-
Notifications
You must be signed in to change notification settings - Fork 522
/
CircleOperations.java
228 lines (202 loc) · 8.22 KB
/
CircleOperations.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
package geometry;
import java.util.*;
public class CircleOperations {
static final double EPS = 1e-10;
public static double fastHypot(double x, double y) {
return Math.sqrt(x * x + y * y);
}
public static class Point {
double x, y;
public Point(double x, double y) {
this.x = x;
this.y = y;
}
}
public static class Circle {
double x, y, r;
public Circle(double x, double y, double r) {
this.x = x;
this.y = y;
this.r = r;
}
public boolean contains(Point p) {
return fastHypot(p.x - x, p.y - y) < r + EPS;
}
}
public static class Line {
double a, b, c;
public Line(double a, double b, double c) {
this.a = a;
this.b = b;
this.c = c;
}
public Line(Point p1, Point p2) {
a = +(p1.y - p2.y);
b = -(p1.x - p2.x);
c = p1.x * p2.y - p2.x * p1.y;
}
}
// geometric solution
public static Point[] circleLineIntersection(Circle circle, Line line) {
double a = line.a;
double b = line.b;
double c = line.c + circle.x * a + circle.y * b;
double r = circle.r;
double aabb = a * a + b * b;
double d = c * c / aabb - r * r;
if (d > EPS)
return new Point[0];
double x0 = -a * c / aabb;
double y0 = -b * c / aabb;
if (d > -EPS)
return new Point[] {new Point(x0 + circle.x, y0 + circle.y)};
d /= -aabb;
double k = Math.sqrt(d < 0 ? 0 : d);
return new Point[] {new Point(x0 + k * b + circle.x, y0 - k * a + circle.y),
new Point(x0 - k * b + circle.x, y0 + k * a + circle.y)};
}
// algebraic solution
public static Point[] circleLineIntersection2(Circle circle, Line line) {
return Math.abs(line.a) >= Math.abs(line.b)
? intersection(line.a, line.b, line.c, circle.x, circle.y, circle.r, false)
: intersection(line.b, line.a, line.c, circle.y, circle.x, circle.r, true);
}
static Point[] intersection(double a, double b, double c, double CX, double CY, double R, boolean swap) {
// ax+by+c=0
// (by+c+aCX)^2+(ay-aCY)^2=(aR)^2
double A = a * a + b * b;
double B = 2.0 * b * (c + a * CX) - 2.0 * a * a * CY;
double C = (c + a * CX) * (c + a * CX) + a * a * (CY * CY - R * R);
double d = B * B - 4 * A * C;
if (d < -EPS)
return new Point[0];
d = Math.sqrt(d < 0 ? 0 : d);
double y1 = (-B + d) / (2 * A);
double x1 = (-c - b * y1) / a;
double y2 = (-B - d) / (2 * A);
double x2 = (-c - b * y2) / a;
return swap ? d > EPS ? new Point[] {new Point(y1, x1), new Point(y2, x2)} : new Point[] {new Point(y1, x1)}
: d > EPS ? new Point[] {new Point(x1, y1), new Point(x2, y2)}
: new Point[] {new Point(x1, y1)};
}
public static Point[] circleCircleIntersection(Circle c1, Circle c2) {
if (fastHypot(c1.x - c2.x, c1.y - c2.y) < EPS) {
if (Math.abs(c1.r - c2.r) < EPS)
return null; // infinity intersection points
return new Point[0];
}
double dx = c2.x - c1.x;
double dy = c2.y - c1.y;
double A = -2 * dx;
double B = -2 * dy;
double C = dx * dx + dy * dy + c1.r * c1.r - c2.r * c2.r;
Point[] res = circleLineIntersection(new Circle(0, 0, c1.r), new Line(A, B, C));
for (Point point : res) {
point.x += c1.x;
point.y += c1.y;
}
return res;
}
public static double circleCircleIntersectionArea(Circle c1, Circle c2) {
double r = Math.min(c1.r, c2.r);
double R = Math.max(c1.r, c2.r);
double d = fastHypot(c1.x - c2.x, c1.y - c2.y);
if (d < R - r + EPS)
return Math.PI * r * r;
if (d > R + r - EPS)
return 0;
double area = r * r * Math.acos((d * d + r * r - R * R) / 2 / d / r)
+ R * R * Math.acos((d * d + R * R - r * r) / 2 / d / R)
- 0.5 * Math.sqrt((-d + r + R) * (d + r - R) * (d - r + R) * (d + r + R));
return area;
}
public static Line[] tangents(Circle a, Circle b) {
List<Line> lines = new ArrayList<>();
for (int i = -1; i <= 1; i += 2)
for (int j = -1; j <= 1; j += 2) tangents(new Point(b.x - a.x, b.y - a.y), a.r * i, b.r * j, lines);
for (Line line : lines) line.c -= line.a * a.x + line.b * a.y;
return lines.toArray(new Line[lines.size()]);
}
static void tangents(Point center2, double r1, double r2, List<Line> lines) {
double r = r2 - r1;
double z = center2.x * center2.x + center2.y * center2.y;
double d = z - r * r;
if (d < -EPS)
return;
d = Math.sqrt(d < 0 ? 0 : d);
lines.add(new Line((center2.x * r + center2.y * d) / z, (center2.y * r - center2.x * d) / z, r1));
}
// min enclosing circle in O(n) on average
public static Circle minEnclosingCircle(Point[] points) {
if (points.length == 0)
return new Circle(0, 0, 0);
if (points.length == 1)
return new Circle(points[0].x, points[0].y, 0);
Collections.shuffle(Arrays.asList(points));
Circle circle = getCircumCircle(points[0], points[1]);
for (int i = 2; i < points.length; i++) {
if (!circle.contains(points[i])) {
circle = getCircumCircle(points[0], points[i]);
for (int j = 1; j < i; j++) {
if (!circle.contains(points[j])) {
circle = getCircumCircle(points[j], points[i]);
for (int k = 0; k < j; k++) {
if (!circle.contains(points[k])) {
circle = getCircumCircle(points[i], points[j], points[k]);
}
}
}
}
}
}
return circle;
}
public static Circle getCircumCircle(Point a, Point b) {
double x = (a.x + b.x) / 2.;
double y = (a.y + b.y) / 2.;
double r = fastHypot(a.x - x, a.y - y);
return new Circle(x, y, r);
}
public static Circle getCircumCircle(Point a, Point b, Point c) {
double Bx = b.x - a.x;
double By = b.y - a.y;
double Cx = c.x - a.x;
double Cy = c.y - a.y;
double d = 2 * (Bx * Cy - By * Cx);
if (Math.abs(d) < EPS)
return getCircumCircle(new Point(Math.min(a.x, Math.min(b.x, c.x)), Math.min(a.y, Math.min(b.y, c.y))),
new Point(Math.max(a.x, Math.max(b.x, c.x)), Math.max(a.y, Math.max(b.y, c.y))));
double z1 = Bx * Bx + By * By;
double z2 = Cx * Cx + Cy * Cy;
double cx = Cy * z1 - By * z2;
double cy = Bx * z2 - Cx * z1;
double x = cx / d;
double y = cy / d;
double r = fastHypot(x, y);
return new Circle(x + a.x, y + a.y, r);
}
// Usage example
public static void main(String[] args) {
Random rnd = new Random(1);
for (int step = 0; step < 100_000; step++) {
int range = 10;
int x = rnd.nextInt(range) - range / 2;
int y = rnd.nextInt(range) - range / 2;
int r = rnd.nextInt(range);
int x1 = rnd.nextInt(range) - range / 2;
int y1 = rnd.nextInt(range) - range / 2;
int x2 = rnd.nextInt(range) - range / 2;
int y2 = rnd.nextInt(range) - range / 2;
if (x1 == x2 && y1 == y2)
continue;
Point[] p1 = circleLineIntersection(new Circle(x, y, r), new Line(new Point(x1, y1), new Point(x2, y2)));
Point[] p2 = circleLineIntersection2(new Circle(x, y, r), new Line(new Point(x1, y1), new Point(x2, y2)));
if (p1.length != p2.length || p1.length == 1 && !eq(p1[0], p2[0])
|| p1.length == 2 && !(eq(p1[0], p2[0]) && eq(p1[1], p2[1]) || eq(p1[0], p2[1]) && eq(p1[1], p2[0])))
throw new RuntimeException();
}
}
static boolean eq(Point p1, Point p2) {
return !(fastHypot(p1.x - p2.x, p1.y - p2.y) > 1e-9);
}
}