*x+1, e.g. 921 is miloko muloko mithanu na misheshe na muloko mili na mosa
_ mi_ na mi_ na muloko miraru: x -> [0, 0, 0]*x+930, e.g. 930 is miloko muloko mithanu na misheshe na muloko miraru
_ mi_ na mi_ na muloko miraru na _: x -> [9, 4, 2, 1]*x+2, e.g. 931 is miloko muloko mithanu na misheshe na muloko miraru na mosa
_ mi_ na mi_ na muloko mi_: x -> [9, 0, 0, 10]*x+0, e.g. 940 is miloko muloko mithanu na misheshe na muloko misheshe
_ mi_ na mi_ na muloko mi_ na _: x -> [9, 3, 3, 3, 1]*x+1, e.g. 941 is miloko muloko mithanu na misheshe na muloko misheshe na mosa
_ mi_ na mi_ na muloko mi_ ni _: x -> [9, 0, 0, 10, 1]*x+0, e.g. 951 is miloko muloko mithanu na misheshe na muloko mithanu ni mosa
_ mi_ na mi_ na muloko mi_ na mili: x -> [0, 0, 0, 0]*x+970, e.g. 970 is miloko muloko mithanu na misheshe na muloko mithanu na mili
_ mi_ na mi_ na muloko mi_ na mili ni _: x -> [10, -3, -1, -2, 1]*x+-1, e.g. 971 is miloko muloko mithanu na misheshe na muloko mithanu na mili ni mosa
_ mi_ na mi_ na muloko mi_ na miraru: x -> [0, 0, 0, 0]*x+980, e.g. 980 is miloko muloko mithanu na misheshe na muloko mithanu na miraru
_ mi_ na mi_ na muloko mi_ na miraru ni _: x -> [10, -2, -1, -1, 1]*x+-1, e.g. 981 is miloko muloko mithanu na misheshe na muloko mithanu na miraru ni mosa
_ mi_ na mi_ na muloko mi_ na mi_: x -> [0, 0, 0, 0, 0]*x+990, e.g. 990 is miloko muloko mithanu na misheshe na muloko mithanu na misheshe
_ mi_ na mi_ na muloko mi_ na mi_ ni _: x -> [10, -1, -1, 0, 0, 1]*x+-1, e.g. 991 is miloko muloko mithanu na misheshe na muloko mithanu na misheshe ni mosa
The irreducibles are: mosa (1), pili (2), tharu (3), sheshe (4), thanu (5), mulokó (10), milokó mili (20), miloko miraru (30), miloko muloko (100), miloko muloko na muloko (110), miloko muloko na muloko mili (120), miloko muloko na muloko miraru (130), miloko muloko mili (200)
Parse numerals in Hausa
Hausa has 14 number functions and 20 irreducible numbers.
The number functions are:
sha _: x -> [1]*x+10, e.g. 11 is sha ɗaya
ashirin da _: x -> [1]*x+20, e.g. 21 is ashirin da ɗaya
talatin da _: x -> [1]*x+30, e.g. 31 is talatin da ɗaya
arba’in da _: x -> [1]*x+40, e.g. 41 is arba’in da ɗaya
hamsin da _: x -> [1]*x+50, e.g. 51 is hamsin da ɗaya
sittin da _: x -> [1]*x+60, e.g. 61 is sittin da ɗaya
saba’in da _: x -> [1]*x+70, e.g. 71 is saba’in da ɗaya
tamanin da _: x -> [1]*x+80, e.g. 81 is tamanin da ɗaya
tis’in da _: x -> [1]*x+90, e.g. 91 is tis’in da ɗaya
ɗari_: x -> [1]*x+100, e.g. 101 is ɗariɗaya
ɗari_ da _: x -> [11, 1]*x+0, e.g. 111 is ɗarigoma da ɗaya
ɗari _: x -> [100]*x+0, e.g. 200 is ɗari biyu
ɗari __: x -> [100, 1]*x+0, e.g. 201 is ɗari biyuɗaya
ɗari __ da _: x -> [100, 1, 1]*x+0, e.g. 211 is ɗari biyugoma da ɗaya
The irreducibles are: ɗaya (1), biyu (2), uku (3), huɗu (4), biyar (5), shida (6), bakwai (7), takwas (8), tara (9), goma (10), sha biyar (15), ashirin (20), talatin (30), arba’in (40), hamsin (50), sittin (60), saba’in (70), tamanin (80), tis’in (90), ɗari (100)
The old parser had structured Hausa into 34 number functions and 28 irreducible numbers.
Parse numerals in Saanich
Saanich has 12 number functions and 19 irreducible numbers.
The number functions are:
ʔapən ʔiʔ kʷs _: x -> [1]*x+10, e.g. 11 is ʔapən ʔiʔ kʷs nət̕θəʔ
t̕θaxʷkʷəs ʔiʔ kʷs _: x -> [1]*x+20, e.g. 21 is t̕θaxʷkʷəs ʔiʔ kʷs nət̕θəʔ
ɬəxʷɬšeʔ ʔiʔ kʷs _: x -> [1]*x+30, e.g. 31 is ɬəxʷɬšeʔ ʔiʔ kʷs nət̕θəʔ
ŋəsɬšeʔ ʔiʔ kʷs _: x -> [1]*x+40, e.g. 41 is ŋəsɬšeʔ ʔiʔ kʷs nət̕θəʔ
ɬq̕əčsɬšeʔ ʔiʔ kʷs _: x -> [1]*x+50, e.g. 51 is ɬq̕əčsɬšeʔ ʔiʔ kʷs nət̕θəʔ
t̕x̣əməɬšeʔ ʔiʔ kʷs _: x -> [1]*x+60, e.g. 61 is t̕x̣əməɬšeʔ ʔiʔ kʷs nət̕θəʔ
t̕θəʔkʷsɬšeʔ ʔiʔ kʷs _: x -> [1]*x+70, e.g. 71 is t̕θəʔkʷsɬšeʔ ʔiʔ kʷs nət̕θəʔ
štəmaʔəs ʔiʔ kʷs _: x -> [1]*x+80, e.g. 81 is štəmaʔəs ʔiʔ kʷs nət̕θəʔ
təkʷxʷəɬšeʔ ʔiʔ kʷs _: x -> [1]*x+90, e.g. 91 is təkʷxʷəɬšeʔ ʔiʔ kʷs nət̕θəʔ
sneč̕əw̕əč ʔiʔ kʷs _: x -> [1]*x+100, e.g. 101 is sneč̕əw̕əč ʔiʔ kʷs nət̕θəʔ
_ sneč̕əw̕əč: x -> [100]*x+0, e.g. 200 is čəsəʔ sneč̕əw̕əč
_ sneč̕əw̕əč ʔiʔ kʷs _: x -> [100, 1]*x+0, e.g. 201 is čəsəʔ sneč̕əw̕əč ʔiʔ kʷs nət̕θəʔ
The irreducibles are: nət̕θəʔ (1), čəsəʔ (2), ɬixʷ (3), ŋas (4), ɬq̕ečəs (5), t̕x̣əŋ (6), t̕θaʔkʷəs (7), teʔθəs (8), təkʷəxʷ (9), ʔapən (10), t̕θaxʷkʷəs (20), ɬəxʷɬšeʔ (30), ŋəsɬšeʔ (40), ɬq̕əčsɬšeʔ (50), t̕x̣əməɬšeʔ (60), t̕θəʔkʷsɬšeʔ (70), štəmaʔəs (80), təkʷxʷəɬšeʔ (90), sneč̕əw̕əč (100)
The old parser had structured Saanich into 12 number functions and 19 irreducible numbers.
Parse numerals in Corsican
Corsican has 31 number functions and 25 irreducible numbers.
The number functions are:
_deci: x -> [0]*x+13, e.g. 13 is trèdeci
dices_: x -> [0]*x+17, e.g. 17 is dicessétte
dici_: x -> [0]*x+18, e.g. 18 is dicióttu
dicen_: x -> [0]*x+19, e.g. 19 is dicennóve
vint_: x -> [1]*x+20, e.g. 21 is vintunu
vinti_: x -> [1]*x+20, e.g. 22 is vintidui
_nta: x -> [0]*x+30, e.g. 30 is trènta
_nt_: x -> [9, 1]*x+3, e.g. 31 is trèntunu
_nta_: x -> [9, 1]*x+3, e.g. 32 is trèntadui
quarant_: x -> [0]*x+41, e.g. 41 is quarantunu
quaranta_: x -> [1]*x+40, e.g. 42 is quarantadui
cinquant_: x -> [1]*x+50, e.g. 51 is cinquantunu
cinquanta_: x -> [1]*x+50, e.g. 52 is cinquantadui
sessant_: x -> [1]*x+60, e.g. 61 is sessantunu
sessanta_: x -> [1]*x+60, e.g. 62 is sessantadui
settant_: x -> [1]*x+70, e.g. 71 is settantunu
settanta_: x -> [1]*x+70, e.g. 72 is settantadui
ottant_: x -> [1]*x+80, e.g. 81 is ottantunu
ottanta_: x -> [1]*x+80, e.g. 82 is ottantadui
novant_: x -> [1]*x+90, e.g. 91 is novantunu
novanta_: x -> [1]*x+90, e.g. 92 is novantadui
cèntu è _: x -> [1]*x+100, e.g. 101 is cèntu è unu
cèntu_: x -> [1]*x+100, e.g. 120 is cèntuvinti
_ecèntu: x -> [0]*x+200, e.g. 200 is duiecèntu
_ecèntu è _: x -> [80, 1]*x+40, e.g. 201 is duiecèntu è unu
_ecèntu _: x -> [80, 1]*x+40, e.g. 220 is duiecèntu vinti
trecèntu è _: x -> [1]*x+300, e.g. 301 is trecèntu è unu
trecèntu _: x -> [1]*x+300, e.g. 320 is trecèntu vinti
_cèntu: x -> [100]*x+0, e.g. 400 is quattrucèntu
_cèntu è _: x -> [100, 1]*x+0, e.g. 401 is quattrucèntu è unu
_cèntu _: x -> [100, 1]*x+0, e.g. 420 is quattrucèntu vinti
The irreducibles are: unu (1), dui (2), trè (3), quattru (4), cinque (5), séi (6), sétte (7), óttu (8), nóve (9), déce (10), òndeci (11), dòdeci (12), quattòrdeci (14), quindeci (15), sèdeci (16), vinti (20), quaranta (40), quarantóttu (48), cinquanta (50), sessanta (60), settanta (70), ottanta (80), novanta (90), cèntu (100), trecèntu (300)
The old parser had structured Corsican into 22 number functions and 41 irreducible numbers.
Parse numerals in Polish
Polish has 15 number functions and 17 irreducible numbers.
The number functions are:
_aście: x -> [0]*x+11, e.g. 11 is jedenaście
_naście: x -> [1]*x+10, e.g. 12 is dwanaście
_dzieścia: x -> [0]*x+20, e.g. 20 is dwadzieścia
_dzieścia _: x -> [8, 1]*x+4, e.g. 21 is dwadzieścia jeden
_dzieści: x -> [0]*x+30, e.g. 30 is trzydzieści
_dzieści _: x -> [9, 1]*x+3, e.g. 31 is trzydzieści jeden
czterdzieści _: x -> [1]*x+40, e.g. 41 is czterdzieści jeden
_dziesiąt: x -> [10]*x+0, e.g. 50 is pięćdziesiąt
_dziesiąt _: x -> [10, 1]*x+0, e.g. 51 is pięćdziesiąt jeden
_ sto _: x -> [50, 1]*x+50, e.g. 101 is jeden sto jeden
dwieście _: x -> [1]*x+200, e.g. 201 is dwieście jeden
_sta: x -> [100]*x+0, e.g. 300 is trzysta
_sta _: x -> [100, 1]*x+0, e.g. 301 is trzysta jeden
_set: x -> [100]*x+0, e.g. 500 is pięćset
_set _: x -> [100, 1]*x+0, e.g. 501 is pięćset jeden
The irreducibles are: jeden (1), dwa (2), trzy (3), cztery (4), pięć (5), sześć (6), siedem (7), osiem (8), dziewięć (9), dziesięć (10), czternaście (14), piętnaście (15), szesnaście (16), dziewiętnaście (19), czterdzieści (40), sto (100), dwieście (200)
The old parser had structured Polish into 15 number functions and 17 irreducible numbers.
Parse numerals in Armenian
Armenian has 16 number functions and 419 irreducible numbers.
The number functions are:
տասն_: x -> [1]*x+10, e.g. 11 is տասնմեկ
քսան _: x -> [1]*x+20, e.g. 21 is քսան մեկ
երեսուն _: x -> [1]*x+30, e.g. 31 is երեսուն մեկ
քառասուն _: x -> [1]*x+40, e.g. 41 is քառասուն մեկ
հիսուն _: x -> [1]*x+50, e.g. 51 is հիսուն մեկ
վաթսուն _: x -> [1]*x+60, e.g. 61 is վաթսուն մեկ
յոթանասուն _: x -> [1]*x+70, e.g. 71 is յոթանասուն մեկ
ութսուն _: x -> [1]*x+80, e.g. 81 is ութսուն մեկ
իննսուն _: x -> [1]*x+90, e.g. 91 is իննսուն մեկ
հարյուր _: x -> [1]*x+100, e.g. 101 is հարյուր մեկ
_ հարյուր: x -> [100]*x+0, e.g. 200 is երկու հարյուր
_ հարյուր _: x -> [100, 1]*x+0, e.g. 201 is երկու հարյուր մեկ
երեք հարյուր _: x -> [1]*x+300, e.g. 301 is երեք հարյուր մեկ
վեց հարյուր _: x -> [1]*x+600, e.g. 601 is վեց հարյուր մեկ
յոթ հարյուր _: x -> [1]*x+700, e.g. 701 is յոթ հարյուր մեկ
ութ հարյուր _: x -> [1]*x+800, e.g. 801 is ութ հարյուր մեկ
The irreducibles are: մեկ (1), երկու (2), (3), չորս (4), հինգ (5), (6), (7), (8), ինը (9), տաս (10), (13), (16), (17), (18), քսան (20), (23), (26), (27), (28), երեսուն (30), (33), (36), (37), (38), քառասուն (40), (43), (46), (47), (48), հիսուն (50), (53), (56), (57), (58), վաթսուն (60), (63), (66), (67), (68), յոթանասուն (70), (73), (76), (77), (78), ութսուն (80), (83), (86), (87), (88), իննսուն (90), (93), (96), (97), (98), հարյուր (100), (103), (106), (107), (108), (113), (116), (117), (118), (123), (126), (127), (128), (133), (136), (137), (138), (143), (146), (147), (148), (153), (156), (157), (158), (163), (166), (167), (168), (173), (176), (177), (178), (183), (186), (187), (188), (193), (196), (197), (198), (203), (206), (207), (208), (213), (216), (217), (218), (223), (226), (227), (228), (233), (236), (237), (238), (243), (246), (247), (248), (253), (256), (257), (258), (263), (266), (267), (268), (273), (276), (277), (278), (283), (286), (287), (288), (293), (296), (297), (298), երեք հարյուր (300), (303), (306), (307), (308), (313), (316), (317), (318), (323), (326), (327), (328), (333), (336), (337), (338), (343), (346), (347), (348), (353), (356), (357), (358), (363), (366), (367), (368), (373), (376), (377), (378), (383), (386), (387), (388), (393), (396), (397), (398), (403), (406), (407), (408), (413), (416), (417), (418), (423), (426), (427), (428), (433), (436), (437), (438), (443), (446), (447), (448), (453), (456), (457), (458), (463), (466), (467), (468), (473), (476), (477), (478), (483), (486), (487), (488), (493), (496), (497), (498), (503), (506), (507), (508), (513), (516), (517), (518), (523), (526), (527), (528), (533), (536), (537), (538), (543), (546), (547), (548), (553), (556), (557), (558), (563), (566), (567), (568), (573), (576), (577), (578), (583), (586), (587), (588), (593), (596), (597), (598), վեց հարյուր (600), (603), (606), (607), (608), (613), (616), (617), (618), (623), (626), (627), (628), (633), (636), (637), (638), (643), (646), (647), (648), (653), (656), (657), (658), (663), (666), (667), (668), (673), (676), (677), (678), (683), (686), (687), (688), (693), (696), (697), (698), յոթ հարյուր (700), (703), (706), (707), (708), (713), (716), (717), (718), (723), (726), (727), (728), (733), (736), (737), (738), (743), (746), (747), (748), (753), (756), (757), (758), (763), (766), (767), (768), (773), (776), (777), (778), (783), (786), (787), (788), (793), (796), (797), (798), ութ հարյուր (800), (803), (806), (807), (808), (813), (816), (817), (818), (823), (826), (827), (828), (833), (836), (837), (838), (843), (846), (847), (848), (853), (856), (857), (858), (863), (866), (867), (868), (873), (876), (877), (878), (883), (886), (887), (888), (893), (896), (897), (898), (903), (906), (907), (908), (913), (916), (917), (918), (923), (926), (927), (928), (933), (936), (937), (938), (943), (946), (947), (948), (953), (956), (957), (958), (963), (966), (967), (968), (973), (976), (977), (978), (983), (986), (987), (988), (993), (996), (997), (998)
The old parser had structured Armenian into 16 number functions and 419 irreducible numbers.
Parse numerals in Cocama
Cocama has 6 number functions and 11 irreducible numbers.
The number functions are:
chunga _: x -> [1]*x+10, e.g. 11 is chunga huepe
_ chunga: x -> [10]*x+0, e.g. 20 is mucuica chunga
_ chunga _: x -> [10, 1]*x+0, e.g. 21 is mucuica chunga huepe
pacha _: x -> [1]*x+100, e.g. 101 is pacha huepe
_ pacha: x -> [100]*x+0, e.g. 200 is mucuica pacha
_ pacha _: x -> [100, 1]*x+0, e.g. 201 is mucuica pacha huepe
The irreducibles are: huepe (1), mucuica (2), mutsapɨrɨca (3), iruaca (4), pichca (5), socta (6), cansi (7), pusa (8), iscun (9), chunga (10), pacha (100)
The old parser had structured Cocama into 6 number functions and 11 irreducible numbers.
Parse numerals in Votic
Votic has 13 number functions and 18 irreducible numbers.
The number functions are:
_te̮·šše̮me̮tta: x -> [1]*x+10, e.g. 11 is ühste̮·šše̮me̮tta
kahš́tš́ümmettä _: x -> [1]*x+20, e.g. 21 is kahš́tš́ümmettä ühs
_tšümmettä: x -> [10]*x+0, e.g. 30 is ke̮mtšümmettä
_tšümmettä _: x -> [10, 1]*x+0, e.g. 31 is ke̮mtšümmettä ühs
vīš́tš́ümmettä _: x -> [1]*x+50, e.g. 51 is vīš́tš́ümmettä ühs
kūš́tš́ümmettä _: x -> [1]*x+60, e.g. 61 is kūš́tš́ümmettä ühs
sata_: x -> [1]*x+100, e.g. 101 is sataühs
_atā: x -> [0]*x+200, e.g. 200 is kahsatā
_atā_: x -> [80, 1]*x+40, e.g. 201 is kahsatāühs
_satā: x -> [100]*x+0, e.g. 300 is ke̮msatā
_satā_: x -> [100, 1]*x+0, e.g. 301 is ke̮msatāühs
vīssatā_: x -> [1]*x+500, e.g. 501 is vīssatāühs
kūssatā_: x -> [1]*x+600, e.g. 601 is kūssatāühs
The irreducibles are: ühs (1), kahs (2), ke̮m (3), nellä (4), vīsi (5), kūsi (6), seitsē (7), kahe̮sā (8), ühesǟ (9), tšümmē (10), vīste̮·šše̮me̮tta (15), kūste̮·šše̮me̮tta (16), kahš́tš́ümmettä (20), vīš́tš́ümmettä (50), kūš́tš́ümmettä (60), sata (100), vīssatā (500), kūssatā (600)
The old parser had structured Votic into 13 number functions and 18 irreducible numbers.
Parse numerals in Tsonga
Tsonga has 6 number functions and 11 irreducible numbers.
The number functions are:
khume _: x -> [1]*x+10, e.g. 11 is khume n’we
makume _: x -> [10]*x+0, e.g. 20 is makume mbirhi
makume _ _: x -> [10, 1]*x+0, e.g. 21 is makume mbirhi n’we
dzana _: x -> [1]*x+100, e.g. 101 is dzana n’we
madzana _: x -> [100]*x+0, e.g. 200 is madzana mbirhi
madzana _ _: x -> [100, 1]*x+0, e.g. 201 is madzana mbirhi n’we
The irreducibles are: n’we (1), mbirhi (2), nharhu (3), mune (4), ntlhanu (5), ntsevu (6), nkombo (7), nhungu (8), nkaye (9), khume (10), dzana (100)
The old parser had structured Tsonga into 26 number functions and 19 irreducible numbers.
Parse numerals in Estonian
Estonian has 6 number functions and 11 irreducible numbers.
The number functions are:
_teist: x -> [1]*x+10, e.g. 11 is üksteist
_kümmend: x -> [10]*x+0, e.g. 20 is kakskümmend
_kümmend _: x -> [10, 1]*x+0, e.g. 21 is kakskümmend üks
sada_: x -> [1]*x+100, e.g. 101 is sadaüks
_sada: x -> [100]*x+0, e.g. 200 is kakssada
_sada_: x -> [100, 1]*x+0, e.g. 201 is kakssadaüks
The irreducibles are: üks (1), kaks (2), kolm (3), neli (4), viis (5), kuus (6), seitse (7), kaheksa (8), üheksa (9), kümme (10), sada (100)
The old parser had structured Estonian into 6 number functions and 11 irreducible numbers.
Parse numerals in Jerriais
Jerriais has 27 number functions and 21 irreducible numbers.
The number functions are:
t_ze: x -> [0]*x+15, e.g. 15 is tchînze
dgiêx-_: x -> [1]*x+10, e.g. 17 is dgiêx-sept
vîngt’tch’_: x -> [0]*x+21, e.g. 21 is vîngt’tch’ieune
vîngt-_: x -> [1]*x+20, e.g. 22 is vîngt-deux
trente’tch’_: x -> [0]*x+31, e.g. 31 is trente’tch’ieune
trente-_: x -> [1]*x+30, e.g. 32 is trente-deux
quarante’tch’_: x -> [0]*x+41, e.g. 41 is quarante’tch’ieune
quarante-_: x -> [1]*x+40, e.g. 42 is quarante-deux
_quante: x -> [0]*x+50, e.g. 50 is chînquante
_quante tch’_: x -> [0, 0]*x+51, e.g. 51 is chînquante tch’ieune
_quante-_: x -> [10, 1]*x+0, e.g. 52 is chînquante-deux
souaixante tch’_: x -> [0]*x+61, e.g. 61 is souaixante tch’ieune
souaixante-_: x -> [1]*x+60, e.g. 62 is souaixante-deux
_ante: x -> [0]*x+70, e.g. 70 is septante
_ante tch’_: x -> [0, 0]*x+71, e.g. 71 is septante tch’ieune
_ante-_: x -> [10, 1]*x+0, e.g. 72 is septante-deux
quatre-_s: x -> [0]*x+80, e.g. 80 is quatre-vîngts
quatre-_-_: x -> [4, 1]*x+0, e.g. 81 is quatre-vîngt-ieune
nénante tch’_: x -> [0]*x+91, e.g. 91 is nénante tch’ieune
nénante-_: x -> [1]*x+90, e.g. 92 is nénante-deux
chent _: x -> [1]*x+100, e.g. 101 is chent ieune
_ chents: x -> [100]*x+0, e.g. 200 is deux chents
_ chents _: x -> [100, 1]*x+0, e.g. 201 is deux chents ieune
siêx _s: x -> [0]*x+600, e.g. 600 is siêx chents
siêx _s _: x -> [6, 1]*x+0, e.g. 601 is siêx chents ieune
neu _s: x -> [0]*x+900, e.g. 900 is neu chents
neu _s _: x -> [9, 1]*x+0, e.g. 901 is neu chents ieune
The irreducibles are: ieune (1), deux (2), trais (3), quat’ (4), chîn (5), six (6), sept (7), huit (8), neuf (9), dgix (10), onze (11), douze (12), treize (13), quatorze (14), seize (16), vîngt (20), trente (30), quarante (40), souaixante (60), nénante (90), chent (100)
The old parser had structured Jerriais into 34 number functions and 24 irreducible numbers.
Parse numerals in Nume
Parse numerals in Mohawk
Mohawk has 10 number functions and 10 irreducible numbers.
The number functions are:
_ iawén:re: x -> [1]*x+10, e.g. 11 is énska iawén:re
tew_: x -> [0]*x+20, e.g. 20 is tewáhsen
tew_ _: x -> [6, 1]*x+2, e.g. 21 is tewáhsen énska
_ niw_: x -> [10, 0]*x+0, e.g. 30 is áhsen niwáhsen
_ niw_ _: x -> [10, 0, 1]*x+0, e.g. 31 is áhsen niwáhsen énska
iá:ia’k niw_: x -> [0]*x+60, e.g. 60 is iá:ia’k niwáhsen
iá:ia’k niw_ _: x -> [18, 1]*x+6, e.g. 61 is iá:ia’k niwáhsen énska
_ tewen’niáwe: x -> [100]*x+0, e.g. 100 is énska tewen’niáwe
_ tewen’niáwe tánon _: x -> [100, 1]*x+0, e.g. 101 is énska tewen’niáwe tánon énska
_ tewen’niáwe _: x -> [100, 1]*x+0, e.g. 110 is énska tewen’niáwe oié:ri
The irreducibles are: énska (1), tékeni (2), áhsen (3), kaié:ri (4), wisk (5), ià:ia’k (6), tsá:ta (7), sha’té:kon (8), tióhton (9), oié:ri (10)
The old parser had structured Mohawk into 8 number functions and 12 irreducible numbers.
Parse numerals in Saterland-Frisian
Saterland-Frisian has 12 number functions and 21 irreducible numbers.
The number functions are:
_on: x -> [0]*x+10, e.g. 10 is tjoon
_tien: x -> [1]*x+10, e.g. 16 is säkstien
_untwintich: x -> [1]*x+20, e.g. 21 is eenuntwintich
_untrüütich: x -> [1]*x+30, e.g. 31 is eenuntrüütich
_unfjautich: x -> [1]*x+40, e.g. 41 is eenunfjautich
_unfüüftich: x -> [1]*x+50, e.g. 51 is eenunfüüftich
_tich: x -> [10]*x+0, e.g. 60 is säkstich
_un_tich: x -> [1, 10]*x+0, e.g. 61 is eenunsäkstich
_untachentich: x -> [1]*x+80, e.g. 81 is eenuntachentich
hunnert _: x -> [1]*x+100, e.g. 101 is hunnert een
_hunnert: x -> [100]*x+0, e.g. 200 is twohunnert
_hunnert _: x -> [100, 1]*x+0, e.g. 201 is twohunnert een
The irreducibles are: een (1), two (2), tjo (3), fjauer (4), fieuw (5), säks (6), soogen (7), oachte (8), njuugen (9), alwen (11), tweelich (12), trättien (13), fjautien (14), füüftien (15), achttien (18), twintich (20), trüütich (30), fjautich (40), füüftich (50), tachentich (80), hunnert (100)
The old parser had structured Saterland-Frisian into 12 number functions and 21 irreducible numbers.
Parse numerals in Tamazight
Tamazight has 10 number functions and 13 irreducible numbers.
The number functions are:
_ ⴷ ⵎⵔⴰⵡ: x -> [1]*x+10, e.g. 11 is ⵢⴰⵏ ⴷ ⵎⵔⴰⵡ
_ ⵉⴷ ⵎⵔⴰⵡ: x -> [10]*x+0, e.g. 20 is ⵙⵉⵏ ⵉⴷ ⵎⵔⴰⵡ
_ ⵉⴷ ⵎⵔⴰⵡ ⵉ _: x -> [10, 1]*x+0, e.g. 21 is ⵙⵉⵏ ⵉⴷ ⵎⵔⴰⵡ ⵉ ⵢⴰⵏ
_ⵜ ⵉⴷ ⵎⵔⴰⵡ: x -> [10]*x+0, e.g. 80 is ⵜⴰⵎⵜ ⵉⴷ ⵎⵔⴰⵡ
_ⵜ ⵉⴷ ⵎⵔⴰⵡ ⵉ _: x -> [10, 1]*x+0, e.g. 81 is ⵜⴰⵎⵜ ⵉⴷ ⵎⵔⴰⵡ ⵉ ⵢⴰⵏ
ⵜⵉⵎⵉⴹⵉ ⴷ _: x -> [1]*x+100, e.g. 101 is ⵜⵉⵎⵉⴹⵉ ⴷ ⵢⴰⵏ
ⵙⵏⴰⵜ ⵜⵉⵎⴰⴹ ⴷ _: x -> [1]*x+200, e.g. 201 is ⵙⵏⴰⵜ ⵜⵉⵎⴰⴹ ⴷ ⵢⴰⵏ
ⴽⵕⴰⵟⵜ ⵜⵉⵎⴰⴹ ⴷ _: x -> [1]*x+300, e.g. 301 is ⴽⵕⴰⵟⵜ ⵜⵉⵎⴰⴹ ⴷ ⵢⴰⵏ
_ⵜ ⵜⵉⵎⴰⴹ: x -> [100]*x+0, e.g. 400 is ⴽⴽⵓⵣⵜ ⵜⵉⵎⴰⴹ
_ⵜ ⵜⵉⵎⴰⴹ ⴷ _: x -> [100, 1]*x+0, e.g. 401 is ⴽⴽⵓⵣⵜ ⵜⵉⵎⴰⴹ ⴷ ⵢⴰⵏ
The irreducibles are: ⵢⴰⵏ (1), ⵙⵉⵏ (2), ⴽⵕⴰⴹ (3), ⴽⴽⵓⵣ (4), ⵙⵎⵎⵓⵙ (5), ⵚⴹⵉⵚ (6), ⵙⴰ (7), ⵜⴰⵎ (8), ⵜⵥⴰ (9), ⵎⵔⴰⵡ (10), ⵜⵉⵎⵉⴹⵉ (100), ⵙⵏⴰⵜ ⵜⵉⵎⴰⴹ (200), ⴽⵕⴰⵟⵜ ⵜⵉⵎⴰⴹ (300)
The old parser had structured Tamazight into 10 number functions and 13 irreducible numbers.
Parse numerals in Bavarian
Bavarian has 34 number functions and 81 irreducible numbers.
The number functions are:
_zea: x -> [0]*x+13, e.g. 13 is dreizea
_razwånzge: x -> [0]*x+22, e.g. 22 is zwoarazwånzge
_azwånzge: x -> [0]*x+23, e.g. 23 is dreiazwånzge
_ßge: x -> [0]*x+30, e.g. 30 is dreißge
oana_ßge: x -> [0]*x+31, e.g. 31 is oanadreißge
_ra_ßge: x -> [0, 0]*x+32, e.g. 32 is zwoaradreißge
_a_ßge: x -> [0, 0]*x+33, e.g. 33 is dreiadreißge
fiara_ßge: x -> [0]*x+34, e.g. 34 is fiaradreißge
fimfa_ßge: x -> [0]*x+35, e.g. 35 is fimfadreißge
sechsa_ßge: x -> [0]*x+36, e.g. 36 is sechsadreißge
simma_ßge: x -> [0]*x+37, e.g. 37 is simmadreißge
åchta_ßge: x -> [0]*x+38, e.g. 38 is åchtadreißge
neina_ßge: x -> [0]*x+39, e.g. 39 is neinadreißge
_rafiazge: x -> [0]*x+42, e.g. 42 is zwoarafiazge
_afiazge: x -> [0]*x+43, e.g. 43 is dreiafiazge
_rafuchzge: x -> [0]*x+52, e.g. 52 is zwoarafuchzge
_afuchzge: x -> [0]*x+53, e.g. 53 is dreiafuchzge
_rasechzge: x -> [0]*x+62, e.g. 62 is zwoarasechzge
_asechzge: x -> [0]*x+63, e.g. 63 is dreiasechzge
_rasibzge: x -> [0]*x+72, e.g. 72 is zwoarasibzge
_asibzge: x -> [0]*x+73, e.g. 73 is dreiasibzge
_raåchtzge: x -> [0]*x+82, e.g. 82 is zwoaraåchtzge