-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpretrain_VimL.yaml
51 lines (44 loc) · 1.05 KB
/
pretrain_VimL.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
accum_iter: 1 #modify to keep overall batch size 4096
batch_size: 128
num_workers: 12
num_nodes: 1
pl_seed: 0
img_size: 224
patch_size: 16
norm_pix_loss: true
mask_ratio: 0.75
in_chans: 3
use_norm_after_ssm: True
training_epochs: 1600
warmup_epochs: 40
blr: 0.00015
min_lr: 0
weight_decay: 0.05
vim_config:
_target_: models.mae.fastvim_mae.mae_vim_large_dec512d2b
img_size: ${img_size}
patch_size: ${patch_size}
stride: ${patch_size}
in_chans: ${in_chans}
norm_pix_loss: ${norm_pix_loss}
use_norm_after_ssm: ${use_norm_after_ssm}
# Configuration for the dataloader
data_config:
_target_: mae.datasets_mae.load_DataModule
batch_size: ${batch_size}
num_workers: ${num_workers}
#augmentation
img_size: 224
hflip: 0.5
interpolation: 'bicubic'
model_config:
_target_: mae.mae_imagenet.SSLModule
backbone: ${vim_config}
weight_decay: ${weight_decay}
blr: ${blr}
batch_size: ${batch_size}
warmup_epochs: ${warmup_epochs}
scheduling_epochs: ${training_epochs}
accum_iter: ${accum_iter}
min_lr: ${min_lr}
mask_ratio: ${mask_ratio}