-
Notifications
You must be signed in to change notification settings - Fork 522
/
suffix-array-sa-is.cpp
162 lines (152 loc) · 5.36 KB
/
suffix-array-sa-is.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#include <bits/stdc++.h>
using namespace std;
// Suffix array and lcp in O(n)
// Taken from "Two Efficient Algorithms for Linear Suffix Array Construction.pdf"
#define tget(i) ((t[(i) / 8] & (1 << ((i) % 8))) ? 1 : 0)
#define tset(i, b) t[(i) / 8] = (b) ? ((1 << ((i) % 8)) | t[(i) / 8]) : ((~(1 << ((i) % 8))) & t[(i) / 8])
#define chr(i) (cs == sizeof(int) ? ((int *)s)[i] : ((unsigned char *)s)[i])
#define isLMS(i) (i > 0 && tget(i) && !tget(i - 1))
// find the start or end of each bucket
void getBuckets(unsigned char *s, int *bkt, int n, int K, int cs, bool end) {
int i, sum = 0;
for (i = 0; i <= K; i++)
bkt[i] = 0; // clear all buckets
for (i = 0; i < n; i++)
bkt[chr(i)]++; // compute the size of each bucket
for (i = 0; i <= K; i++) {
sum += bkt[i];
bkt[i] = end ? sum : sum - bkt[i];
}
}
// compute SAl
void induceSAl(unsigned char *t, int *SA, unsigned char *s, int *bkt, int n, int K, int cs, bool end) {
int i, j;
getBuckets(s, bkt, n, K, cs, end); // find starts of buckets
for (i = 0; i < n; i++) {
j = SA[i] - 1;
if (j >= 0 && !tget(j))
SA[bkt[chr(j)]++] = j;
}
}
// compute SAs
void induceSAs(unsigned char *t, int *SA, unsigned char *s, int *bkt, int n, int K, int cs, bool end) {
int i, j;
getBuckets(s, bkt, n, K, cs, end); // find ends of buckets
for (i = n - 1; i >= 0; i--) {
j = SA[i] - 1;
if (j >= 0 && tget(j))
SA[--bkt[chr(j)]] = j;
}
}
// find the suffix array SA of s[0..n-1] in {1..K}^n
// require s[n-1]=0 (the sentinel!), n>=2
// use a working space (excluding s and SA) of at most 2.25n+O(1) for a constant alphabet
void SA_IS(unsigned char *s, int *SA, int n, int K, int cs) {
int i, j;
unsigned char *t = (unsigned char *)malloc(n / 8 + 1); // LS-type array in bits
// Classify the type of each character
tset(n - 2, 0);
tset(n - 1, 1); // the sentinel must be in s1, important!!!
for (i = n - 3; i >= 0; i--)
tset(i, (chr(i) < chr(i + 1) || (chr(i) == chr(i + 1) && tget(i + 1) == 1)) ? 1 : 0);
// stage 1: reduce the problem by at least 1/2
// sort all the S-substrings
int *bkt = (int *)malloc(sizeof(int) * (K + 1)); // bucket array
getBuckets(s, bkt, n, K, cs, true); // find ends of buckets
for (i = 0; i < n; i++)
SA[i] = -1;
for (i = 1; i < n; i++)
if (isLMS(i))
SA[--bkt[chr(i)]] = i;
induceSAl(t, SA, s, bkt, n, K, cs, false);
induceSAs(t, SA, s, bkt, n, K, cs, true);
free(bkt);
// compact all the sorted substrings into the first n1 items of SA
// 2*n1 must be not larger than n (proveable)
int n1 = 0;
for (i = 0; i < n; i++)
if (isLMS(SA[i]))
SA[n1++] = SA[i];
// find the lexicographic names of all substrings
for (i = n1; i < n; i++)
SA[i] = -1; // init the name array buffer
int name = 0, prev = -1;
for (i = 0; i < n1; i++) {
int pos = SA[i];
bool diff = false;
for (int d = 0; d < n; d++)
if (prev == -1 || chr(pos + d) != chr(prev + d) || tget(pos + d) != tget(prev + d)) {
diff = true;
break;
} else if (d > 0 && (isLMS(pos + d) || isLMS(prev + d)))
break;
if (diff) {
name++;
prev = pos;
}
pos = (pos % 2 == 0) ? pos / 2 : (pos - 1) / 2;
SA[n1 + pos] = name - 1;
}
for (i = n - 1, j = n - 1; i >= n1; i--)
if (SA[i] >= 0)
SA[j--] = SA[i];
// stage 2: solve the reduced problem
// recurse if names are not yet unique
int *SA1 = SA, *s1 = SA + n - n1;
if (name < n1)
SA_IS((unsigned char *)s1, SA1, n1, name - 1, sizeof(int));
else
// generate the suffix array of s1 directly
for (i = 0; i < n1; i++)
SA1[s1[i]] = i;
// stage 3: induce the result for the original problem
bkt = (int *)malloc(sizeof(int) * (K + 1)); // bucket array
// put all left-most S characters into their buckets
getBuckets(s, bkt, n, K, cs, true); // find ends of buckets
for (i = 1, j = 0; i < n; i++)
if (isLMS(i))
s1[j++] = i; // get p1
for (i = 0; i < n1; i++)
SA1[i] = s1[SA1[i]]; // get index in s
for (i = n1; i < n; i++)
SA[i] = -1; // init SA[n1..n-1]
for (i = n1 - 1; i >= 0; i--) {
j = SA[i];
SA[i] = -1;
SA[--bkt[chr(j)]] = j;
}
induceSAl(t, SA, s, bkt, n, K, cs, false);
induceSAs(t, SA, s, bkt, n, K, cs, true);
free(bkt);
free(t);
}
vector<int> suffix_array(const string &s) {
int n = s.size();
if (n == 0)
return {};
if (n == 1)
return {0};
vector<int> sa(n + 1);
SA_IS((unsigned char *)s.c_str(), sa.data(), n + 1, 256, 1);
sa.erase(sa.begin());
return sa;
}
// usage example
int main() {
string s = "abcab";
vector<int> sa = suffix_array(s);
for (int v : sa)
cout << v << " ";
cout << endl;
mt19937 rng(1);
s.clear();
for (int i = 0; i < 1000'000; ++i) {
char c = uniform_int_distribution<int>('a', 'd')(rng);
s.push_back(c);
}
auto t1 = chrono::high_resolution_clock::now();
sa = suffix_array(s);
auto t2 = chrono::high_resolution_clock::now();
chrono::duration<double, milli> duration = t2 - t1;
cout << duration.count() << " ms" << endl;
}