To download and prepare the MSCOCO 2017 dataset, execute the following commands:
wget http://images.cocodataset.org/zips/train2017.zip -P coco
wget http://images.cocodataset.org/zips/val2017.zip -P coco
wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip -P coco
cd coco
unzip -q train2017.zip
unzip -q val2017.zip
unzip -q annotations_trainval2017.zip
rm train2017.zip
rm val2017.zip
rm annotations_trainval2017.zip
Then in config/FastVim/lsj-100e_coco-instance.py, change data_root path to dataset
chmod +x ./detection/tools/dist_train.sh
FastVimT: ./detection/tools/dist_train.sh "detection/configs/FastVim/vitdet_cascade_mask-rcnn_FastVim_tiny_noclstok_rotate_layernorm_lsj-300e.py" 8 "path_to_imagenet_supervised_ckpt"
FastVimS: ./detection/tools/dist_train.sh "detection/configs/FastVim/vitdet_cascade_mask-rcnn_FastVim_small_noclstok_rotate_layernorm_lsj-300e.py" 8 "path_to_imagenet_supervised_ckpt"
FastVimB: ./detection/tools/dist_train.sh "detection/configs/FastVim/vitdet_cascade_mask-rcnn_FastVim_base_noclstok_rotate_layernorm_lsj-300e.py" 8 "path_to_imagenet_supervised_ckpt"
VimS: ./detection/tools/dist_train.sh "detection/configs/FastVim/vitdet_cascade_mask-rcnn_Vim_small_lsj-300e.py" 8 "path_to_imagenet_supervised_ckpt"
Model | APbox |
---|---|
FastVim-T.ckpt | 45.1 |
FastVim-S.ckpt | 48.4 |
FastVim-B.ckpt | 50.0 |
Vim-S.ckpt | 47.1 |