From 0416883ee7a773388da2f431aee1078284ad7b2e Mon Sep 17 00:00:00 2001 From: "github-actions[bot]" <41898282+github-actions[bot]@users.noreply.github.com> Date: Wed, 10 Jan 2024 14:24:07 +0000 Subject: [PATCH] Update pkgdown documentation aa1f7cef8e84ce2719b66c40af7dd9316bbd1a06 --- main/404.html | 18 +-- main/apple-touch-icon-120x120.png | Bin 9241 -> 9241 bytes main/apple-touch-icon-152x152.png | Bin 12150 -> 12150 bytes main/apple-touch-icon-180x180.png | Bin 14952 -> 14952 bytes main/apple-touch-icon-60x60.png | Bin 4051 -> 4051 bytes main/apple-touch-icon-76x76.png | Bin 5334 -> 5334 bytes main/apple-touch-icon.png | Bin 14952 -> 14952 bytes main/articles/correlation.html | 30 ++--- main/articles/index.html | 16 +-- main/articles/pwc_survival.html | 18 +-- main/articles/quickstart.html | 18 +-- main/articles/trialplanning.html | 44 +++---- main/authors.html | 24 +--- .../bootstrap-5.2.2/bootstrap.bundle.min.js | 7 - .../bootstrap.bundle.min.js.map | 1 - main/deps/bootstrap-5.2.2/bootstrap.min.css | 6 - .../bootstrap-5.3.1/bootstrap.bundle.min.js | 7 + .../bootstrap.bundle.min.js.map | 1 + main/deps/bootstrap-5.3.1/bootstrap.min.css | 5 + main/deps/bootstrap-5.3.1/font.css | 124 ++++++++++++++++++ ...txg8zYS_SKggPN4iEgvnHyvveLxVs9pbCIPrc.woff | Bin 0 -> 27828 bytes ...txg8zYS_SKggPN4iEgvnHyvveLxVvaorCIPrc.woff | Bin 0 -> 27492 bytes .../1adeadb2fe618c5ed46221f15e12b9c8.woff | Bin 0 -> 46088 bytes .../fonts/4iCs6KVjbNBYlgo6ew.woff | Bin 0 -> 134032 bytes .../fonts/4iCs6KVjbNBYlgoKfw7w.woff | Bin 0 -> 39832 bytes .../fonts/4iCv6KVjbNBYlgoCxCvTtA.woff | Bin 0 -> 117140 bytes .../fonts/4iCv6KVjbNBYlgoCxCvjsGyL.woff | Bin 0 -> 34452 bytes .../6xK1dSBYKcSV-LCoeQqfX1RYOo3qPZ7nsDQ.woff | Bin 0 -> 17760 bytes .../6xK1dSBYKcSV-LCoeQqfX1RYOo3qPa7j.woff | Bin 0 -> 49156 bytes .../fonts/6xK3dSBYKcSV-LCoeQqfX1RYOo3aPA.woff | Bin 0 -> 74684 bytes .../6xK3dSBYKcSV-LCoeQqfX1RYOo3qOK7j.woff | Bin 0 -> 18420 bytes .../6xKydSBYKcSV-LCoeQqfX1RYOo3i54rAkw.woff | Bin 0 -> 74348 bytes .../6xKydSBYKcSV-LCoeQqfX1RYOo3ig4vAkw.woff | Bin 0 -> 74332 bytes .../6xKydSBYKcSV-LCoeQqfX1RYOo3ig4vwlxdo.woff | Bin 0 -> 18388 bytes .../6xKydSBYKcSV-LCoeQqfX1RYOo3ik4zAkw.woff | Bin 0 -> 74148 bytes .../6xKydSBYKcSV-LCoeQqfX1RYOo3ik4zwlxdo.woff | Bin 0 -> 18340 bytes .../fonts/CSR54z1Qlv-GDxkbKVQ_dFsvWNRevw.woff | Bin 0 -> 16724 bytes .../fonts/CSR54z1Qlv-GDxkbKVQ_dFsvaNA.woff | Bin 0 -> 29672 bytes .../fonts/CSR64z1Qlv-GDxkbKVQ_TOQ.woff | Bin 0 -> 75128 bytes .../fonts/CSR64z1Qlv-GDxkbKVQ_fOAKSw.woff | Bin 0 -> 16516 bytes ...xRpg3hIP6sJ7fM7PqPMcMnZFqUwX28DBKXhM0.woff | Bin 0 -> 55992 bytes ...xRpg3hIP6sJ7fM7PqPMcMnZFqUwX28DMyQhM0.woff | Bin 0 -> 56004 bytes ...g3hIP6sJ7fM7PqlOPHYvDP_W9O7GQTTbI1rSg.woff | Bin 0 -> 47720 bytes ...g3hIP6sJ7fM7PqlOPHYvDP_W9O7GQTTsoprSg.woff | Bin 0 -> 47924 bytes ...HjIg1_i6t8kCHKm4532VJOt5-QNFgpCtZ6Ew9.woff | Bin 0 -> 50580 bytes ...HjIg1_i6t8kCHKm4532VJOt5-QNFgpCtr6Ew9.woff | Bin 0 -> 50580 bytes ...HjIg1_i6t8kCHKm4532VJOt5-QNFgpCuM70w9.woff | Bin 0 -> 51108 bytes .../fonts/KFOlCnqEu92Fr1MmEU9fBBc-.woff | Bin 0 -> 20544 bytes .../fonts/KFOlCnqEu92Fr1MmEU9vAA.woff | Bin 0 -> 65756 bytes .../fonts/KFOlCnqEu92Fr1MmSU5fBBc-.woff | Bin 0 -> 20416 bytes .../fonts/KFOlCnqEu92Fr1MmSU5vAA.woff | Bin 0 -> 65164 bytes .../fonts/KFOlCnqEu92Fr1MmWUlfBBc-.woff | Bin 0 -> 20408 bytes .../fonts/KFOlCnqEu92Fr1MmWUlvAA.woff | Bin 0 -> 65556 bytes .../fonts/KFOmCnqEu92Fr1Me5g.woff | Bin 0 -> 65456 bytes .../fonts/KFOmCnqEu92Fr1Mu4mxM.woff | Bin 0 -> 20344 bytes .../fonts/QGYpz_kZZAGCONcK2A4bGOj8mNhL.woff | Bin 0 -> 89776 bytes .../fonts/S6u8w4BMUTPHjxsAXC-s.woff | Bin 0 -> 29864 bytes .../fonts/S6u8w4BMUTPHjxswWA.woff | Bin 0 -> 35436 bytes .../fonts/S6u9w4BMUTPHh6UVSwiPHw.woff | Bin 0 -> 28044 bytes .../fonts/S6u9w4BMUTPHh6UVeww.woff | Bin 0 -> 33296 bytes .../fonts/S6u9w4BMUTPHh7USSwiPHw.woff | Bin 0 -> 30016 bytes .../fonts/S6u9w4BMUTPHh7USeww.woff | Bin 0 -> 35168 bytes .../fonts/S6uyw4BMUTPHjx4wWA.woff | Bin 0 -> 28648 bytes .../fonts/S6uyw4BMUTPHvxo.woff | Bin 0 -> 34020 bytes ...HuS_fvQtMwCp50KnMw2boKoduKmMEVuFuYMZs.woff | Bin 0 -> 138900 bytes ...HuS_fvQtMwCp50KnMw2boKoduKmMEVuI6fMZs.woff | Bin 0 -> 137508 bytes ...HuS_fvQtMwCp50KnMw2boKoduKmMEVuLyfMZs.woff | Bin 0 -> 128192 bytes .../XRXI3I6Li01BKofiOc5wtlZ2di8HDFwmRTA.woff | Bin 0 -> 53216 bytes .../XRXI3I6Li01BKofiOc5wtlZ2di8HDGUmRTA.woff | Bin 0 -> 54196 bytes .../XRXI3I6Li01BKofiOc5wtlZ2di8HDLshRTA.woff | Bin 0 -> 53856 bytes .../a98f7a7574819ba83bec6279a2cecd95.woff | Bin 0 -> 45884 bytes ...cVXSCEkx2cmqvXlWq8tWZ0Pw86hd0Rk0ZjaVQ.woff | Bin 0 -> 72136 bytes ...SCEkx2cmqvXlWq8tWZ0Pw86hd0Rk5hkWVAexg.woff | Bin 0 -> 23636 bytes ...cVXSCEkx2cmqvXlWq8tWZ0Pw86hd0Rk5hkaVQ.woff | Bin 0 -> 74700 bytes ...SCEkx2cmqvXlWq8tWZ0Pw86hd0Rk8ZkWVAexg.woff | Bin 0 -> 23576 bytes ...cVXSCEkx2cmqvXlWq8tWZ0Pw86hd0Rk8ZkaVQ.woff | Bin 0 -> 74564 bytes ...cVXSCEkx2cmqvXlWq8tWZ0Pw86hd0Rk_RkaVQ.woff | Bin 0 -> 74940 bytes ...cVXSCEkx2cmqvXlWq8tWZ0Pw86hd0RkxhjaVQ.woff | Bin 0 -> 74644 bytes ...SCEkx2cmqvXlWq8tWZ0Pw86hd0RkyFjWVAexg.woff | Bin 0 -> 22964 bytes ...cVXSCEkx2cmqvXlWq8tWZ0Pw86hd0RkyFjaVQ.woff | Bin 0 -> 71660 bytes ...X2vVnXBbObj2OVZyOOSr4dVJWUgsg-1x4gaVQ.woff | Bin 0 -> 22332 bytes ...vWbX2vVnXBbObj2OVZyOOSr4dVJWUgsg-1y4k.woff | Bin 0 -> 68664 bytes ...vWbX2vVnXBbObj2OVZyOOSr4dVJWUgsgH1y4k.woff | Bin 0 -> 70652 bytes ...vWbX2vVnXBbObj2OVZyOOSr4dVJWUgshZ1y4k.woff | Bin 0 -> 69392 bytes ...X2vVnXBbObj2OVZyOOSr4dVJWUgsiH0B4gaVQ.woff | Bin 0 -> 22940 bytes ...vWbX2vVnXBbObj2OVZyOOSr4dVJWUgsiH0C4k.woff | Bin 0 -> 70524 bytes ...X2vVnXBbObj2OVZyOOSr4dVJWUgsjZ0B4gaVQ.woff | Bin 0 -> 22908 bytes ...vWbX2vVnXBbObj2OVZyOOSr4dVJWUgsjZ0C4k.woff | Bin 0 -> 70792 bytes ...vWbX2vVnXBbObj2OVZyOOSr4dVJWUgsjr0C4k.woff | Bin 0 -> 71144 bytes .../fonts/q5uGsou0JOdh94bfvQlr.woff | Bin 0 -> 31584 bytes main/deps/data-deps.txt | 4 +- main/favicon-16x16.png | Bin 1075 -> 1075 bytes main/favicon-32x32.png | Bin 1970 -> 1970 bytes main/index.html | 18 +-- main/news/index.html | 24 +--- main/pkgdown.yml | 2 +- main/pull_request_template.html | 16 +-- main/reference/ExpHazOS.html | 16 +-- main/reference/ExpQuantOS.html | 16 +-- main/reference/ExpSurvOS.html | 16 +-- main/reference/ExpSurvPFS.html | 16 +-- main/reference/PCWInversionMethod.html | 18 +-- main/reference/PFSOSInteg.html | 16 +-- main/reference/PWCsurvOS.html | 16 +-- main/reference/PWCsurvPFS.html | 16 +-- main/reference/PwcOSInt.html | 16 +-- main/reference/WeibOSInteg.html | 16 +-- main/reference/WeibSurvOS.html | 16 +-- main/reference/WeibSurvPFS.html | 16 +-- main/reference/addStaggeredEntry.html | 26 +--- main/reference/assert_intervals.html | 16 +-- main/reference/assert_positive_number.html | 16 +-- main/reference/avgHRExpOS.html | 16 +-- main/reference/avgHRIntegExpOS.html | 16 +-- main/reference/censoringByNumberEvents.html | 114 +++++++--------- main/reference/corPFSOS.html | 22 +--- main/reference/corTrans.html | 16 +-- main/reference/empSignificant.html | 120 +---------------- main/reference/estimateParams.html | 16 +-- main/reference/exponential_transition.html | 16 +-- main/reference/expvalOSInteg.html | 16 +-- main/reference/expvalPFSInteg.html | 16 +-- main/reference/getCensoredData.html | 16 +-- main/reference/getClinicalTrials.html | 40 +----- main/reference/getDatasetWideFormat.html | 16 +-- main/reference/getEventsAll.html | 16 +-- main/reference/getInit.html | 16 +-- main/reference/getNumberEvents.html | 16 +-- main/reference/getOneClinicalTrial.html | 16 +-- main/reference/getOneToTwoRows.html | 16 +-- main/reference/getPCWDistr.html | 16 +-- main/reference/getPWCHazard.html | 16 +-- main/reference/getResults.html | 16 +-- main/reference/getSimulatedData.html | 16 +-- main/reference/getSumPCW.html | 16 +-- main/reference/getTarget.html | 16 +-- main/reference/getTimePoint.html | 16 +-- main/reference/getWaitTimeSum.html | 16 +-- main/reference/haz.html | 16 +-- main/reference/index.html | 16 +-- main/reference/integrateVector.html | 16 +-- main/reference/logRankTest.html | 22 +--- main/reference/log_p11.html | 16 +-- main/reference/negLogLik.html | 16 +-- main/reference/p11Integ.html | 16 +-- main/reference/passedLogRank.html | 120 +---------------- main/reference/piecewise_exponential.html | 16 +-- main/reference/prepareData.html | 16 +-- main/reference/pwA.html | 16 +-- main/reference/runTrial.html | 16 +-- main/reference/simIDM-package.html | 16 +-- main/reference/singleExpQuantOS.html | 16 +-- main/reference/survOS.html | 16 +-- main/reference/survPFS.html | 16 +-- main/reference/survPFSOS.html | 16 +-- main/reference/survTrans.html | 16 +-- main/reference/trackEventsPerTrial.html | 16 +-- main/reference/weibull_transition.html | 16 +-- main/search.json | 2 +- 159 files changed, 372 insertions(+), 1343 deletions(-) delete mode 100644 main/deps/bootstrap-5.2.2/bootstrap.bundle.min.js delete mode 100644 main/deps/bootstrap-5.2.2/bootstrap.bundle.min.js.map delete mode 100644 main/deps/bootstrap-5.2.2/bootstrap.min.css create mode 100644 main/deps/bootstrap-5.3.1/bootstrap.bundle.min.js create mode 100644 main/deps/bootstrap-5.3.1/bootstrap.bundle.min.js.map create mode 100644 main/deps/bootstrap-5.3.1/bootstrap.min.css create mode 100644 main/deps/bootstrap-5.3.1/font.css create mode 100644 main/deps/bootstrap-5.3.1/fonts/1Ptxg8zYS_SKggPN4iEgvnHyvveLxVs9pbCIPrc.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/1Ptxg8zYS_SKggPN4iEgvnHyvveLxVvaorCIPrc.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/1adeadb2fe618c5ed46221f15e12b9c8.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/4iCs6KVjbNBYlgo6ew.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/4iCs6KVjbNBYlgoKfw7w.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/4iCv6KVjbNBYlgoCxCvTtA.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/4iCv6KVjbNBYlgoCxCvjsGyL.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/6xK1dSBYKcSV-LCoeQqfX1RYOo3qPZ7nsDQ.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/6xK1dSBYKcSV-LCoeQqfX1RYOo3qPa7j.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/6xK3dSBYKcSV-LCoeQqfX1RYOo3aPA.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/6xK3dSBYKcSV-LCoeQqfX1RYOo3qOK7j.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/6xKydSBYKcSV-LCoeQqfX1RYOo3i54rAkw.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/6xKydSBYKcSV-LCoeQqfX1RYOo3ig4vAkw.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/6xKydSBYKcSV-LCoeQqfX1RYOo3ig4vwlxdo.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/6xKydSBYKcSV-LCoeQqfX1RYOo3ik4zAkw.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/6xKydSBYKcSV-LCoeQqfX1RYOo3ik4zwlxdo.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/CSR54z1Qlv-GDxkbKVQ_dFsvWNRevw.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/CSR54z1Qlv-GDxkbKVQ_dFsvaNA.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/CSR64z1Qlv-GDxkbKVQ_TOQ.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/CSR64z1Qlv-GDxkbKVQ_fOAKSw.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/HI_diYsKILxRpg3hIP6sJ7fM7PqPMcMnZFqUwX28DBKXhM0.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/HI_diYsKILxRpg3hIP6sJ7fM7PqPMcMnZFqUwX28DMyQhM0.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/HI_jiYsKILxRpg3hIP6sJ7fM7PqlOPHYvDP_W9O7GQTTbI1rSg.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/HI_jiYsKILxRpg3hIP6sJ7fM7PqlOPHYvDP_W9O7GQTTsoprSg.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/JTUHjIg1_i6t8kCHKm4532VJOt5-QNFgpCtZ6Ew9.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/JTUHjIg1_i6t8kCHKm4532VJOt5-QNFgpCtr6Ew9.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/JTUHjIg1_i6t8kCHKm4532VJOt5-QNFgpCuM70w9.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/KFOlCnqEu92Fr1MmEU9fBBc-.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/KFOlCnqEu92Fr1MmEU9vAA.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/KFOlCnqEu92Fr1MmSU5fBBc-.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/KFOlCnqEu92Fr1MmSU5vAA.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/KFOlCnqEu92Fr1MmWUlfBBc-.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/KFOlCnqEu92Fr1MmWUlvAA.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/KFOmCnqEu92Fr1Me5g.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/KFOmCnqEu92Fr1Mu4mxM.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/QGYpz_kZZAGCONcK2A4bGOj8mNhL.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/S6u8w4BMUTPHjxsAXC-s.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/S6u8w4BMUTPHjxswWA.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/S6u9w4BMUTPHh6UVSwiPHw.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/S6u9w4BMUTPHh6UVeww.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/S6u9w4BMUTPHh7USSwiPHw.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/S6u9w4BMUTPHh7USeww.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/S6uyw4BMUTPHjx4wWA.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/S6uyw4BMUTPHvxo.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/UcCO3FwrK3iLTeHuS_fvQtMwCp50KnMw2boKoduKmMEVuFuYMZs.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/UcCO3FwrK3iLTeHuS_fvQtMwCp50KnMw2boKoduKmMEVuI6fMZs.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/UcCO3FwrK3iLTeHuS_fvQtMwCp50KnMw2boKoduKmMEVuLyfMZs.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/XRXI3I6Li01BKofiOc5wtlZ2di8HDFwmRTA.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/XRXI3I6Li01BKofiOc5wtlZ2di8HDGUmRTA.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/XRXI3I6Li01BKofiOc5wtlZ2di8HDLshRTA.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/a98f7a7574819ba83bec6279a2cecd95.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/memQYaGs126MiZpBA-UFUIcVXSCEkx2cmqvXlWq8tWZ0Pw86hd0Rk0ZjaVQ.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/memQYaGs126MiZpBA-UFUIcVXSCEkx2cmqvXlWq8tWZ0Pw86hd0Rk5hkWVAexg.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/memQYaGs126MiZpBA-UFUIcVXSCEkx2cmqvXlWq8tWZ0Pw86hd0Rk5hkaVQ.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/memQYaGs126MiZpBA-UFUIcVXSCEkx2cmqvXlWq8tWZ0Pw86hd0Rk8ZkWVAexg.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/memQYaGs126MiZpBA-UFUIcVXSCEkx2cmqvXlWq8tWZ0Pw86hd0Rk8ZkaVQ.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/memQYaGs126MiZpBA-UFUIcVXSCEkx2cmqvXlWq8tWZ0Pw86hd0Rk_RkaVQ.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/memQYaGs126MiZpBA-UFUIcVXSCEkx2cmqvXlWq8tWZ0Pw86hd0RkxhjaVQ.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/memQYaGs126MiZpBA-UFUIcVXSCEkx2cmqvXlWq8tWZ0Pw86hd0RkyFjWVAexg.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/memQYaGs126MiZpBA-UFUIcVXSCEkx2cmqvXlWq8tWZ0Pw86hd0RkyFjaVQ.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/memSYaGs126MiZpBA-UvWbX2vVnXBbObj2OVZyOOSr4dVJWUgsg-1x4gaVQ.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/memSYaGs126MiZpBA-UvWbX2vVnXBbObj2OVZyOOSr4dVJWUgsg-1y4k.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/memSYaGs126MiZpBA-UvWbX2vVnXBbObj2OVZyOOSr4dVJWUgsgH1y4k.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/memSYaGs126MiZpBA-UvWbX2vVnXBbObj2OVZyOOSr4dVJWUgshZ1y4k.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/memSYaGs126MiZpBA-UvWbX2vVnXBbObj2OVZyOOSr4dVJWUgsiH0B4gaVQ.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/memSYaGs126MiZpBA-UvWbX2vVnXBbObj2OVZyOOSr4dVJWUgsiH0C4k.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/memSYaGs126MiZpBA-UvWbX2vVnXBbObj2OVZyOOSr4dVJWUgsjZ0B4gaVQ.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/memSYaGs126MiZpBA-UvWbX2vVnXBbObj2OVZyOOSr4dVJWUgsjZ0C4k.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/memSYaGs126MiZpBA-UvWbX2vVnXBbObj2OVZyOOSr4dVJWUgsjr0C4k.woff create mode 100644 main/deps/bootstrap-5.3.1/fonts/q5uGsou0JOdh94bfvQlr.woff diff --git a/main/404.html b/main/404.html index 80a0d49b..9f419b9d 100644 --- a/main/404.html +++ b/main/404.html @@ -13,8 +13,8 @@ - - + + @@ -37,7 +37,7 @@ simIDM - 0.1.0.9000 + 0.1.0.9001 @@ -64,18 +64,6 @@ Details Changelog - - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports diff --git a/main/apple-touch-icon-120x120.png b/main/apple-touch-icon-120x120.png index ca44e475f932ec29bc5769909514d3be28b3f341..918be091171c3667b4e9772bfbe6846093d41aa2 100644 GIT binary patch delta 101 zcmbQ~G1Fs01=kBkEzm7AZEnO4bQWMG6{!xzU_nzm7AZEnO4bQWMG6{16y8@<>Xb$`2Z&L9Tflo diff --git a/main/apple-touch-icon-152x152.png b/main/apple-touch-icon-152x152.png index 63c104ced6dce398e0059bd4f6fc0e0e9740b237..87b4ff0262e80be84b620770d392db4c1b0731a9 100644 GIT binary patch delta 101 zcmews_bqNh1=kBkE)!ag8WRNi0dV%FR#7OsixtGBCofA;|0@`($?gd;lrb9Gw6F delta 101 zcmews_bqNh1=n*PZaxd%ZCBW?ZEUjA^ETEsG}1LR3^6pZGBvX@G}bmSure^X=8z lfq_A_#5JNMC9x#cDmOnRGp&-r$iN7@h6R$5y_4DX^8t0R9ohf@ diff --git a/main/apple-touch-icon-180x180.png b/main/apple-touch-icon-180x180.png index 29a534342344275350971fdf9c071e0ce16ef0b0..a9cc0501bdf8b29f9754014c3176576503d32e97 100644 GIT binary patch delta 101 zcmaD+@}guy1=kBkEm5WzT*x00F>20EGV5nzm7AZEnO4bQWMG6{L-M`fvnKzv%m)BQ?jH02 delta 101 zcmaD+@}guy1=n*PZaxb>{k!2g8=G`2y^VDZjdTqSLkvx3 lz`&qd;u=wsl30>zm7AZEnO4bQWMG6{L+ZYC=E*-T^8sOo9;*NV diff --git a/main/apple-touch-icon-60x60.png b/main/apple-touch-icon-60x60.png index 927c48529b5e02eef46ea7a882734f8259da08b8..aed9af6fae3a556aeae45bd4789d7290b3377a87 100644 GIT binary patch delta 101 zcmcaCe_4J)1=kBkE*=WU{EV5nq6IcH#W@@_BPQqFw`|P2r)FVGBUCzm7AZEnO4bQWMG6{L$=Ja%E{>>`2gmC97+HH delta 101 zcmcbnc};Ud1=n*PZaxd{`0a}yZ)}<+>}{-TXryas7-DE*Wol++XsB&qU}a$7cKd?_ m0|SFRc?MtW?ChKk%19*4d!hgOD3m_Rc?MtW?ChKk%19*4M$gg(3||zG9LhX*B{LQ delta 101 zcmaD+@}guy1=n*PZaxeCh+FBuHa6*4dK>E+8tEDuh8UVynVMM{nra&uSQ!{>nsSAk mfq_A_#5JNMC9x#cDmOnRGp&-r$iN7@hQlXwwom?PnGXPzHy|Vc diff --git a/main/articles/correlation.html b/main/articles/correlation.html index fd2b9cf6..8f6bc1c4 100644 --- a/main/articles/correlation.html +++ b/main/articles/correlation.html @@ -14,8 +14,8 @@ - - + + @@ -39,7 +39,7 @@ simIDM - 0.1.0.9000 + 0.1.0.9001 @@ -66,18 +66,6 @@ Details Changelog - - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports @@ -255,13 +243,13 @@ Example: Estimating Cor(PFS, OS) # Get estimated transition hazards: est$hazards #> $h01 -#> [1] 1.268876 +#> [1] 1.188499 #> #> $h02 -#> [1] 1.317458 +#> [1] 1.489805 #> #> $h12 -#> [1] 1.535299 +#> [1] 1.619567 Then, in a final step, we pass est to corTrans() to compute the PFS-OS correlation. Alternatively, one can combine these steps efficiently via corPFSOS(), @@ -270,15 +258,15 @@ Example: Estimating Cor(PFS, OS) corPFSOS(data = simData, transition = transition, bootstrap = TRUE, conf_level = 0.95) #> $corPFSOS -#> [1] 0.5678287 +#> [1] 0.5883777 #> #> $lower #> 2.5% -#> 0.5190675 +#> 0.5137962 #> #> $upper #> 97.5% -#> 0.8010183 +#> 0.8259483 References diff --git a/main/articles/index.html b/main/articles/index.html index 9846fbf0..53cc5994 100644 --- a/main/articles/index.html +++ b/main/articles/index.html @@ -1,5 +1,5 @@ -Articles • simIDMArticles • simIDM - - + + @@ -39,7 +39,7 @@ simIDM - 0.1.0.9000 + 0.1.0.9001 @@ -66,18 +66,6 @@ Details Changelog - - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports diff --git a/main/articles/quickstart.html b/main/articles/quickstart.html index a9838bad..7b728b7e 100644 --- a/main/articles/quickstart.html +++ b/main/articles/quickstart.html @@ -14,8 +14,8 @@ - - + + @@ -39,7 +39,7 @@ simIDM - 0.1.0.9000 + 0.1.0.9001 @@ -66,18 +66,6 @@ Details Changelog - - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports diff --git a/main/articles/trialplanning.html b/main/articles/trialplanning.html index 9d70d8d1..ff53565d 100644 --- a/main/articles/trialplanning.html +++ b/main/articles/trialplanning.html @@ -14,8 +14,8 @@ - - + + @@ -39,7 +39,7 @@ simIDM - 0.1.0.9000 + 0.1.0.9001 @@ -66,18 +66,6 @@ Details Changelog - - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports @@ -138,8 +126,6 @@ Introduction#> Warning in plot.Hist(idHist, stateLabels = stateLabels, box1.row = 2, box1.column = 1, : The dimension of the boxes may depend on the current graphical device -#> in the sense that the layout and centering of text may change when you resize the graphical device and call the same plot. Figure 1 - Multistate model with indermediate state progession and @@ -180,7 +166,7 @@ Scenario - PFS and OS as functions, hazard functions and hazard ratios for our scenario. The transition hazards are specified as follows: - + library(simIDM) transitionTrt <- exponential_transition(h01 = 0.3, h02 = 0.28, h12 = 0.5) transitionPl <- exponential_transition(h01 = 0.5, h02 = 0.3, h12 = 0.6) @@ -189,7 +175,7 @@ Scenario - PFS and OS as The package provides functions that return the values of the PFS or OS survival functions for given transition hazards (Constant, Weibull or Piecewise Constant) and pre-specified time points. - + timepoints <- c(0, 0.1, 0.3, 0.7, 1, 5) # OS Survival function for Constant transition hazards: ExpSurvOS(timepoints, h01 = 0.2, h02 = 0.4, h12 = 0.1) @@ -204,7 +190,7 @@ Scenario - PFS and OS as ) #> [1] 1.00000000 0.95094877 0.85849702 0.69546105 0.59109798 0.03945673 There are also functions for PFS survival functions available: - + timepoints <- c(0, 0.1, 0.3, 0.7, 1, 5) # PFS Survival function for Constant transition hazards: ExpSurvPFS(timepoints, h01 = 0.2, h02 = 0.4) @@ -219,7 +205,7 @@ Scenario - PFS and OS as ) #> [1] 1.00000000 0.92311635 0.78662786 0.57120906 0.44932896 0.01499558 For PFS, the hazard ratio under \(H_0\) is known by specification: - + hTrtPFS <- sum(unlist(transitionTrt$hazards[1:2])) hPlPFS <- sum(unlist(transitionPl$hazards[1:2])) hRatioPFS <- hTrtPFS / hPlPFS @@ -227,7 +213,7 @@ Scenario - PFS and OS as #> [1] 0.725 For OS, the ratio of hazard functions is not necessarily constant. An averaged HR can be calculated using avgHRExpOS: - + hRatioOS <- avgHRExpOS(transitionByArm = transitionList, alpha = 0.5, upper = 1000) hRatioOS #> [1] 0.8072368 @@ -242,7 +228,7 @@ Type I Error - Simulation Under - + transitionListNull <- list(transitionPl, transitionPl) nRep <- 100 simNull <- getClinicalTrials( @@ -257,7 +243,7 @@ Type I Error - Simulation Under - + alphaOS <- 0.04 alphaPFS <- 0.01 criticalOS <- abs(qnorm(alphaOS / 2)) @@ -265,7 +251,7 @@ Type I Error - Simulation Under With the Schoenfeld approximation, preliminary sample sizes can be computed to get an idea of how many events are needed to achieve 80 % power: - + library(rpact) # Number of PFS events required for 80 % power via Schoenfeld: schoenfeldPFS <- getSampleSizeSurvival( @@ -296,7 +282,7 @@ Type I Error - Simulation Under empSignificant: - + empSignificant( simTrials = simNull, criticalPFS = criticalPFS, @@ -321,7 +307,7 @@ Type I Error - Simulation Under Sample size and power calculation - simulation under \(H_1\) Next, we simulate a large number of trials under \(H_1\) to compute the empirical power: - + simH1 <- getClinicalTrials( nRep = nRep, nPat = c(800, 800), seed = 1238, datType = "1rowPatient", transitionByArm = transitionList, @@ -332,7 +318,7 @@ Sample size an us to easily estimate further interesting metrics, such as joint power, i.e. the probability that both endpoints in a trial are significant, if each endpoint is analyzed at its planned time-point. - + empSignificant( simTrials = simH1, criticalPFS = criticalPFS, @@ -358,7 +344,7 @@ Sample size an It is also possible to derive the median time at which a certain number of events are expected to occur and how many events of the second endpoint have occurred at that time on average. - + # median time point for 329 PFS events to have occurred: timePointsPFS <- lapply(simH1, getTimePoint, eventNum = 329, typeEvent = "PFS", diff --git a/main/authors.html b/main/authors.html index ccac604b..63a1f10b 100644 --- a/main/authors.html +++ b/main/authors.html @@ -1,5 +1,5 @@ -Authors and Citation • simIDMAuthors and Citation • simIDM - - + + diff --git a/main/favicon-16x16.png b/main/favicon-16x16.png index cee8627270de43b9cffeca7d2161d89fa5922b4a..41722759d69e2527996ca63fd6b1bbe86cffc496 100644 GIT binary patch delta 103 zcmdnYv6*8-3=`K2MlL=vgOGzkuQsPK2{U?|=o%R68XANcnphbbS(#X98yHv_7;O72 olfl5ipjzS@QIe8al4_NkpOTqY$zWt)gk8h&bxW>HKEj+20O#Z$1^@s6 delta 103 zcmdnYv6*8-3=`LL9&SDhkxTp6iEU0}5@z%^)-^QJH8cz{G_f)@vobQ!HZZU ng)^r@N diff --git a/main/favicon-32x32.png b/main/favicon-32x32.png index 13b995708358f931e2d07e2423f758c408f06a08..71ec60e65bfd7372fdb749b6a80e68bc5fd46e5e 100644 GIT binary patch delta 101 zcmdnQzlncB1=kBkEsekrd2W+85m*Lka%-_!enRmd;qX`96kU5 delta 101 zcmdnQzlncB1=n*PZaxdqr90*|Y-}oH^ETEsG}1LR3^6pZGBvX@GSoIOure?>5%T>v m0|SFRc?MtW?ChKk%19*4Ldpg-6uP<=K}yko*kC} diff --git a/main/index.html b/main/index.html index 50847030..19affd70 100644 --- a/main/index.html +++ b/main/index.html @@ -21,8 +21,8 @@ - - + + simIDM - 0.1.0.9000 + 0.1.0.9001 @@ -80,18 +80,6 @@ Details Changelog - - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports diff --git a/main/news/index.html b/main/news/index.html index dc908584..9ea9ddd2 100644 --- a/main/news/index.html +++ b/main/news/index.html @@ -1,5 +1,5 @@ -Changelog • simIDMChangelog • simIDMPull Request • simIDMOS Hazard Function from Constant Transition Hazards — ExpHazOS • simIDMQuantile function for OS survival function induced by an illness-death model — ExpQuantOS • simIDMOS Survival Function from Constant Transition Hazards — ExpSurvOS • simIDMPFS Survival Function from Constant Transition Hazards — ExpSurvPFS • simIDMSingle Piecewise Exponentially Distributed Event Time — PCWInversionMethod • simIDM - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports @@ -118,7 +106,7 @@ Value Examples PCWInversionMethod(haz = c(1.1, 0.5, 0.4), pw = c(0, 7, 10), LogU = log(1 - runif(1))) -#> [1] 1.008584 +#> [1] 2.948948
Then, in a final step, we pass est to corTrans() to compute the PFS-OS correlation.
est
corTrans()
Alternatively, one can combine these steps efficiently via corPFSOS(), @@ -270,15 +258,15 @@
corPFSOS()
corPFSOS(data = simData, transition = transition, bootstrap = TRUE, conf_level = 0.95) #> $corPFSOS -#> [1] 0.5678287 +#> [1] 0.5883777 #> #> $lower #> 2.5% -#> 0.5190675 +#> 0.5137962 #> #> $upper #> 97.5% -#> 0.8010183
Figure 1 - Multistate model with indermediate state progession and @@ -180,7 +166,7 @@
The transition hazards are specified as follows:
+ library(simIDM) transitionTrt <- exponential_transition(h01 = 0.3, h02 = 0.28, h12 = 0.5) transitionPl <- exponential_transition(h01 = 0.5, h02 = 0.3, h12 = 0.6) @@ -189,7 +175,7 @@ Scenario - PFS and OS as The package provides functions that return the values of the PFS or OS survival functions for given transition hazards (Constant, Weibull or Piecewise Constant) and pre-specified time points. - + timepoints <- c(0, 0.1, 0.3, 0.7, 1, 5) # OS Survival function for Constant transition hazards: ExpSurvOS(timepoints, h01 = 0.2, h02 = 0.4, h12 = 0.1) @@ -204,7 +190,7 @@ Scenario - PFS and OS as ) #> [1] 1.00000000 0.95094877 0.85849702 0.69546105 0.59109798 0.03945673 There are also functions for PFS survival functions available: - + timepoints <- c(0, 0.1, 0.3, 0.7, 1, 5) # PFS Survival function for Constant transition hazards: ExpSurvPFS(timepoints, h01 = 0.2, h02 = 0.4) @@ -219,7 +205,7 @@ Scenario - PFS and OS as ) #> [1] 1.00000000 0.92311635 0.78662786 0.57120906 0.44932896 0.01499558 For PFS, the hazard ratio under \(H_0\) is known by specification: - + hTrtPFS <- sum(unlist(transitionTrt$hazards[1:2])) hPlPFS <- sum(unlist(transitionPl$hazards[1:2])) hRatioPFS <- hTrtPFS / hPlPFS @@ -227,7 +213,7 @@ Scenario - PFS and OS as #> [1] 0.725 For OS, the ratio of hazard functions is not necessarily constant. An averaged HR can be calculated using avgHRExpOS: - + hRatioOS <- avgHRExpOS(transitionByArm = transitionList, alpha = 0.5, upper = 1000) hRatioOS #> [1] 0.8072368 @@ -242,7 +228,7 @@ Type I Error - Simulation Under - + transitionListNull <- list(transitionPl, transitionPl) nRep <- 100 simNull <- getClinicalTrials( @@ -257,7 +243,7 @@ Type I Error - Simulation Under - + alphaOS <- 0.04 alphaPFS <- 0.01 criticalOS <- abs(qnorm(alphaOS / 2)) @@ -265,7 +251,7 @@ Type I Error - Simulation Under With the Schoenfeld approximation, preliminary sample sizes can be computed to get an idea of how many events are needed to achieve 80 % power: - + library(rpact) # Number of PFS events required for 80 % power via Schoenfeld: schoenfeldPFS <- getSampleSizeSurvival( @@ -296,7 +282,7 @@ Type I Error - Simulation Under empSignificant: - + empSignificant( simTrials = simNull, criticalPFS = criticalPFS, @@ -321,7 +307,7 @@ Type I Error - Simulation Under Sample size and power calculation - simulation under \(H_1\) Next, we simulate a large number of trials under \(H_1\) to compute the empirical power: - + simH1 <- getClinicalTrials( nRep = nRep, nPat = c(800, 800), seed = 1238, datType = "1rowPatient", transitionByArm = transitionList, @@ -332,7 +318,7 @@ Sample size an us to easily estimate further interesting metrics, such as joint power, i.e. the probability that both endpoints in a trial are significant, if each endpoint is analyzed at its planned time-point. - + empSignificant( simTrials = simH1, criticalPFS = criticalPFS, @@ -358,7 +344,7 @@ Sample size an It is also possible to derive the median time at which a certain number of events are expected to occur and how many events of the second endpoint have occurred at that time on average. - + # median time point for 329 PFS events to have occurred: timePointsPFS <- lapply(simH1, getTimePoint, eventNum = 329, typeEvent = "PFS", diff --git a/main/authors.html b/main/authors.html index ccac604b..63a1f10b 100644 --- a/main/authors.html +++ b/main/authors.html @@ -1,5 +1,5 @@ -Authors and Citation • simIDMAuthors and Citation • simIDM - - + + diff --git a/main/favicon-16x16.png b/main/favicon-16x16.png index cee8627270de43b9cffeca7d2161d89fa5922b4a..41722759d69e2527996ca63fd6b1bbe86cffc496 100644 GIT binary patch delta 103 zcmdnYv6*8-3=`K2MlL=vgOGzkuQsPK2{U?|=o%R68XANcnphbbS(#X98yHv_7;O72 olfl5ipjzS@QIe8al4_NkpOTqY$zWt)gk8h&bxW>HKEj+20O#Z$1^@s6 delta 103 zcmdnYv6*8-3=`LL9&SDhkxTp6iEU0}5@z%^)-^QJH8cz{G_f)@vobQ!HZZU ng)^r@N diff --git a/main/favicon-32x32.png b/main/favicon-32x32.png index 13b995708358f931e2d07e2423f758c408f06a08..71ec60e65bfd7372fdb749b6a80e68bc5fd46e5e 100644 GIT binary patch delta 101 zcmdnQzlncB1=kBkEsekrd2W+85m*Lka%-_!enRmd;qX`96kU5 delta 101 zcmdnQzlncB1=n*PZaxdqr90*|Y-}oH^ETEsG}1LR3^6pZGBvX@GSoIOure?>5%T>v m0|SFRc?MtW?ChKk%19*4Ldpg-6uP<=K}yko*kC} diff --git a/main/index.html b/main/index.html index 50847030..19affd70 100644 --- a/main/index.html +++ b/main/index.html @@ -21,8 +21,8 @@ - - + + simIDM - 0.1.0.9000 + 0.1.0.9001 @@ -80,18 +80,6 @@ Details Changelog - - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports diff --git a/main/news/index.html b/main/news/index.html index dc908584..9ea9ddd2 100644 --- a/main/news/index.html +++ b/main/news/index.html @@ -1,5 +1,5 @@ -Changelog • simIDMChangelog • simIDMPull Request • simIDMOS Hazard Function from Constant Transition Hazards — ExpHazOS • simIDMQuantile function for OS survival function induced by an illness-death model — ExpQuantOS • simIDMOS Survival Function from Constant Transition Hazards — ExpSurvOS • simIDMPFS Survival Function from Constant Transition Hazards — ExpSurvPFS • simIDMSingle Piecewise Exponentially Distributed Event Time — PCWInversionMethod • simIDM - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports @@ -118,7 +106,7 @@ Value Examples PCWInversionMethod(haz = c(1.1, 0.5, 0.4), pw = c(0, 7, 10), LogU = log(1 - runif(1))) -#> [1] 1.008584 +#> [1] 2.948948
library(simIDM) transitionTrt <- exponential_transition(h01 = 0.3, h02 = 0.28, h12 = 0.5) transitionPl <- exponential_transition(h01 = 0.5, h02 = 0.3, h12 = 0.6) @@ -189,7 +175,7 @@ Scenario - PFS and OS as The package provides functions that return the values of the PFS or OS survival functions for given transition hazards (Constant, Weibull or Piecewise Constant) and pre-specified time points. - + timepoints <- c(0, 0.1, 0.3, 0.7, 1, 5) # OS Survival function for Constant transition hazards: ExpSurvOS(timepoints, h01 = 0.2, h02 = 0.4, h12 = 0.1) @@ -204,7 +190,7 @@ Scenario - PFS and OS as ) #> [1] 1.00000000 0.95094877 0.85849702 0.69546105 0.59109798 0.03945673 There are also functions for PFS survival functions available: - + timepoints <- c(0, 0.1, 0.3, 0.7, 1, 5) # PFS Survival function for Constant transition hazards: ExpSurvPFS(timepoints, h01 = 0.2, h02 = 0.4) @@ -219,7 +205,7 @@ Scenario - PFS and OS as ) #> [1] 1.00000000 0.92311635 0.78662786 0.57120906 0.44932896 0.01499558 For PFS, the hazard ratio under \(H_0\) is known by specification: - + hTrtPFS <- sum(unlist(transitionTrt$hazards[1:2])) hPlPFS <- sum(unlist(transitionPl$hazards[1:2])) hRatioPFS <- hTrtPFS / hPlPFS @@ -227,7 +213,7 @@ Scenario - PFS and OS as #> [1] 0.725 For OS, the ratio of hazard functions is not necessarily constant. An averaged HR can be calculated using avgHRExpOS: - + hRatioOS <- avgHRExpOS(transitionByArm = transitionList, alpha = 0.5, upper = 1000) hRatioOS #> [1] 0.8072368 @@ -242,7 +228,7 @@ Type I Error - Simulation Under - + transitionListNull <- list(transitionPl, transitionPl) nRep <- 100 simNull <- getClinicalTrials( @@ -257,7 +243,7 @@ Type I Error - Simulation Under - + alphaOS <- 0.04 alphaPFS <- 0.01 criticalOS <- abs(qnorm(alphaOS / 2)) @@ -265,7 +251,7 @@ Type I Error - Simulation Under With the Schoenfeld approximation, preliminary sample sizes can be computed to get an idea of how many events are needed to achieve 80 % power: - + library(rpact) # Number of PFS events required for 80 % power via Schoenfeld: schoenfeldPFS <- getSampleSizeSurvival( @@ -296,7 +282,7 @@ Type I Error - Simulation Under empSignificant: - + empSignificant( simTrials = simNull, criticalPFS = criticalPFS, @@ -321,7 +307,7 @@ Type I Error - Simulation Under Sample size and power calculation - simulation under \(H_1\) Next, we simulate a large number of trials under \(H_1\) to compute the empirical power: - + simH1 <- getClinicalTrials( nRep = nRep, nPat = c(800, 800), seed = 1238, datType = "1rowPatient", transitionByArm = transitionList, @@ -332,7 +318,7 @@ Sample size an us to easily estimate further interesting metrics, such as joint power, i.e. the probability that both endpoints in a trial are significant, if each endpoint is analyzed at its planned time-point. - + empSignificant( simTrials = simH1, criticalPFS = criticalPFS, @@ -358,7 +344,7 @@ Sample size an It is also possible to derive the median time at which a certain number of events are expected to occur and how many events of the second endpoint have occurred at that time on average. - + # median time point for 329 PFS events to have occurred: timePointsPFS <- lapply(simH1, getTimePoint, eventNum = 329, typeEvent = "PFS", diff --git a/main/authors.html b/main/authors.html index ccac604b..63a1f10b 100644 --- a/main/authors.html +++ b/main/authors.html @@ -1,5 +1,5 @@ -Authors and Citation • simIDMAuthors and Citation • simIDM - - + + diff --git a/main/favicon-16x16.png b/main/favicon-16x16.png index cee8627270de43b9cffeca7d2161d89fa5922b4a..41722759d69e2527996ca63fd6b1bbe86cffc496 100644 GIT binary patch delta 103 zcmdnYv6*8-3=`K2MlL=vgOGzkuQsPK2{U?|=o%R68XANcnphbbS(#X98yHv_7;O72 olfl5ipjzS@QIe8al4_NkpOTqY$zWt)gk8h&bxW>HKEj+20O#Z$1^@s6 delta 103 zcmdnYv6*8-3=`LL9&SDhkxTp6iEU0}5@z%^)-^QJH8cz{G_f)@vobQ!HZZU ng)^r@N diff --git a/main/favicon-32x32.png b/main/favicon-32x32.png index 13b995708358f931e2d07e2423f758c408f06a08..71ec60e65bfd7372fdb749b6a80e68bc5fd46e5e 100644 GIT binary patch delta 101 zcmdnQzlncB1=kBkEsekrd2W+85m*Lka%-_!enRmd;qX`96kU5 delta 101 zcmdnQzlncB1=n*PZaxdqr90*|Y-}oH^ETEsG}1LR3^6pZGBvX@GSoIOure?>5%T>v m0|SFRc?MtW?ChKk%19*4Ldpg-6uP<=K}yko*kC} diff --git a/main/index.html b/main/index.html index 50847030..19affd70 100644 --- a/main/index.html +++ b/main/index.html @@ -21,8 +21,8 @@ - - + + simIDM - 0.1.0.9000 + 0.1.0.9001 @@ -80,18 +80,6 @@ Details Changelog - - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports diff --git a/main/news/index.html b/main/news/index.html index dc908584..9ea9ddd2 100644 --- a/main/news/index.html +++ b/main/news/index.html @@ -1,5 +1,5 @@ -Changelog • simIDMChangelog • simIDMPull Request • simIDMOS Hazard Function from Constant Transition Hazards — ExpHazOS • simIDMQuantile function for OS survival function induced by an illness-death model — ExpQuantOS • simIDMOS Survival Function from Constant Transition Hazards — ExpSurvOS • simIDMPFS Survival Function from Constant Transition Hazards — ExpSurvPFS • simIDMSingle Piecewise Exponentially Distributed Event Time — PCWInversionMethod • simIDM - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports @@ -118,7 +106,7 @@ Value Examples PCWInversionMethod(haz = c(1.1, 0.5, 0.4), pw = c(0, 7, 10), LogU = log(1 - runif(1))) -#> [1] 1.008584 +#> [1] 2.948948
The package provides functions that return the values of the PFS or OS survival functions for given transition hazards (Constant, Weibull or Piecewise Constant) and pre-specified time points.
+ timepoints <- c(0, 0.1, 0.3, 0.7, 1, 5) # OS Survival function for Constant transition hazards: ExpSurvOS(timepoints, h01 = 0.2, h02 = 0.4, h12 = 0.1) @@ -204,7 +190,7 @@ Scenario - PFS and OS as ) #> [1] 1.00000000 0.95094877 0.85849702 0.69546105 0.59109798 0.03945673 There are also functions for PFS survival functions available: - + timepoints <- c(0, 0.1, 0.3, 0.7, 1, 5) # PFS Survival function for Constant transition hazards: ExpSurvPFS(timepoints, h01 = 0.2, h02 = 0.4) @@ -219,7 +205,7 @@ Scenario - PFS and OS as ) #> [1] 1.00000000 0.92311635 0.78662786 0.57120906 0.44932896 0.01499558 For PFS, the hazard ratio under \(H_0\) is known by specification: - + hTrtPFS <- sum(unlist(transitionTrt$hazards[1:2])) hPlPFS <- sum(unlist(transitionPl$hazards[1:2])) hRatioPFS <- hTrtPFS / hPlPFS @@ -227,7 +213,7 @@ Scenario - PFS and OS as #> [1] 0.725 For OS, the ratio of hazard functions is not necessarily constant. An averaged HR can be calculated using avgHRExpOS: - + hRatioOS <- avgHRExpOS(transitionByArm = transitionList, alpha = 0.5, upper = 1000) hRatioOS #> [1] 0.8072368 @@ -242,7 +228,7 @@ Type I Error - Simulation Under - + transitionListNull <- list(transitionPl, transitionPl) nRep <- 100 simNull <- getClinicalTrials( @@ -257,7 +243,7 @@ Type I Error - Simulation Under - + alphaOS <- 0.04 alphaPFS <- 0.01 criticalOS <- abs(qnorm(alphaOS / 2)) @@ -265,7 +251,7 @@ Type I Error - Simulation Under With the Schoenfeld approximation, preliminary sample sizes can be computed to get an idea of how many events are needed to achieve 80 % power: - + library(rpact) # Number of PFS events required for 80 % power via Schoenfeld: schoenfeldPFS <- getSampleSizeSurvival( @@ -296,7 +282,7 @@ Type I Error - Simulation Under empSignificant: - + empSignificant( simTrials = simNull, criticalPFS = criticalPFS, @@ -321,7 +307,7 @@ Type I Error - Simulation Under Sample size and power calculation - simulation under \(H_1\) Next, we simulate a large number of trials under \(H_1\) to compute the empirical power: - + simH1 <- getClinicalTrials( nRep = nRep, nPat = c(800, 800), seed = 1238, datType = "1rowPatient", transitionByArm = transitionList, @@ -332,7 +318,7 @@ Sample size an us to easily estimate further interesting metrics, such as joint power, i.e. the probability that both endpoints in a trial are significant, if each endpoint is analyzed at its planned time-point. - + empSignificant( simTrials = simH1, criticalPFS = criticalPFS, @@ -358,7 +344,7 @@ Sample size an It is also possible to derive the median time at which a certain number of events are expected to occur and how many events of the second endpoint have occurred at that time on average. - + # median time point for 329 PFS events to have occurred: timePointsPFS <- lapply(simH1, getTimePoint, eventNum = 329, typeEvent = "PFS", diff --git a/main/authors.html b/main/authors.html index ccac604b..63a1f10b 100644 --- a/main/authors.html +++ b/main/authors.html @@ -1,5 +1,5 @@ -Authors and Citation • simIDMAuthors and Citation • simIDM - - + + diff --git a/main/favicon-16x16.png b/main/favicon-16x16.png index cee8627270de43b9cffeca7d2161d89fa5922b4a..41722759d69e2527996ca63fd6b1bbe86cffc496 100644 GIT binary patch delta 103 zcmdnYv6*8-3=`K2MlL=vgOGzkuQsPK2{U?|=o%R68XANcnphbbS(#X98yHv_7;O72 olfl5ipjzS@QIe8al4_NkpOTqY$zWt)gk8h&bxW>HKEj+20O#Z$1^@s6 delta 103 zcmdnYv6*8-3=`LL9&SDhkxTp6iEU0}5@z%^)-^QJH8cz{G_f)@vobQ!HZZU ng)^r@N diff --git a/main/favicon-32x32.png b/main/favicon-32x32.png index 13b995708358f931e2d07e2423f758c408f06a08..71ec60e65bfd7372fdb749b6a80e68bc5fd46e5e 100644 GIT binary patch delta 101 zcmdnQzlncB1=kBkEsekrd2W+85m*Lka%-_!enRmd;qX`96kU5 delta 101 zcmdnQzlncB1=n*PZaxdqr90*|Y-}oH^ETEsG}1LR3^6pZGBvX@GSoIOure?>5%T>v m0|SFRc?MtW?ChKk%19*4Ldpg-6uP<=K}yko*kC} diff --git a/main/index.html b/main/index.html index 50847030..19affd70 100644 --- a/main/index.html +++ b/main/index.html @@ -21,8 +21,8 @@ - - + + simIDM - 0.1.0.9000 + 0.1.0.9001 @@ -80,18 +80,6 @@ Details Changelog - - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports diff --git a/main/news/index.html b/main/news/index.html index dc908584..9ea9ddd2 100644 --- a/main/news/index.html +++ b/main/news/index.html @@ -1,5 +1,5 @@ -Changelog • simIDMChangelog • simIDMPull Request • simIDMOS Hazard Function from Constant Transition Hazards — ExpHazOS • simIDMQuantile function for OS survival function induced by an illness-death model — ExpQuantOS • simIDMOS Survival Function from Constant Transition Hazards — ExpSurvOS • simIDMPFS Survival Function from Constant Transition Hazards — ExpSurvPFS • simIDMSingle Piecewise Exponentially Distributed Event Time — PCWInversionMethod • simIDM - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports @@ -118,7 +106,7 @@ Value Examples PCWInversionMethod(haz = c(1.1, 0.5, 0.4), pw = c(0, 7, 10), LogU = log(1 - runif(1))) -#> [1] 1.008584 +#> [1] 2.948948
timepoints <- c(0, 0.1, 0.3, 0.7, 1, 5) # OS Survival function for Constant transition hazards: ExpSurvOS(timepoints, h01 = 0.2, h02 = 0.4, h12 = 0.1) @@ -204,7 +190,7 @@ Scenario - PFS and OS as ) #> [1] 1.00000000 0.95094877 0.85849702 0.69546105 0.59109798 0.03945673
There are also functions for PFS survival functions available:
+ timepoints <- c(0, 0.1, 0.3, 0.7, 1, 5) # PFS Survival function for Constant transition hazards: ExpSurvPFS(timepoints, h01 = 0.2, h02 = 0.4) @@ -219,7 +205,7 @@ Scenario - PFS and OS as ) #> [1] 1.00000000 0.92311635 0.78662786 0.57120906 0.44932896 0.01499558 For PFS, the hazard ratio under \(H_0\) is known by specification: - + hTrtPFS <- sum(unlist(transitionTrt$hazards[1:2])) hPlPFS <- sum(unlist(transitionPl$hazards[1:2])) hRatioPFS <- hTrtPFS / hPlPFS @@ -227,7 +213,7 @@ Scenario - PFS and OS as #> [1] 0.725 For OS, the ratio of hazard functions is not necessarily constant. An averaged HR can be calculated using avgHRExpOS: - + hRatioOS <- avgHRExpOS(transitionByArm = transitionList, alpha = 0.5, upper = 1000) hRatioOS #> [1] 0.8072368 @@ -242,7 +228,7 @@ Type I Error - Simulation Under - + transitionListNull <- list(transitionPl, transitionPl) nRep <- 100 simNull <- getClinicalTrials( @@ -257,7 +243,7 @@ Type I Error - Simulation Under - + alphaOS <- 0.04 alphaPFS <- 0.01 criticalOS <- abs(qnorm(alphaOS / 2)) @@ -265,7 +251,7 @@ Type I Error - Simulation Under With the Schoenfeld approximation, preliminary sample sizes can be computed to get an idea of how many events are needed to achieve 80 % power: - + library(rpact) # Number of PFS events required for 80 % power via Schoenfeld: schoenfeldPFS <- getSampleSizeSurvival( @@ -296,7 +282,7 @@ Type I Error - Simulation Under empSignificant: - + empSignificant( simTrials = simNull, criticalPFS = criticalPFS, @@ -321,7 +307,7 @@ Type I Error - Simulation Under Sample size and power calculation - simulation under \(H_1\) Next, we simulate a large number of trials under \(H_1\) to compute the empirical power: - + simH1 <- getClinicalTrials( nRep = nRep, nPat = c(800, 800), seed = 1238, datType = "1rowPatient", transitionByArm = transitionList, @@ -332,7 +318,7 @@ Sample size an us to easily estimate further interesting metrics, such as joint power, i.e. the probability that both endpoints in a trial are significant, if each endpoint is analyzed at its planned time-point. - + empSignificant( simTrials = simH1, criticalPFS = criticalPFS, @@ -358,7 +344,7 @@ Sample size an It is also possible to derive the median time at which a certain number of events are expected to occur and how many events of the second endpoint have occurred at that time on average. - + # median time point for 329 PFS events to have occurred: timePointsPFS <- lapply(simH1, getTimePoint, eventNum = 329, typeEvent = "PFS", diff --git a/main/authors.html b/main/authors.html index ccac604b..63a1f10b 100644 --- a/main/authors.html +++ b/main/authors.html @@ -1,5 +1,5 @@ -Authors and Citation • simIDMAuthors and Citation • simIDM - - + + diff --git a/main/favicon-16x16.png b/main/favicon-16x16.png index cee8627270de43b9cffeca7d2161d89fa5922b4a..41722759d69e2527996ca63fd6b1bbe86cffc496 100644 GIT binary patch delta 103 zcmdnYv6*8-3=`K2MlL=vgOGzkuQsPK2{U?|=o%R68XANcnphbbS(#X98yHv_7;O72 olfl5ipjzS@QIe8al4_NkpOTqY$zWt)gk8h&bxW>HKEj+20O#Z$1^@s6 delta 103 zcmdnYv6*8-3=`LL9&SDhkxTp6iEU0}5@z%^)-^QJH8cz{G_f)@vobQ!HZZU ng)^r@N diff --git a/main/favicon-32x32.png b/main/favicon-32x32.png index 13b995708358f931e2d07e2423f758c408f06a08..71ec60e65bfd7372fdb749b6a80e68bc5fd46e5e 100644 GIT binary patch delta 101 zcmdnQzlncB1=kBkEsekrd2W+85m*Lka%-_!enRmd;qX`96kU5 delta 101 zcmdnQzlncB1=n*PZaxdqr90*|Y-}oH^ETEsG}1LR3^6pZGBvX@GSoIOure?>5%T>v m0|SFRc?MtW?ChKk%19*4Ldpg-6uP<=K}yko*kC} diff --git a/main/index.html b/main/index.html index 50847030..19affd70 100644 --- a/main/index.html +++ b/main/index.html @@ -21,8 +21,8 @@ - - + + simIDM - 0.1.0.9000 + 0.1.0.9001 @@ -80,18 +80,6 @@ Details Changelog - - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports diff --git a/main/news/index.html b/main/news/index.html index dc908584..9ea9ddd2 100644 --- a/main/news/index.html +++ b/main/news/index.html @@ -1,5 +1,5 @@ -Changelog • simIDMChangelog • simIDMPull Request • simIDMOS Hazard Function from Constant Transition Hazards — ExpHazOS • simIDMQuantile function for OS survival function induced by an illness-death model — ExpQuantOS • simIDMOS Survival Function from Constant Transition Hazards — ExpSurvOS • simIDMPFS Survival Function from Constant Transition Hazards — ExpSurvPFS • simIDMSingle Piecewise Exponentially Distributed Event Time — PCWInversionMethod • simIDM - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports @@ -118,7 +106,7 @@ Value Examples PCWInversionMethod(haz = c(1.1, 0.5, 0.4), pw = c(0, 7, 10), LogU = log(1 - runif(1))) -#> [1] 1.008584 +#> [1] 2.948948
timepoints <- c(0, 0.1, 0.3, 0.7, 1, 5) # PFS Survival function for Constant transition hazards: ExpSurvPFS(timepoints, h01 = 0.2, h02 = 0.4) @@ -219,7 +205,7 @@ Scenario - PFS and OS as ) #> [1] 1.00000000 0.92311635 0.78662786 0.57120906 0.44932896 0.01499558
For PFS, the hazard ratio under \(H_0\) is known by specification:
+ hTrtPFS <- sum(unlist(transitionTrt$hazards[1:2])) hPlPFS <- sum(unlist(transitionPl$hazards[1:2])) hRatioPFS <- hTrtPFS / hPlPFS @@ -227,7 +213,7 @@ Scenario - PFS and OS as #> [1] 0.725 For OS, the ratio of hazard functions is not necessarily constant. An averaged HR can be calculated using avgHRExpOS: - + hRatioOS <- avgHRExpOS(transitionByArm = transitionList, alpha = 0.5, upper = 1000) hRatioOS #> [1] 0.8072368 @@ -242,7 +228,7 @@ Type I Error - Simulation Under - + transitionListNull <- list(transitionPl, transitionPl) nRep <- 100 simNull <- getClinicalTrials( @@ -257,7 +243,7 @@ Type I Error - Simulation Under - + alphaOS <- 0.04 alphaPFS <- 0.01 criticalOS <- abs(qnorm(alphaOS / 2)) @@ -265,7 +251,7 @@ Type I Error - Simulation Under With the Schoenfeld approximation, preliminary sample sizes can be computed to get an idea of how many events are needed to achieve 80 % power: - + library(rpact) # Number of PFS events required for 80 % power via Schoenfeld: schoenfeldPFS <- getSampleSizeSurvival( @@ -296,7 +282,7 @@ Type I Error - Simulation Under empSignificant: - + empSignificant( simTrials = simNull, criticalPFS = criticalPFS, @@ -321,7 +307,7 @@ Type I Error - Simulation Under Sample size and power calculation - simulation under \(H_1\) Next, we simulate a large number of trials under \(H_1\) to compute the empirical power: - + simH1 <- getClinicalTrials( nRep = nRep, nPat = c(800, 800), seed = 1238, datType = "1rowPatient", transitionByArm = transitionList, @@ -332,7 +318,7 @@ Sample size an us to easily estimate further interesting metrics, such as joint power, i.e. the probability that both endpoints in a trial are significant, if each endpoint is analyzed at its planned time-point. - + empSignificant( simTrials = simH1, criticalPFS = criticalPFS, @@ -358,7 +344,7 @@ Sample size an It is also possible to derive the median time at which a certain number of events are expected to occur and how many events of the second endpoint have occurred at that time on average. - + # median time point for 329 PFS events to have occurred: timePointsPFS <- lapply(simH1, getTimePoint, eventNum = 329, typeEvent = "PFS", diff --git a/main/authors.html b/main/authors.html index ccac604b..63a1f10b 100644 --- a/main/authors.html +++ b/main/authors.html @@ -1,5 +1,5 @@ -Authors and Citation • simIDMAuthors and Citation • simIDM - - + + diff --git a/main/favicon-16x16.png b/main/favicon-16x16.png index cee8627270de43b9cffeca7d2161d89fa5922b4a..41722759d69e2527996ca63fd6b1bbe86cffc496 100644 GIT binary patch delta 103 zcmdnYv6*8-3=`K2MlL=vgOGzkuQsPK2{U?|=o%R68XANcnphbbS(#X98yHv_7;O72 olfl5ipjzS@QIe8al4_NkpOTqY$zWt)gk8h&bxW>HKEj+20O#Z$1^@s6 delta 103 zcmdnYv6*8-3=`LL9&SDhkxTp6iEU0}5@z%^)-^QJH8cz{G_f)@vobQ!HZZU ng)^r@N diff --git a/main/favicon-32x32.png b/main/favicon-32x32.png index 13b995708358f931e2d07e2423f758c408f06a08..71ec60e65bfd7372fdb749b6a80e68bc5fd46e5e 100644 GIT binary patch delta 101 zcmdnQzlncB1=kBkEsekrd2W+85m*Lka%-_!enRmd;qX`96kU5 delta 101 zcmdnQzlncB1=n*PZaxdqr90*|Y-}oH^ETEsG}1LR3^6pZGBvX@GSoIOure?>5%T>v m0|SFRc?MtW?ChKk%19*4Ldpg-6uP<=K}yko*kC} diff --git a/main/index.html b/main/index.html index 50847030..19affd70 100644 --- a/main/index.html +++ b/main/index.html @@ -21,8 +21,8 @@ - - + + simIDM - 0.1.0.9000 + 0.1.0.9001 @@ -80,18 +80,6 @@ Details Changelog - - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports diff --git a/main/news/index.html b/main/news/index.html index dc908584..9ea9ddd2 100644 --- a/main/news/index.html +++ b/main/news/index.html @@ -1,5 +1,5 @@ -Changelog • simIDMChangelog • simIDMPull Request • simIDMOS Hazard Function from Constant Transition Hazards — ExpHazOS • simIDMQuantile function for OS survival function induced by an illness-death model — ExpQuantOS • simIDMOS Survival Function from Constant Transition Hazards — ExpSurvOS • simIDMPFS Survival Function from Constant Transition Hazards — ExpSurvPFS • simIDMSingle Piecewise Exponentially Distributed Event Time — PCWInversionMethod • simIDM - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports @@ -118,7 +106,7 @@ Value Examples PCWInversionMethod(haz = c(1.1, 0.5, 0.4), pw = c(0, 7, 10), LogU = log(1 - runif(1))) -#> [1] 1.008584 +#> [1] 2.948948
hTrtPFS <- sum(unlist(transitionTrt$hazards[1:2])) hPlPFS <- sum(unlist(transitionPl$hazards[1:2])) hRatioPFS <- hTrtPFS / hPlPFS @@ -227,7 +213,7 @@ Scenario - PFS and OS as #> [1] 0.725
For OS, the ratio of hazard functions is not necessarily constant. An averaged HR can be calculated using avgHRExpOS:
avgHRExpOS
+ hRatioOS <- avgHRExpOS(transitionByArm = transitionList, alpha = 0.5, upper = 1000) hRatioOS #> [1] 0.8072368 @@ -242,7 +228,7 @@ Type I Error - Simulation Under - + transitionListNull <- list(transitionPl, transitionPl) nRep <- 100 simNull <- getClinicalTrials( @@ -257,7 +243,7 @@ Type I Error - Simulation Under - + alphaOS <- 0.04 alphaPFS <- 0.01 criticalOS <- abs(qnorm(alphaOS / 2)) @@ -265,7 +251,7 @@ Type I Error - Simulation Under With the Schoenfeld approximation, preliminary sample sizes can be computed to get an idea of how many events are needed to achieve 80 % power: - + library(rpact) # Number of PFS events required for 80 % power via Schoenfeld: schoenfeldPFS <- getSampleSizeSurvival( @@ -296,7 +282,7 @@ Type I Error - Simulation Under empSignificant: - + empSignificant( simTrials = simNull, criticalPFS = criticalPFS, @@ -321,7 +307,7 @@ Type I Error - Simulation Under Sample size and power calculation - simulation under \(H_1\) Next, we simulate a large number of trials under \(H_1\) to compute the empirical power: - + simH1 <- getClinicalTrials( nRep = nRep, nPat = c(800, 800), seed = 1238, datType = "1rowPatient", transitionByArm = transitionList, @@ -332,7 +318,7 @@ Sample size an us to easily estimate further interesting metrics, such as joint power, i.e. the probability that both endpoints in a trial are significant, if each endpoint is analyzed at its planned time-point. - + empSignificant( simTrials = simH1, criticalPFS = criticalPFS, @@ -358,7 +344,7 @@ Sample size an It is also possible to derive the median time at which a certain number of events are expected to occur and how many events of the second endpoint have occurred at that time on average. - + # median time point for 329 PFS events to have occurred: timePointsPFS <- lapply(simH1, getTimePoint, eventNum = 329, typeEvent = "PFS", diff --git a/main/authors.html b/main/authors.html index ccac604b..63a1f10b 100644 --- a/main/authors.html +++ b/main/authors.html @@ -1,5 +1,5 @@ -Authors and Citation • simIDMAuthors and Citation • simIDM - - + + diff --git a/main/favicon-16x16.png b/main/favicon-16x16.png index cee8627270de43b9cffeca7d2161d89fa5922b4a..41722759d69e2527996ca63fd6b1bbe86cffc496 100644 GIT binary patch delta 103 zcmdnYv6*8-3=`K2MlL=vgOGzkuQsPK2{U?|=o%R68XANcnphbbS(#X98yHv_7;O72 olfl5ipjzS@QIe8al4_NkpOTqY$zWt)gk8h&bxW>HKEj+20O#Z$1^@s6 delta 103 zcmdnYv6*8-3=`LL9&SDhkxTp6iEU0}5@z%^)-^QJH8cz{G_f)@vobQ!HZZU ng)^r@N diff --git a/main/favicon-32x32.png b/main/favicon-32x32.png index 13b995708358f931e2d07e2423f758c408f06a08..71ec60e65bfd7372fdb749b6a80e68bc5fd46e5e 100644 GIT binary patch delta 101 zcmdnQzlncB1=kBkEsekrd2W+85m*Lka%-_!enRmd;qX`96kU5 delta 101 zcmdnQzlncB1=n*PZaxdqr90*|Y-}oH^ETEsG}1LR3^6pZGBvX@GSoIOure?>5%T>v m0|SFRc?MtW?ChKk%19*4Ldpg-6uP<=K}yko*kC} diff --git a/main/index.html b/main/index.html index 50847030..19affd70 100644 --- a/main/index.html +++ b/main/index.html @@ -21,8 +21,8 @@ - - + + simIDM - 0.1.0.9000 + 0.1.0.9001 @@ -80,18 +80,6 @@ Details Changelog - - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports diff --git a/main/news/index.html b/main/news/index.html index dc908584..9ea9ddd2 100644 --- a/main/news/index.html +++ b/main/news/index.html @@ -1,5 +1,5 @@ -Changelog • simIDMChangelog • simIDMPull Request • simIDMOS Hazard Function from Constant Transition Hazards — ExpHazOS • simIDMQuantile function for OS survival function induced by an illness-death model — ExpQuantOS • simIDMOS Survival Function from Constant Transition Hazards — ExpSurvOS • simIDMPFS Survival Function from Constant Transition Hazards — ExpSurvPFS • simIDMSingle Piecewise Exponentially Distributed Event Time — PCWInversionMethod • simIDM - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports @@ -118,7 +106,7 @@ Value Examples PCWInversionMethod(haz = c(1.1, 0.5, 0.4), pw = c(0, 7, 10), LogU = log(1 - runif(1))) -#> [1] 1.008584 +#> [1] 2.948948
hRatioOS <- avgHRExpOS(transitionByArm = transitionList, alpha = 0.5, upper = 1000) hRatioOS #> [1] 0.8072368
+ transitionListNull <- list(transitionPl, transitionPl) nRep <- 100 simNull <- getClinicalTrials( @@ -257,7 +243,7 @@ Type I Error - Simulation Under - + alphaOS <- 0.04 alphaPFS <- 0.01 criticalOS <- abs(qnorm(alphaOS / 2)) @@ -265,7 +251,7 @@ Type I Error - Simulation Under With the Schoenfeld approximation, preliminary sample sizes can be computed to get an idea of how many events are needed to achieve 80 % power: - + library(rpact) # Number of PFS events required for 80 % power via Schoenfeld: schoenfeldPFS <- getSampleSizeSurvival( @@ -296,7 +282,7 @@ Type I Error - Simulation Under empSignificant: - + empSignificant( simTrials = simNull, criticalPFS = criticalPFS, @@ -321,7 +307,7 @@ Type I Error - Simulation Under Sample size and power calculation - simulation under \(H_1\) Next, we simulate a large number of trials under \(H_1\) to compute the empirical power: - + simH1 <- getClinicalTrials( nRep = nRep, nPat = c(800, 800), seed = 1238, datType = "1rowPatient", transitionByArm = transitionList, @@ -332,7 +318,7 @@ Sample size an us to easily estimate further interesting metrics, such as joint power, i.e. the probability that both endpoints in a trial are significant, if each endpoint is analyzed at its planned time-point. - + empSignificant( simTrials = simH1, criticalPFS = criticalPFS, @@ -358,7 +344,7 @@ Sample size an It is also possible to derive the median time at which a certain number of events are expected to occur and how many events of the second endpoint have occurred at that time on average. - + # median time point for 329 PFS events to have occurred: timePointsPFS <- lapply(simH1, getTimePoint, eventNum = 329, typeEvent = "PFS", diff --git a/main/authors.html b/main/authors.html index ccac604b..63a1f10b 100644 --- a/main/authors.html +++ b/main/authors.html @@ -1,5 +1,5 @@ -Authors and Citation • simIDMAuthors and Citation • simIDM - - + + diff --git a/main/favicon-16x16.png b/main/favicon-16x16.png index cee8627270de43b9cffeca7d2161d89fa5922b4a..41722759d69e2527996ca63fd6b1bbe86cffc496 100644 GIT binary patch delta 103 zcmdnYv6*8-3=`K2MlL=vgOGzkuQsPK2{U?|=o%R68XANcnphbbS(#X98yHv_7;O72 olfl5ipjzS@QIe8al4_NkpOTqY$zWt)gk8h&bxW>HKEj+20O#Z$1^@s6 delta 103 zcmdnYv6*8-3=`LL9&SDhkxTp6iEU0}5@z%^)-^QJH8cz{G_f)@vobQ!HZZU ng)^r@N diff --git a/main/favicon-32x32.png b/main/favicon-32x32.png index 13b995708358f931e2d07e2423f758c408f06a08..71ec60e65bfd7372fdb749b6a80e68bc5fd46e5e 100644 GIT binary patch delta 101 zcmdnQzlncB1=kBkEsekrd2W+85m*Lka%-_!enRmd;qX`96kU5 delta 101 zcmdnQzlncB1=n*PZaxdqr90*|Y-}oH^ETEsG}1LR3^6pZGBvX@GSoIOure?>5%T>v m0|SFRc?MtW?ChKk%19*4Ldpg-6uP<=K}yko*kC} diff --git a/main/index.html b/main/index.html index 50847030..19affd70 100644 --- a/main/index.html +++ b/main/index.html @@ -21,8 +21,8 @@ - - + + simIDM - 0.1.0.9000 + 0.1.0.9001 @@ -80,18 +80,6 @@ Details Changelog - - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports diff --git a/main/news/index.html b/main/news/index.html index dc908584..9ea9ddd2 100644 --- a/main/news/index.html +++ b/main/news/index.html @@ -1,5 +1,5 @@ -Changelog • simIDMChangelog • simIDMPull Request • simIDMOS Hazard Function from Constant Transition Hazards — ExpHazOS • simIDMQuantile function for OS survival function induced by an illness-death model — ExpQuantOS • simIDMOS Survival Function from Constant Transition Hazards — ExpSurvOS • simIDMPFS Survival Function from Constant Transition Hazards — ExpSurvPFS • simIDMSingle Piecewise Exponentially Distributed Event Time — PCWInversionMethod • simIDM - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports @@ -118,7 +106,7 @@ Value Examples PCWInversionMethod(haz = c(1.1, 0.5, 0.4), pw = c(0, 7, 10), LogU = log(1 - runif(1))) -#> [1] 1.008584 +#> [1] 2.948948
transitionListNull <- list(transitionPl, transitionPl) nRep <- 100 simNull <- getClinicalTrials( @@ -257,7 +243,7 @@ Type I Error - Simulation Under - + alphaOS <- 0.04 alphaPFS <- 0.01 criticalOS <- abs(qnorm(alphaOS / 2)) @@ -265,7 +251,7 @@ Type I Error - Simulation Under With the Schoenfeld approximation, preliminary sample sizes can be computed to get an idea of how many events are needed to achieve 80 % power: - + library(rpact) # Number of PFS events required for 80 % power via Schoenfeld: schoenfeldPFS <- getSampleSizeSurvival( @@ -296,7 +282,7 @@ Type I Error - Simulation Under empSignificant: - + empSignificant( simTrials = simNull, criticalPFS = criticalPFS, @@ -321,7 +307,7 @@ Type I Error - Simulation Under Sample size and power calculation - simulation under \(H_1\) Next, we simulate a large number of trials under \(H_1\) to compute the empirical power: - + simH1 <- getClinicalTrials( nRep = nRep, nPat = c(800, 800), seed = 1238, datType = "1rowPatient", transitionByArm = transitionList, @@ -332,7 +318,7 @@ Sample size an us to easily estimate further interesting metrics, such as joint power, i.e. the probability that both endpoints in a trial are significant, if each endpoint is analyzed at its planned time-point. - + empSignificant( simTrials = simH1, criticalPFS = criticalPFS, @@ -358,7 +344,7 @@ Sample size an It is also possible to derive the median time at which a certain number of events are expected to occur and how many events of the second endpoint have occurred at that time on average. - + # median time point for 329 PFS events to have occurred: timePointsPFS <- lapply(simH1, getTimePoint, eventNum = 329, typeEvent = "PFS", diff --git a/main/authors.html b/main/authors.html index ccac604b..63a1f10b 100644 --- a/main/authors.html +++ b/main/authors.html @@ -1,5 +1,5 @@ -Authors and Citation • simIDMAuthors and Citation • simIDM - - + + diff --git a/main/favicon-16x16.png b/main/favicon-16x16.png index cee8627270de43b9cffeca7d2161d89fa5922b4a..41722759d69e2527996ca63fd6b1bbe86cffc496 100644 GIT binary patch delta 103 zcmdnYv6*8-3=`K2MlL=vgOGzkuQsPK2{U?|=o%R68XANcnphbbS(#X98yHv_7;O72 olfl5ipjzS@QIe8al4_NkpOTqY$zWt)gk8h&bxW>HKEj+20O#Z$1^@s6 delta 103 zcmdnYv6*8-3=`LL9&SDhkxTp6iEU0}5@z%^)-^QJH8cz{G_f)@vobQ!HZZU ng)^r@N diff --git a/main/favicon-32x32.png b/main/favicon-32x32.png index 13b995708358f931e2d07e2423f758c408f06a08..71ec60e65bfd7372fdb749b6a80e68bc5fd46e5e 100644 GIT binary patch delta 101 zcmdnQzlncB1=kBkEsekrd2W+85m*Lka%-_!enRmd;qX`96kU5 delta 101 zcmdnQzlncB1=n*PZaxdqr90*|Y-}oH^ETEsG}1LR3^6pZGBvX@GSoIOure?>5%T>v m0|SFRc?MtW?ChKk%19*4Ldpg-6uP<=K}yko*kC} diff --git a/main/index.html b/main/index.html index 50847030..19affd70 100644 --- a/main/index.html +++ b/main/index.html @@ -21,8 +21,8 @@ - - + + simIDM - 0.1.0.9000 + 0.1.0.9001 @@ -80,18 +80,6 @@ Details Changelog - - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports diff --git a/main/news/index.html b/main/news/index.html index dc908584..9ea9ddd2 100644 --- a/main/news/index.html +++ b/main/news/index.html @@ -1,5 +1,5 @@ -Changelog • simIDMChangelog • simIDMPull Request • simIDMOS Hazard Function from Constant Transition Hazards — ExpHazOS • simIDMQuantile function for OS survival function induced by an illness-death model — ExpQuantOS • simIDMOS Survival Function from Constant Transition Hazards — ExpSurvOS • simIDMPFS Survival Function from Constant Transition Hazards — ExpSurvPFS • simIDMSingle Piecewise Exponentially Distributed Event Time — PCWInversionMethod • simIDM - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports @@ -118,7 +106,7 @@ Value Examples PCWInversionMethod(haz = c(1.1, 0.5, 0.4), pw = c(0, 7, 10), LogU = log(1 - runif(1))) -#> [1] 1.008584 +#> [1] 2.948948
+ alphaOS <- 0.04 alphaPFS <- 0.01 criticalOS <- abs(qnorm(alphaOS / 2)) @@ -265,7 +251,7 @@ Type I Error - Simulation Under With the Schoenfeld approximation, preliminary sample sizes can be computed to get an idea of how many events are needed to achieve 80 % power: - + library(rpact) # Number of PFS events required for 80 % power via Schoenfeld: schoenfeldPFS <- getSampleSizeSurvival( @@ -296,7 +282,7 @@ Type I Error - Simulation Under empSignificant: - + empSignificant( simTrials = simNull, criticalPFS = criticalPFS, @@ -321,7 +307,7 @@ Type I Error - Simulation Under Sample size and power calculation - simulation under \(H_1\) Next, we simulate a large number of trials under \(H_1\) to compute the empirical power: - + simH1 <- getClinicalTrials( nRep = nRep, nPat = c(800, 800), seed = 1238, datType = "1rowPatient", transitionByArm = transitionList, @@ -332,7 +318,7 @@ Sample size an us to easily estimate further interesting metrics, such as joint power, i.e. the probability that both endpoints in a trial are significant, if each endpoint is analyzed at its planned time-point. - + empSignificant( simTrials = simH1, criticalPFS = criticalPFS, @@ -358,7 +344,7 @@ Sample size an It is also possible to derive the median time at which a certain number of events are expected to occur and how many events of the second endpoint have occurred at that time on average. - + # median time point for 329 PFS events to have occurred: timePointsPFS <- lapply(simH1, getTimePoint, eventNum = 329, typeEvent = "PFS", diff --git a/main/authors.html b/main/authors.html index ccac604b..63a1f10b 100644 --- a/main/authors.html +++ b/main/authors.html @@ -1,5 +1,5 @@ -Authors and Citation • simIDMAuthors and Citation • simIDM - - + + diff --git a/main/favicon-16x16.png b/main/favicon-16x16.png index cee8627270de43b9cffeca7d2161d89fa5922b4a..41722759d69e2527996ca63fd6b1bbe86cffc496 100644 GIT binary patch delta 103 zcmdnYv6*8-3=`K2MlL=vgOGzkuQsPK2{U?|=o%R68XANcnphbbS(#X98yHv_7;O72 olfl5ipjzS@QIe8al4_NkpOTqY$zWt)gk8h&bxW>HKEj+20O#Z$1^@s6 delta 103 zcmdnYv6*8-3=`LL9&SDhkxTp6iEU0}5@z%^)-^QJH8cz{G_f)@vobQ!HZZU ng)^r@N diff --git a/main/favicon-32x32.png b/main/favicon-32x32.png index 13b995708358f931e2d07e2423f758c408f06a08..71ec60e65bfd7372fdb749b6a80e68bc5fd46e5e 100644 GIT binary patch delta 101 zcmdnQzlncB1=kBkEsekrd2W+85m*Lka%-_!enRmd;qX`96kU5 delta 101 zcmdnQzlncB1=n*PZaxdqr90*|Y-}oH^ETEsG}1LR3^6pZGBvX@GSoIOure?>5%T>v m0|SFRc?MtW?ChKk%19*4Ldpg-6uP<=K}yko*kC} diff --git a/main/index.html b/main/index.html index 50847030..19affd70 100644 --- a/main/index.html +++ b/main/index.html @@ -21,8 +21,8 @@ - - + + simIDM - 0.1.0.9000 + 0.1.0.9001 @@ -80,18 +80,6 @@ Details Changelog - - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports diff --git a/main/news/index.html b/main/news/index.html index dc908584..9ea9ddd2 100644 --- a/main/news/index.html +++ b/main/news/index.html @@ -1,5 +1,5 @@ -Changelog • simIDMChangelog • simIDMPull Request • simIDMOS Hazard Function from Constant Transition Hazards — ExpHazOS • simIDMQuantile function for OS survival function induced by an illness-death model — ExpQuantOS • simIDMOS Survival Function from Constant Transition Hazards — ExpSurvOS • simIDMPFS Survival Function from Constant Transition Hazards — ExpSurvPFS • simIDMSingle Piecewise Exponentially Distributed Event Time — PCWInversionMethod • simIDM - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports @@ -118,7 +106,7 @@ Value Examples PCWInversionMethod(haz = c(1.1, 0.5, 0.4), pw = c(0, 7, 10), LogU = log(1 - runif(1))) -#> [1] 1.008584 +#> [1] 2.948948
alphaOS <- 0.04 alphaPFS <- 0.01 criticalOS <- abs(qnorm(alphaOS / 2)) @@ -265,7 +251,7 @@ Type I Error - Simulation Under With the Schoenfeld approximation, preliminary sample sizes can be computed to get an idea of how many events are needed to achieve 80 % power: - + library(rpact) # Number of PFS events required for 80 % power via Schoenfeld: schoenfeldPFS <- getSampleSizeSurvival( @@ -296,7 +282,7 @@ Type I Error - Simulation Under empSignificant: - + empSignificant( simTrials = simNull, criticalPFS = criticalPFS, @@ -321,7 +307,7 @@ Type I Error - Simulation Under Sample size and power calculation - simulation under \(H_1\) Next, we simulate a large number of trials under \(H_1\) to compute the empirical power: - + simH1 <- getClinicalTrials( nRep = nRep, nPat = c(800, 800), seed = 1238, datType = "1rowPatient", transitionByArm = transitionList, @@ -332,7 +318,7 @@ Sample size an us to easily estimate further interesting metrics, such as joint power, i.e. the probability that both endpoints in a trial are significant, if each endpoint is analyzed at its planned time-point. - + empSignificant( simTrials = simH1, criticalPFS = criticalPFS, @@ -358,7 +344,7 @@ Sample size an It is also possible to derive the median time at which a certain number of events are expected to occur and how many events of the second endpoint have occurred at that time on average. - + # median time point for 329 PFS events to have occurred: timePointsPFS <- lapply(simH1, getTimePoint, eventNum = 329, typeEvent = "PFS", diff --git a/main/authors.html b/main/authors.html index ccac604b..63a1f10b 100644 --- a/main/authors.html +++ b/main/authors.html @@ -1,5 +1,5 @@ -Authors and Citation • simIDMAuthors and Citation • simIDM - - + + diff --git a/main/favicon-16x16.png b/main/favicon-16x16.png index cee8627270de43b9cffeca7d2161d89fa5922b4a..41722759d69e2527996ca63fd6b1bbe86cffc496 100644 GIT binary patch delta 103 zcmdnYv6*8-3=`K2MlL=vgOGzkuQsPK2{U?|=o%R68XANcnphbbS(#X98yHv_7;O72 olfl5ipjzS@QIe8al4_NkpOTqY$zWt)gk8h&bxW>HKEj+20O#Z$1^@s6 delta 103 zcmdnYv6*8-3=`LL9&SDhkxTp6iEU0}5@z%^)-^QJH8cz{G_f)@vobQ!HZZU ng)^r@N diff --git a/main/favicon-32x32.png b/main/favicon-32x32.png index 13b995708358f931e2d07e2423f758c408f06a08..71ec60e65bfd7372fdb749b6a80e68bc5fd46e5e 100644 GIT binary patch delta 101 zcmdnQzlncB1=kBkEsekrd2W+85m*Lka%-_!enRmd;qX`96kU5 delta 101 zcmdnQzlncB1=n*PZaxdqr90*|Y-}oH^ETEsG}1LR3^6pZGBvX@GSoIOure?>5%T>v m0|SFRc?MtW?ChKk%19*4Ldpg-6uP<=K}yko*kC} diff --git a/main/index.html b/main/index.html index 50847030..19affd70 100644 --- a/main/index.html +++ b/main/index.html @@ -21,8 +21,8 @@ - - + + simIDM - 0.1.0.9000 + 0.1.0.9001 @@ -80,18 +80,6 @@ Details Changelog - - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports diff --git a/main/news/index.html b/main/news/index.html index dc908584..9ea9ddd2 100644 --- a/main/news/index.html +++ b/main/news/index.html @@ -1,5 +1,5 @@ -Changelog • simIDMChangelog • simIDMPull Request • simIDMOS Hazard Function from Constant Transition Hazards — ExpHazOS • simIDMQuantile function for OS survival function induced by an illness-death model — ExpQuantOS • simIDMOS Survival Function from Constant Transition Hazards — ExpSurvOS • simIDMPFS Survival Function from Constant Transition Hazards — ExpSurvPFS • simIDMSingle Piecewise Exponentially Distributed Event Time — PCWInversionMethod • simIDM - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports @@ -118,7 +106,7 @@ Value Examples PCWInversionMethod(haz = c(1.1, 0.5, 0.4), pw = c(0, 7, 10), LogU = log(1 - runif(1))) -#> [1] 1.008584 +#> [1] 2.948948
+ library(rpact) # Number of PFS events required for 80 % power via Schoenfeld: schoenfeldPFS <- getSampleSizeSurvival( @@ -296,7 +282,7 @@ Type I Error - Simulation Under empSignificant: - + empSignificant( simTrials = simNull, criticalPFS = criticalPFS, @@ -321,7 +307,7 @@ Type I Error - Simulation Under Sample size and power calculation - simulation under \(H_1\) Next, we simulate a large number of trials under \(H_1\) to compute the empirical power: - + simH1 <- getClinicalTrials( nRep = nRep, nPat = c(800, 800), seed = 1238, datType = "1rowPatient", transitionByArm = transitionList, @@ -332,7 +318,7 @@ Sample size an us to easily estimate further interesting metrics, such as joint power, i.e. the probability that both endpoints in a trial are significant, if each endpoint is analyzed at its planned time-point. - + empSignificant( simTrials = simH1, criticalPFS = criticalPFS, @@ -358,7 +344,7 @@ Sample size an It is also possible to derive the median time at which a certain number of events are expected to occur and how many events of the second endpoint have occurred at that time on average. - + # median time point for 329 PFS events to have occurred: timePointsPFS <- lapply(simH1, getTimePoint, eventNum = 329, typeEvent = "PFS", diff --git a/main/authors.html b/main/authors.html index ccac604b..63a1f10b 100644 --- a/main/authors.html +++ b/main/authors.html @@ -1,5 +1,5 @@ -Authors and Citation • simIDMAuthors and Citation • simIDM - - + + diff --git a/main/favicon-16x16.png b/main/favicon-16x16.png index cee8627270de43b9cffeca7d2161d89fa5922b4a..41722759d69e2527996ca63fd6b1bbe86cffc496 100644 GIT binary patch delta 103 zcmdnYv6*8-3=`K2MlL=vgOGzkuQsPK2{U?|=o%R68XANcnphbbS(#X98yHv_7;O72 olfl5ipjzS@QIe8al4_NkpOTqY$zWt)gk8h&bxW>HKEj+20O#Z$1^@s6 delta 103 zcmdnYv6*8-3=`LL9&SDhkxTp6iEU0}5@z%^)-^QJH8cz{G_f)@vobQ!HZZU ng)^r@N diff --git a/main/favicon-32x32.png b/main/favicon-32x32.png index 13b995708358f931e2d07e2423f758c408f06a08..71ec60e65bfd7372fdb749b6a80e68bc5fd46e5e 100644 GIT binary patch delta 101 zcmdnQzlncB1=kBkEsekrd2W+85m*Lka%-_!enRmd;qX`96kU5 delta 101 zcmdnQzlncB1=n*PZaxdqr90*|Y-}oH^ETEsG}1LR3^6pZGBvX@GSoIOure?>5%T>v m0|SFRc?MtW?ChKk%19*4Ldpg-6uP<=K}yko*kC} diff --git a/main/index.html b/main/index.html index 50847030..19affd70 100644 --- a/main/index.html +++ b/main/index.html @@ -21,8 +21,8 @@ - - + + simIDM - 0.1.0.9000 + 0.1.0.9001 @@ -80,18 +80,6 @@ Details Changelog - - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports diff --git a/main/news/index.html b/main/news/index.html index dc908584..9ea9ddd2 100644 --- a/main/news/index.html +++ b/main/news/index.html @@ -1,5 +1,5 @@ -Changelog • simIDMChangelog • simIDMPull Request • simIDMOS Hazard Function from Constant Transition Hazards — ExpHazOS • simIDMQuantile function for OS survival function induced by an illness-death model — ExpQuantOS • simIDMOS Survival Function from Constant Transition Hazards — ExpSurvOS • simIDMPFS Survival Function from Constant Transition Hazards — ExpSurvPFS • simIDMSingle Piecewise Exponentially Distributed Event Time — PCWInversionMethod • simIDM - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports @@ -118,7 +106,7 @@ Value Examples PCWInversionMethod(haz = c(1.1, 0.5, 0.4), pw = c(0, 7, 10), LogU = log(1 - runif(1))) -#> [1] 1.008584 +#> [1] 2.948948
library(rpact) # Number of PFS events required for 80 % power via Schoenfeld: schoenfeldPFS <- getSampleSizeSurvival( @@ -296,7 +282,7 @@ Type I Error - Simulation Under empSignificant: - + empSignificant( simTrials = simNull, criticalPFS = criticalPFS, @@ -321,7 +307,7 @@ Type I Error - Simulation Under Sample size and power calculation - simulation under \(H_1\) Next, we simulate a large number of trials under \(H_1\) to compute the empirical power: - + simH1 <- getClinicalTrials( nRep = nRep, nPat = c(800, 800), seed = 1238, datType = "1rowPatient", transitionByArm = transitionList, @@ -332,7 +318,7 @@ Sample size an us to easily estimate further interesting metrics, such as joint power, i.e. the probability that both endpoints in a trial are significant, if each endpoint is analyzed at its planned time-point. - + empSignificant( simTrials = simH1, criticalPFS = criticalPFS, @@ -358,7 +344,7 @@ Sample size an It is also possible to derive the median time at which a certain number of events are expected to occur and how many events of the second endpoint have occurred at that time on average. - + # median time point for 329 PFS events to have occurred: timePointsPFS <- lapply(simH1, getTimePoint, eventNum = 329, typeEvent = "PFS", diff --git a/main/authors.html b/main/authors.html index ccac604b..63a1f10b 100644 --- a/main/authors.html +++ b/main/authors.html @@ -1,5 +1,5 @@ -Authors and Citation • simIDMAuthors and Citation • simIDM - - + + diff --git a/main/favicon-16x16.png b/main/favicon-16x16.png index cee8627270de43b9cffeca7d2161d89fa5922b4a..41722759d69e2527996ca63fd6b1bbe86cffc496 100644 GIT binary patch delta 103 zcmdnYv6*8-3=`K2MlL=vgOGzkuQsPK2{U?|=o%R68XANcnphbbS(#X98yHv_7;O72 olfl5ipjzS@QIe8al4_NkpOTqY$zWt)gk8h&bxW>HKEj+20O#Z$1^@s6 delta 103 zcmdnYv6*8-3=`LL9&SDhkxTp6iEU0}5@z%^)-^QJH8cz{G_f)@vobQ!HZZU ng)^r@N diff --git a/main/favicon-32x32.png b/main/favicon-32x32.png index 13b995708358f931e2d07e2423f758c408f06a08..71ec60e65bfd7372fdb749b6a80e68bc5fd46e5e 100644 GIT binary patch delta 101 zcmdnQzlncB1=kBkEsekrd2W+85m*Lka%-_!enRmd;qX`96kU5 delta 101 zcmdnQzlncB1=n*PZaxdqr90*|Y-}oH^ETEsG}1LR3^6pZGBvX@GSoIOure?>5%T>v m0|SFRc?MtW?ChKk%19*4Ldpg-6uP<=K}yko*kC} diff --git a/main/index.html b/main/index.html index 50847030..19affd70 100644 --- a/main/index.html +++ b/main/index.html @@ -21,8 +21,8 @@ - - + + simIDM - 0.1.0.9000 + 0.1.0.9001 @@ -80,18 +80,6 @@ Details Changelog - - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports diff --git a/main/news/index.html b/main/news/index.html index dc908584..9ea9ddd2 100644 --- a/main/news/index.html +++ b/main/news/index.html @@ -1,5 +1,5 @@ -Changelog • simIDMChangelog • simIDMPull Request • simIDMOS Hazard Function from Constant Transition Hazards — ExpHazOS • simIDMQuantile function for OS survival function induced by an illness-death model — ExpQuantOS • simIDMOS Survival Function from Constant Transition Hazards — ExpSurvOS • simIDMPFS Survival Function from Constant Transition Hazards — ExpSurvPFS • simIDMSingle Piecewise Exponentially Distributed Event Time — PCWInversionMethod • simIDM - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports @@ -118,7 +106,7 @@ Value Examples PCWInversionMethod(haz = c(1.1, 0.5, 0.4), pw = c(0, 7, 10), LogU = log(1 - runif(1))) -#> [1] 1.008584 +#> [1] 2.948948
library(rpact) # Number of PFS events required for 80 % power via Schoenfeld: schoenfeldPFS <- getSampleSizeSurvival( @@ -296,7 +282,7 @@ Type I Error - Simulation Under empSignificant
+ empSignificant( simTrials = simNull, criticalPFS = criticalPFS, @@ -321,7 +307,7 @@ Type I Error - Simulation Under Sample size and power calculation - simulation under \(H_1\) Next, we simulate a large number of trials under \(H_1\) to compute the empirical power: - + simH1 <- getClinicalTrials( nRep = nRep, nPat = c(800, 800), seed = 1238, datType = "1rowPatient", transitionByArm = transitionList, @@ -332,7 +318,7 @@ Sample size an us to easily estimate further interesting metrics, such as joint power, i.e. the probability that both endpoints in a trial are significant, if each endpoint is analyzed at its planned time-point. - + empSignificant( simTrials = simH1, criticalPFS = criticalPFS, @@ -358,7 +344,7 @@ Sample size an It is also possible to derive the median time at which a certain number of events are expected to occur and how many events of the second endpoint have occurred at that time on average. - + # median time point for 329 PFS events to have occurred: timePointsPFS <- lapply(simH1, getTimePoint, eventNum = 329, typeEvent = "PFS", diff --git a/main/authors.html b/main/authors.html index ccac604b..63a1f10b 100644 --- a/main/authors.html +++ b/main/authors.html @@ -1,5 +1,5 @@ -Authors and Citation • simIDMAuthors and Citation • simIDM - - + + diff --git a/main/favicon-16x16.png b/main/favicon-16x16.png index cee8627270de43b9cffeca7d2161d89fa5922b4a..41722759d69e2527996ca63fd6b1bbe86cffc496 100644 GIT binary patch delta 103 zcmdnYv6*8-3=`K2MlL=vgOGzkuQsPK2{U?|=o%R68XANcnphbbS(#X98yHv_7;O72 olfl5ipjzS@QIe8al4_NkpOTqY$zWt)gk8h&bxW>HKEj+20O#Z$1^@s6 delta 103 zcmdnYv6*8-3=`LL9&SDhkxTp6iEU0}5@z%^)-^QJH8cz{G_f)@vobQ!HZZU ng)^r@N diff --git a/main/favicon-32x32.png b/main/favicon-32x32.png index 13b995708358f931e2d07e2423f758c408f06a08..71ec60e65bfd7372fdb749b6a80e68bc5fd46e5e 100644 GIT binary patch delta 101 zcmdnQzlncB1=kBkEsekrd2W+85m*Lka%-_!enRmd;qX`96kU5 delta 101 zcmdnQzlncB1=n*PZaxdqr90*|Y-}oH^ETEsG}1LR3^6pZGBvX@GSoIOure?>5%T>v m0|SFRc?MtW?ChKk%19*4Ldpg-6uP<=K}yko*kC} diff --git a/main/index.html b/main/index.html index 50847030..19affd70 100644 --- a/main/index.html +++ b/main/index.html @@ -21,8 +21,8 @@ - - + + simIDM - 0.1.0.9000 + 0.1.0.9001 @@ -80,18 +80,6 @@ Details Changelog - - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports diff --git a/main/news/index.html b/main/news/index.html index dc908584..9ea9ddd2 100644 --- a/main/news/index.html +++ b/main/news/index.html @@ -1,5 +1,5 @@ -Changelog • simIDMChangelog • simIDMPull Request • simIDMOS Hazard Function from Constant Transition Hazards — ExpHazOS • simIDMQuantile function for OS survival function induced by an illness-death model — ExpQuantOS • simIDMOS Survival Function from Constant Transition Hazards — ExpSurvOS • simIDMPFS Survival Function from Constant Transition Hazards — ExpSurvPFS • simIDMSingle Piecewise Exponentially Distributed Event Time — PCWInversionMethod • simIDM - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports @@ -118,7 +106,7 @@ Value Examples PCWInversionMethod(haz = c(1.1, 0.5, 0.4), pw = c(0, 7, 10), LogU = log(1 - runif(1))) -#> [1] 1.008584 +#> [1] 2.948948
empSignificant( simTrials = simNull, criticalPFS = criticalPFS, @@ -321,7 +307,7 @@ Type I Error - Simulation Under Sample size and power calculation - simulation under \(H_1\) Next, we simulate a large number of trials under \(H_1\) to compute the empirical power: - + simH1 <- getClinicalTrials( nRep = nRep, nPat = c(800, 800), seed = 1238, datType = "1rowPatient", transitionByArm = transitionList, @@ -332,7 +318,7 @@ Sample size an us to easily estimate further interesting metrics, such as joint power, i.e. the probability that both endpoints in a trial are significant, if each endpoint is analyzed at its planned time-point. - + empSignificant( simTrials = simH1, criticalPFS = criticalPFS, @@ -358,7 +344,7 @@ Sample size an It is also possible to derive the median time at which a certain number of events are expected to occur and how many events of the second endpoint have occurred at that time on average. - + # median time point for 329 PFS events to have occurred: timePointsPFS <- lapply(simH1, getTimePoint, eventNum = 329, typeEvent = "PFS", diff --git a/main/authors.html b/main/authors.html index ccac604b..63a1f10b 100644 --- a/main/authors.html +++ b/main/authors.html @@ -1,5 +1,5 @@ -Authors and Citation • simIDMAuthors and Citation • simIDM - - + + diff --git a/main/favicon-16x16.png b/main/favicon-16x16.png index cee8627270de43b9cffeca7d2161d89fa5922b4a..41722759d69e2527996ca63fd6b1bbe86cffc496 100644 GIT binary patch delta 103 zcmdnYv6*8-3=`K2MlL=vgOGzkuQsPK2{U?|=o%R68XANcnphbbS(#X98yHv_7;O72 olfl5ipjzS@QIe8al4_NkpOTqY$zWt)gk8h&bxW>HKEj+20O#Z$1^@s6 delta 103 zcmdnYv6*8-3=`LL9&SDhkxTp6iEU0}5@z%^)-^QJH8cz{G_f)@vobQ!HZZU ng)^r@N diff --git a/main/favicon-32x32.png b/main/favicon-32x32.png index 13b995708358f931e2d07e2423f758c408f06a08..71ec60e65bfd7372fdb749b6a80e68bc5fd46e5e 100644 GIT binary patch delta 101 zcmdnQzlncB1=kBkEsekrd2W+85m*Lka%-_!enRmd;qX`96kU5 delta 101 zcmdnQzlncB1=n*PZaxdqr90*|Y-}oH^ETEsG}1LR3^6pZGBvX@GSoIOure?>5%T>v m0|SFRc?MtW?ChKk%19*4Ldpg-6uP<=K}yko*kC} diff --git a/main/index.html b/main/index.html index 50847030..19affd70 100644 --- a/main/index.html +++ b/main/index.html @@ -21,8 +21,8 @@ - - + + simIDM - 0.1.0.9000 + 0.1.0.9001 @@ -80,18 +80,6 @@ Details Changelog - - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports diff --git a/main/news/index.html b/main/news/index.html index dc908584..9ea9ddd2 100644 --- a/main/news/index.html +++ b/main/news/index.html @@ -1,5 +1,5 @@ -Changelog • simIDMChangelog • simIDMPull Request • simIDMOS Hazard Function from Constant Transition Hazards — ExpHazOS • simIDMQuantile function for OS survival function induced by an illness-death model — ExpQuantOS • simIDMOS Survival Function from Constant Transition Hazards — ExpSurvOS • simIDMPFS Survival Function from Constant Transition Hazards — ExpSurvPFS • simIDMSingle Piecewise Exponentially Distributed Event Time — PCWInversionMethod • simIDM - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports @@ -118,7 +106,7 @@ Value Examples PCWInversionMethod(haz = c(1.1, 0.5, 0.4), pw = c(0, 7, 10), LogU = log(1 - runif(1))) -#> [1] 1.008584 +#> [1] 2.948948
Next, we simulate a large number of trials under \(H_1\) to compute the empirical power:
+ simH1 <- getClinicalTrials( nRep = nRep, nPat = c(800, 800), seed = 1238, datType = "1rowPatient", transitionByArm = transitionList, @@ -332,7 +318,7 @@ Sample size an us to easily estimate further interesting metrics, such as joint power, i.e. the probability that both endpoints in a trial are significant, if each endpoint is analyzed at its planned time-point. - + empSignificant( simTrials = simH1, criticalPFS = criticalPFS, @@ -358,7 +344,7 @@ Sample size an It is also possible to derive the median time at which a certain number of events are expected to occur and how many events of the second endpoint have occurred at that time on average. - + # median time point for 329 PFS events to have occurred: timePointsPFS <- lapply(simH1, getTimePoint, eventNum = 329, typeEvent = "PFS", diff --git a/main/authors.html b/main/authors.html index ccac604b..63a1f10b 100644 --- a/main/authors.html +++ b/main/authors.html @@ -1,5 +1,5 @@ -Authors and Citation • simIDMAuthors and Citation • simIDM - - + + diff --git a/main/favicon-16x16.png b/main/favicon-16x16.png index cee8627270de43b9cffeca7d2161d89fa5922b4a..41722759d69e2527996ca63fd6b1bbe86cffc496 100644 GIT binary patch delta 103 zcmdnYv6*8-3=`K2MlL=vgOGzkuQsPK2{U?|=o%R68XANcnphbbS(#X98yHv_7;O72 olfl5ipjzS@QIe8al4_NkpOTqY$zWt)gk8h&bxW>HKEj+20O#Z$1^@s6 delta 103 zcmdnYv6*8-3=`LL9&SDhkxTp6iEU0}5@z%^)-^QJH8cz{G_f)@vobQ!HZZU ng)^r@N diff --git a/main/favicon-32x32.png b/main/favicon-32x32.png index 13b995708358f931e2d07e2423f758c408f06a08..71ec60e65bfd7372fdb749b6a80e68bc5fd46e5e 100644 GIT binary patch delta 101 zcmdnQzlncB1=kBkEsekrd2W+85m*Lka%-_!enRmd;qX`96kU5 delta 101 zcmdnQzlncB1=n*PZaxdqr90*|Y-}oH^ETEsG}1LR3^6pZGBvX@GSoIOure?>5%T>v m0|SFRc?MtW?ChKk%19*4Ldpg-6uP<=K}yko*kC} diff --git a/main/index.html b/main/index.html index 50847030..19affd70 100644 --- a/main/index.html +++ b/main/index.html @@ -21,8 +21,8 @@ - - + + simIDM - 0.1.0.9000 + 0.1.0.9001 @@ -80,18 +80,6 @@ Details Changelog - - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports diff --git a/main/news/index.html b/main/news/index.html index dc908584..9ea9ddd2 100644 --- a/main/news/index.html +++ b/main/news/index.html @@ -1,5 +1,5 @@ -Changelog • simIDMChangelog • simIDMPull Request • simIDMOS Hazard Function from Constant Transition Hazards — ExpHazOS • simIDMQuantile function for OS survival function induced by an illness-death model — ExpQuantOS • simIDMOS Survival Function from Constant Transition Hazards — ExpSurvOS • simIDMPFS Survival Function from Constant Transition Hazards — ExpSurvPFS • simIDMSingle Piecewise Exponentially Distributed Event Time — PCWInversionMethod • simIDM - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports @@ -118,7 +106,7 @@ Value Examples PCWInversionMethod(haz = c(1.1, 0.5, 0.4), pw = c(0, 7, 10), LogU = log(1 - runif(1))) -#> [1] 1.008584 +#> [1] 2.948948
simH1 <- getClinicalTrials( nRep = nRep, nPat = c(800, 800), seed = 1238, datType = "1rowPatient", transitionByArm = transitionList, @@ -332,7 +318,7 @@ Sample size an us to easily estimate further interesting metrics, such as joint power, i.e. the probability that both endpoints in a trial are significant, if each endpoint is analyzed at its planned time-point. - + empSignificant( simTrials = simH1, criticalPFS = criticalPFS, @@ -358,7 +344,7 @@ Sample size an It is also possible to derive the median time at which a certain number of events are expected to occur and how many events of the second endpoint have occurred at that time on average. - + # median time point for 329 PFS events to have occurred: timePointsPFS <- lapply(simH1, getTimePoint, eventNum = 329, typeEvent = "PFS", diff --git a/main/authors.html b/main/authors.html index ccac604b..63a1f10b 100644 --- a/main/authors.html +++ b/main/authors.html @@ -1,5 +1,5 @@ -Authors and Citation • simIDMAuthors and Citation • simIDM - - + + diff --git a/main/favicon-16x16.png b/main/favicon-16x16.png index cee8627270de43b9cffeca7d2161d89fa5922b4a..41722759d69e2527996ca63fd6b1bbe86cffc496 100644 GIT binary patch delta 103 zcmdnYv6*8-3=`K2MlL=vgOGzkuQsPK2{U?|=o%R68XANcnphbbS(#X98yHv_7;O72 olfl5ipjzS@QIe8al4_NkpOTqY$zWt)gk8h&bxW>HKEj+20O#Z$1^@s6 delta 103 zcmdnYv6*8-3=`LL9&SDhkxTp6iEU0}5@z%^)-^QJH8cz{G_f)@vobQ!HZZU ng)^r@N diff --git a/main/favicon-32x32.png b/main/favicon-32x32.png index 13b995708358f931e2d07e2423f758c408f06a08..71ec60e65bfd7372fdb749b6a80e68bc5fd46e5e 100644 GIT binary patch delta 101 zcmdnQzlncB1=kBkEsekrd2W+85m*Lka%-_!enRmd;qX`96kU5 delta 101 zcmdnQzlncB1=n*PZaxdqr90*|Y-}oH^ETEsG}1LR3^6pZGBvX@GSoIOure?>5%T>v m0|SFRc?MtW?ChKk%19*4Ldpg-6uP<=K}yko*kC} diff --git a/main/index.html b/main/index.html index 50847030..19affd70 100644 --- a/main/index.html +++ b/main/index.html @@ -21,8 +21,8 @@ - - + + simIDM - 0.1.0.9000 + 0.1.0.9001 @@ -80,18 +80,6 @@ Details Changelog - - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports diff --git a/main/news/index.html b/main/news/index.html index dc908584..9ea9ddd2 100644 --- a/main/news/index.html +++ b/main/news/index.html @@ -1,5 +1,5 @@ -Changelog • simIDMChangelog • simIDMPull Request • simIDMOS Hazard Function from Constant Transition Hazards — ExpHazOS • simIDMQuantile function for OS survival function induced by an illness-death model — ExpQuantOS • simIDMOS Survival Function from Constant Transition Hazards — ExpSurvOS • simIDMPFS Survival Function from Constant Transition Hazards — ExpSurvPFS • simIDMSingle Piecewise Exponentially Distributed Event Time — PCWInversionMethod • simIDM - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports @@ -118,7 +106,7 @@ Value Examples PCWInversionMethod(haz = c(1.1, 0.5, 0.4), pw = c(0, 7, 10), LogU = log(1 - runif(1))) -#> [1] 1.008584 +#> [1] 2.948948
+ empSignificant( simTrials = simH1, criticalPFS = criticalPFS, @@ -358,7 +344,7 @@ Sample size an It is also possible to derive the median time at which a certain number of events are expected to occur and how many events of the second endpoint have occurred at that time on average. - + # median time point for 329 PFS events to have occurred: timePointsPFS <- lapply(simH1, getTimePoint, eventNum = 329, typeEvent = "PFS", diff --git a/main/authors.html b/main/authors.html index ccac604b..63a1f10b 100644 --- a/main/authors.html +++ b/main/authors.html @@ -1,5 +1,5 @@ -Authors and Citation • simIDMAuthors and Citation • simIDM - - + + diff --git a/main/favicon-16x16.png b/main/favicon-16x16.png index cee8627270de43b9cffeca7d2161d89fa5922b4a..41722759d69e2527996ca63fd6b1bbe86cffc496 100644 GIT binary patch delta 103 zcmdnYv6*8-3=`K2MlL=vgOGzkuQsPK2{U?|=o%R68XANcnphbbS(#X98yHv_7;O72 olfl5ipjzS@QIe8al4_NkpOTqY$zWt)gk8h&bxW>HKEj+20O#Z$1^@s6 delta 103 zcmdnYv6*8-3=`LL9&SDhkxTp6iEU0}5@z%^)-^QJH8cz{G_f)@vobQ!HZZU ng)^r@N diff --git a/main/favicon-32x32.png b/main/favicon-32x32.png index 13b995708358f931e2d07e2423f758c408f06a08..71ec60e65bfd7372fdb749b6a80e68bc5fd46e5e 100644 GIT binary patch delta 101 zcmdnQzlncB1=kBkEsekrd2W+85m*Lka%-_!enRmd;qX`96kU5 delta 101 zcmdnQzlncB1=n*PZaxdqr90*|Y-}oH^ETEsG}1LR3^6pZGBvX@GSoIOure?>5%T>v m0|SFRc?MtW?ChKk%19*4Ldpg-6uP<=K}yko*kC} diff --git a/main/index.html b/main/index.html index 50847030..19affd70 100644 --- a/main/index.html +++ b/main/index.html @@ -21,8 +21,8 @@ - - + + simIDM - 0.1.0.9000 + 0.1.0.9001 @@ -80,18 +80,6 @@ Details Changelog - - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports diff --git a/main/news/index.html b/main/news/index.html index dc908584..9ea9ddd2 100644 --- a/main/news/index.html +++ b/main/news/index.html @@ -1,5 +1,5 @@ -Changelog • simIDMChangelog • simIDMPull Request • simIDMOS Hazard Function from Constant Transition Hazards — ExpHazOS • simIDMQuantile function for OS survival function induced by an illness-death model — ExpQuantOS • simIDMOS Survival Function from Constant Transition Hazards — ExpSurvOS • simIDMPFS Survival Function from Constant Transition Hazards — ExpSurvPFS • simIDMSingle Piecewise Exponentially Distributed Event Time — PCWInversionMethod • simIDM - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports @@ -118,7 +106,7 @@ Value Examples PCWInversionMethod(haz = c(1.1, 0.5, 0.4), pw = c(0, 7, 10), LogU = log(1 - runif(1))) -#> [1] 1.008584 +#> [1] 2.948948
empSignificant( simTrials = simH1, criticalPFS = criticalPFS, @@ -358,7 +344,7 @@ Sample size an It is also possible to derive the median time at which a certain number of events are expected to occur and how many events of the second endpoint have occurred at that time on average. - + # median time point for 329 PFS events to have occurred: timePointsPFS <- lapply(simH1, getTimePoint, eventNum = 329, typeEvent = "PFS", diff --git a/main/authors.html b/main/authors.html index ccac604b..63a1f10b 100644 --- a/main/authors.html +++ b/main/authors.html @@ -1,5 +1,5 @@ -Authors and Citation • simIDMAuthors and Citation • simIDM - - + + diff --git a/main/favicon-16x16.png b/main/favicon-16x16.png index cee8627270de43b9cffeca7d2161d89fa5922b4a..41722759d69e2527996ca63fd6b1bbe86cffc496 100644 GIT binary patch delta 103 zcmdnYv6*8-3=`K2MlL=vgOGzkuQsPK2{U?|=o%R68XANcnphbbS(#X98yHv_7;O72 olfl5ipjzS@QIe8al4_NkpOTqY$zWt)gk8h&bxW>HKEj+20O#Z$1^@s6 delta 103 zcmdnYv6*8-3=`LL9&SDhkxTp6iEU0}5@z%^)-^QJH8cz{G_f)@vobQ!HZZU ng)^r@N diff --git a/main/favicon-32x32.png b/main/favicon-32x32.png index 13b995708358f931e2d07e2423f758c408f06a08..71ec60e65bfd7372fdb749b6a80e68bc5fd46e5e 100644 GIT binary patch delta 101 zcmdnQzlncB1=kBkEsekrd2W+85m*Lka%-_!enRmd;qX`96kU5 delta 101 zcmdnQzlncB1=n*PZaxdqr90*|Y-}oH^ETEsG}1LR3^6pZGBvX@GSoIOure?>5%T>v m0|SFRc?MtW?ChKk%19*4Ldpg-6uP<=K}yko*kC} diff --git a/main/index.html b/main/index.html index 50847030..19affd70 100644 --- a/main/index.html +++ b/main/index.html @@ -21,8 +21,8 @@ - - + + simIDM - 0.1.0.9000 + 0.1.0.9001 @@ -80,18 +80,6 @@ Details Changelog - - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports diff --git a/main/news/index.html b/main/news/index.html index dc908584..9ea9ddd2 100644 --- a/main/news/index.html +++ b/main/news/index.html @@ -1,5 +1,5 @@ -Changelog • simIDMChangelog • simIDMPull Request • simIDMOS Hazard Function from Constant Transition Hazards — ExpHazOS • simIDMQuantile function for OS survival function induced by an illness-death model — ExpQuantOS • simIDMOS Survival Function from Constant Transition Hazards — ExpSurvOS • simIDMPFS Survival Function from Constant Transition Hazards — ExpSurvPFS • simIDMSingle Piecewise Exponentially Distributed Event Time — PCWInversionMethod • simIDM - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports @@ -118,7 +106,7 @@ Value Examples PCWInversionMethod(haz = c(1.1, 0.5, 0.4), pw = c(0, 7, 10), LogU = log(1 - runif(1))) -#> [1] 1.008584 +#> [1] 2.948948
It is also possible to derive the median time at which a certain number of events are expected to occur and how many events of the second endpoint have occurred at that time on average.
+ # median time point for 329 PFS events to have occurred: timePointsPFS <- lapply(simH1, getTimePoint, eventNum = 329, typeEvent = "PFS", diff --git a/main/authors.html b/main/authors.html index ccac604b..63a1f10b 100644 --- a/main/authors.html +++ b/main/authors.html @@ -1,5 +1,5 @@ -Authors and Citation • simIDMAuthors and Citation • simIDM - - + + diff --git a/main/favicon-16x16.png b/main/favicon-16x16.png index cee8627270de43b9cffeca7d2161d89fa5922b4a..41722759d69e2527996ca63fd6b1bbe86cffc496 100644 GIT binary patch delta 103 zcmdnYv6*8-3=`K2MlL=vgOGzkuQsPK2{U?|=o%R68XANcnphbbS(#X98yHv_7;O72 olfl5ipjzS@QIe8al4_NkpOTqY$zWt)gk8h&bxW>HKEj+20O#Z$1^@s6 delta 103 zcmdnYv6*8-3=`LL9&SDhkxTp6iEU0}5@z%^)-^QJH8cz{G_f)@vobQ!HZZU ng)^r@N diff --git a/main/favicon-32x32.png b/main/favicon-32x32.png index 13b995708358f931e2d07e2423f758c408f06a08..71ec60e65bfd7372fdb749b6a80e68bc5fd46e5e 100644 GIT binary patch delta 101 zcmdnQzlncB1=kBkEsekrd2W+85m*Lka%-_!enRmd;qX`96kU5 delta 101 zcmdnQzlncB1=n*PZaxdqr90*|Y-}oH^ETEsG}1LR3^6pZGBvX@GSoIOure?>5%T>v m0|SFRc?MtW?ChKk%19*4Ldpg-6uP<=K}yko*kC} diff --git a/main/index.html b/main/index.html index 50847030..19affd70 100644 --- a/main/index.html +++ b/main/index.html @@ -21,8 +21,8 @@ - - + + simIDM - 0.1.0.9000 + 0.1.0.9001 @@ -80,18 +80,6 @@ Details Changelog - - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports diff --git a/main/news/index.html b/main/news/index.html index dc908584..9ea9ddd2 100644 --- a/main/news/index.html +++ b/main/news/index.html @@ -1,5 +1,5 @@ -Changelog • simIDMChangelog • simIDMPull Request • simIDMOS Hazard Function from Constant Transition Hazards — ExpHazOS • simIDMQuantile function for OS survival function induced by an illness-death model — ExpQuantOS • simIDMOS Survival Function from Constant Transition Hazards — ExpSurvOS • simIDMPFS Survival Function from Constant Transition Hazards — ExpSurvPFS • simIDMSingle Piecewise Exponentially Distributed Event Time — PCWInversionMethod • simIDM - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports @@ -118,7 +106,7 @@ Value Examples PCWInversionMethod(haz = c(1.1, 0.5, 0.4), pw = c(0, 7, 10), LogU = log(1 - runif(1))) -#> [1] 1.008584 +#> [1] 2.948948
# median time point for 329 PFS events to have occurred: timePointsPFS <- lapply(simH1, getTimePoint, eventNum = 329, typeEvent = "PFS", diff --git a/main/authors.html b/main/authors.html index ccac604b..63a1f10b 100644 --- a/main/authors.html +++ b/main/authors.html @@ -1,5 +1,5 @@ -Authors and Citation • simIDMAuthors and Citation • simIDM - - + + diff --git a/main/favicon-16x16.png b/main/favicon-16x16.png index cee8627270de43b9cffeca7d2161d89fa5922b4a..41722759d69e2527996ca63fd6b1bbe86cffc496 100644 GIT binary patch delta 103 zcmdnYv6*8-3=`K2MlL=vgOGzkuQsPK2{U?|=o%R68XANcnphbbS(#X98yHv_7;O72 olfl5ipjzS@QIe8al4_NkpOTqY$zWt)gk8h&bxW>HKEj+20O#Z$1^@s6 delta 103 zcmdnYv6*8-3=`LL9&SDhkxTp6iEU0}5@z%^)-^QJH8cz{G_f)@vobQ!HZZU ng)^r@N diff --git a/main/favicon-32x32.png b/main/favicon-32x32.png index 13b995708358f931e2d07e2423f758c408f06a08..71ec60e65bfd7372fdb749b6a80e68bc5fd46e5e 100644 GIT binary patch delta 101 zcmdnQzlncB1=kBkEsekrd2W+85m*Lka%-_!enRmd;qX`96kU5 delta 101 zcmdnQzlncB1=n*PZaxdqr90*|Y-}oH^ETEsG}1LR3^6pZGBvX@GSoIOure?>5%T>v m0|SFRc?MtW?ChKk%19*4Ldpg-6uP<=K}yko*kC} diff --git a/main/index.html b/main/index.html index 50847030..19affd70 100644 --- a/main/index.html +++ b/main/index.html @@ -21,8 +21,8 @@ - - + + simIDM - 0.1.0.9000 + 0.1.0.9001 @@ -80,18 +80,6 @@ Details Changelog - - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports diff --git a/main/news/index.html b/main/news/index.html index dc908584..9ea9ddd2 100644 --- a/main/news/index.html +++ b/main/news/index.html @@ -1,5 +1,5 @@ -Changelog • simIDMChangelog • simIDMPull Request • simIDMOS Hazard Function from Constant Transition Hazards — ExpHazOS • simIDMQuantile function for OS survival function induced by an illness-death model — ExpQuantOS • simIDMOS Survival Function from Constant Transition Hazards — ExpSurvOS • simIDMPFS Survival Function from Constant Transition Hazards — ExpSurvPFS • simIDMSingle Piecewise Exponentially Distributed Event Time — PCWInversionMethod • simIDM - Versions latest-tag -main -v0.1.0 -v0.0.5 -v0.0.4 -v0.0.2 -v0.0.1 - Reports @@ -118,7 +106,7 @@ Value Examples PCWInversionMethod(haz = c(1.1, 0.5, 0.4), pw = c(0, 7, 10), LogU = log(1 - runif(1))) -#> [1] 1.008584 +#> [1] 2.948948
PCWInversionMethod(haz = c(1.1, 0.5, 0.4), pw = c(0, 7, 10), LogU = log(1 - runif(1))) -#> [1] 1.008584 +#> [1] 2.948948